
Topology Exercise Sheet 1
Prof. Dr. Alessandro Sisto Due to 27 February

Ex.1

Show that every open set in R is the union of a collection of disjoint open intervals
(a, b), where we allow a = −∞ and b = +∞.

Solution:
We know that every open set in R is the union of open intervals as above. We
need to show that we can carefully choose those interval to be disjoint. Let O
be an open set. If O is empty, then the claim trivially holds, because the empty
set is an empty collection of intervals. So assume that O is non-empty. For
each point x ∈ O, we are going to define an open interval Int(x) that contains
x, with the property that for each y ∈ Int(x), we have that Int(y) = Int(x).

If we can do this, then we are done. Indeed, let x, y be two points of O.
Then the intervals Int(x) and Int(y) either coincide or are disjoint. Thus, the
set

{Int(x) | x ∈ O}

contains disjoints interval whose union is O.
We define Int(x) as the union of all the open intervals contained in O that

contain x. Note that such an union is an open set. There are several ways to
see this. The easiest one is to remember that in a topology the union of open
sets is an open set.

We want to show that Int(x) is an interval, namely, if y, z ∈ Int(x), then
[y, z] ⊆ Int(x). But this is true because, by construction, y and z are contained
in an open interval that contains x (and is contained in O). Let (a, b), respec-
tively (c, d) be such intervals. Thus we have m = min{a, c} < x < max{c, d} =
M , in particular (m,M) is contained in Int(x) and contains [y, z].

Let y be a point in Int(x). We need to show that Int(y) = Int(x). Since
Int(x) is an open interval that contains y, then Int(x) ⊆ Int(y). But this means
that x ∈ Int(y), thus Int(y) ⊆ Int(x).

Note: One crucial property that was used in this exercise is the fact that
the union of two open intervals whose intersection is non empty, is again an
open interval!

1



Ex.2

For each x ∈ R, let Ix = (x,∞), and let I∞ = ∅ and I−∞ = R. Check that

T = {Ix | x ∈ R ∪ {−∞,∞}}

defines a topology on R.

Solution:
This is true because given Ix and Iy (assume that x ≤ y), then Ix ∪ Iy = Ix
and Ix ∩ Iy = Iy. Moreover, let {xi} be a (possibly infinite family of elements
of R, and let x̂ = inf{xi}. Then we have⋃

Ixi
= Ix̂.

Indeed, for each y > x̂, there must be xj such that y ∈ Ixj
, and hence Ix̂ ⊆⋃

Ixi
.

Conversely, let y ∈ Ix̂. Then y > x̂. Hence there is xj such that x̂ < xj < y,
and thus y ∈ Ixj

.

Ex.3

Let X be a set and let p be an element of X. Check that

T = {A ⊆ X | p 6∈ A or X − A is finite}

defines a topology on X.

Solution:
We start by noticing that X−X is finite and that p 6∈ ∅. Thus {X, ∅} ⊆ T . We
need to check that T is closed under finite intersection and (possibly infinite)
union. For the intersection, let A1 and A2 be elements of T . If at least one of
them does not contain p, then the intersection A1 ∩ A2 also does not contain
p. So it is an element of T . Thus, let’s assume that they both contain p. This
means that the sets X − A1 and X − A2 are both finite. Note that

X − (A1 ∩ A2) = (X − A1) ∪ (X − A2).

Since X − A1 and X − A2 are finite, so it the union X − (A1 ∪ A2). Hence
A1 ∩ A2 is contained in T .
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For the union, let {Ai} be a (possibly infinite) family of elements of T , and
let A =

⋃
Ai be their union. If for all i the element p is not contained in Ai,

then p 6∈ A, and thus A ∈ T . Conversely, suppose that there is j such that
p ∈ Aj. Then p ∈ A, so we want to show that X −A is finite. Note that, since
p ∈ Ai, we have that X − Aj is finite. Since

X − (
⋃

Ai) =
⋂

(X − Ai),

and we know that at least one element on the right hand side is finite (the one
corresponding to j), we get the claim.

Ex.4

Let X = {a, b, c, d}. Which of the following are topologies for X?

(i) {∅, X, {a}, {b}, {a, c}, {a, b, c}, {a, b}}; yes

(ii) {∅, X, {a}, {b}, {a, b}, {b, d}}; no

(iii) {∅, X, {a, c, d}, {b, c, d}} no

Ex.5

Let T be the topology for R described in Question 2. Which of the following
functions f : R→ R are continuous with respect to T ?

1. f(x) = x2; no

2. f(x) = x3; yes

3. f(x) =

{
5 if x > 5

0 otherwise;
yes

4. f(x) = −x no

Ex.6

In this exercise, we want to understand a little bit better continuous maps in the
topology of Question 2. For this exercise, we say that a map f : R→ R is standard-
continuous, if it is continuous with respect to the usual topology on R. We say
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that it is T -continuous if it is continuous with respect to the topology described
in Question 2. Let f be a function that is standard-continuous. Can you find a
property that f needs to satisfy to be also T -continuous?

Solution:
A standard-continuous function that is monotonic increasing is also T -
continuous. Indeed, let O be an open in the T -topology, that is O = (a,∞).
We start eliminating some trivial cases.

It is clear that if O = ∅ or f(R)∩O is empty then the statement is trivially
true. So suppose this is not the case, that is, that f(R) ∩O 6= ∅.

Since O is standard-open, then f−1(O) is standard-open. Moreover, since f
is continuous and monotone, the preimage of an interval has to be an interval.
Thus, f−1(O) has the form (a, b) for a, b ∈ R∪ {∞,−∞}. By the cases above,
a 6=∞ and a < b. The only thing that we need to show is that b =∞. Suppose
that this was not true. Then there is c > b such that f(c) 6∈ O and x ∈ (a, b)
such that f(x) ∈ O. Since f is monotone, f(x) ≤ f(c). Moreover, f(x) ∈ O
and f(c) 6∈ O. But since O is an open interval of the form (o,∞) for some o,
we need to have o < f(x) ≤ f(c). Thus f(c) has to be in O.
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