TOPOLOGY Prof. Dr. Alessandro Sisto

$\underline{\text{Ex.1}}$

Show that every open set in \mathbb{R} is the union of a collection of *disjoint* open intervals (a, b), where we allow $a = -\infty$ and $b = +\infty$.

Solution:

We know that every open set in \mathbb{R} is the union of open intervals as above. We need to show that we can carefully choose those interval to be disjoint. Let O be an open set. If O is empty, then the claim trivially holds, because the empty set is an empty collection of intervals. So assume that O is non-empty. For each point $x \in O$, we are going to define an open interval Int(x) that contains x, with the property that for each $y \in Int(x)$, we have that Int(y) = Int(x).

If we can do this, then we are done. Indeed, let x, y be two points of O. Then the intervals Int(x) and Int(y) either coincide or are disjoint. Thus, the set

$${\operatorname{Int}(x) \mid x \in O}$$

contains disjoints interval whose union is O.

We define Int(x) as the union of all the open intervals contained in O that contain x. Note that such an union is an open set. There are several ways to see this. The easiest one is to remember that in a topology the union of open sets is an open set.

We want to show that Int(x) is an interval, namely, if $y, z \in Int(x)$, then $[y, z] \subseteq Int(x)$. But this is true because, by construction, y and z are contained in an open interval that contains x (and is contained in O). Let (a, b), respectively (c, d) be such intervals. Thus we have $m = \min\{a, c\} < x < \max\{c, d\} = M$, in particular (m, M) is contained in Int(x) and contains [y, z].

Let y be a point in Int(x). We need to show that Int(y) = Int(x). Since Int(x) is an open interval that contains y, then $Int(x) \subseteq Int(y)$. But this means that $x \in Int(y)$, thus $Int(y) \subseteq Int(x)$.

Note: One crucial property that was used in this exercise is the fact that the union of two open intervals whose intersection is non empty, is again an open interval!

$\underline{\text{Ex.2}}$

For each $x \in \mathbb{R}$, let $I_x = (x, \infty)$, and let $I_\infty = \emptyset$ and $I_{-\infty} = \mathbb{R}$. Check that

$$\mathcal{T} = \{ I_x \mid x \in \mathbb{R} \cup \{ -\infty, \infty \} \}$$

defines a topology on \mathbb{R} .

Solution:

This is true because given I_x and I_y (assume that $x \leq y$), then $I_x \cup I_y = I_x$ and $I_x \cap I_y = I_y$. Moreover, let $\{x_i\}$ be a (possibly infinite family of elements of \mathbb{R} , and let $\hat{x} = \inf\{x_i\}$. Then we have

$$\bigcup I_{x_i} = I_{\widehat{x}}.$$

Indeed, for each $y > \hat{x}$, there must be x_j such that $y \in I_{x_j}$, and hence $I_{\hat{x}} \subseteq \bigcup I_{x_i}$.

Conversely, let $y \in I_{\widehat{x}}$. Then $y > \widehat{x}$. Hence there is x_j such that $\widehat{x} < x_j < y$, and thus $y \in I_{x_j}$.

<u>Ex.3</u>

Let X be a set and let p be an element of X. Check that

$$\mathcal{T} = \{ A \subseteq X \mid p \notin A \text{ or } X - A \text{ is finite} \}$$

defines a topology on X.

Solution:

We start by noticing that X - X is finite and that $p \notin \emptyset$. Thus $\{X, \emptyset\} \subseteq \mathcal{T}$. We need to check that \mathcal{T} is closed under finite intersection and (possibly infinite) union. For the intersection, let A_1 and A_2 be elements of \mathcal{T} . If at least one of them does not contain p, then the intersection $A_1 \cap A_2$ also does not contain p. So it is an element of \mathcal{T} . Thus, let's assume that they both contain p. This means that the sets $X - A_1$ and $X - A_2$ are both finite. Note that

$$X - (A_1 \cap A_2) = (X - A_1) \cup (X - A_2).$$

Since $X - A_1$ and $X - A_2$ are finite, so it the union $X - (A_1 \cup A_2)$. Hence $A_1 \cap A_2$ is contained in \mathcal{T} .

For the union, let $\{A_i\}$ be a (possibly infinite) family of elements of \mathcal{T} , and let $A = \bigcup A_i$ be their union. If for all *i* the element *p* is not contained in A_i , then $p \notin A$, and thus $A \in \mathcal{T}$. Conversely, suppose that there is *j* such that $p \in A_j$. Then $p \in A$, so we want to show that X - A is finite. Note that, since $p \in A_i$, we have that $X - A_j$ is finite. Since

$$X - (\bigcup A_i) = \bigcap (X - A_i),$$

and we know that at least one element on the right hand side is finite (the one corresponding to j), we get the claim.

$\underline{\mathbf{Ex.4}}$

Let $X = \{a, b, c, d\}$. Which of the following are topologies for X?

- (i) $\{\emptyset, X, \{a\}, \{b\}, \{a, c\}, \{a, b, c\}, \{a, b\}\};$ yes
- (ii) $\{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, d\}\};$ no
- (iii) $\{\emptyset, X, \{a, c, d\}, \{b, c, d\}\}$ no

$\underline{\text{Ex.5}}$

Let \mathcal{T} be the topology for \mathbb{R} described in Question 2. Which of the following functions $f: \mathbb{R} \to \mathbb{R}$ are continuous with respect to \mathcal{T} ?

- 1. $f(x) = x^2$; no 2. $f(x) = x^3$; yes
- 3. $f(x) = \begin{cases} 5 \text{ if } x > 5 \\ 0 \text{ otherwise;} \end{cases}$ yes
- 4. f(x) = -x no

<u>Ex.6</u>

In this exercise, we want to understand a little bit better continuous maps in the topology of Question 2. For this exercise, we say that a map $f : \mathbb{R} \to \mathbb{R}$ is *standard-continuous*, if it is continuous with respect to the usual topology on \mathbb{R} . We say

that it is \mathcal{T} -continuous if it is continuous with respect to the topology described in Question 2. Let f be a function that is standard-continuous. Can you find a property that f needs to satisfy to be also \mathcal{T} -continuous?

Solution:

A standard-continuous function that is monotonic increasing is also \mathcal{T} continuous. Indeed, let O be an open in the \mathcal{T} -topology, that is $O = (a, \infty)$.
We start eliminating some trivial cases.

It is clear that if $O = \emptyset$ or $f(\mathbb{R}) \cap O$ is empty then the statement is trivially true. So suppose this is not the case, that is, that $f(\mathbb{R}) \cap O \neq \emptyset$.

Since O is standard-open, then $f^{-1}(O)$ is standard-open. Moreover, since f is continuous and monotone, the preimage of an interval has to be an interval. Thus, $f^{-1}(O)$ has the form (a, b) for $a, b \in \mathbb{R} \cup \{\infty, -\infty\}$. By the cases above, $a \neq \infty$ and a < b. The only thing that we need to show is that $b = \infty$. Suppose that this was not true. Then there is c > b such that $f(c) \notin O$ and $x \in (a, b)$ such that $f(x) \in O$. Since f is monotone, $f(x) \leq f(c)$. Moreover, $f(x) \in O$ and $f(c) \notin O$. But since O is an open interval of the form (o, ∞) for some o, we need to have $o < f(x) \leq f(c)$. Thus f(c) has to be in O.