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Sometimes you will probably need to say that two spaces are homotopic equiv-
alent, but even if this is obvious from the geometric intuition point of view, writing
down the explicit homotopy could be very long. You are allowed here to just say
that two spaces are homotopic equivalent, and maybe add a good picture :)

Also, we recall that a space X is simply connected if it is path connected and
π1(X) = {1}.

Ex.1:

Let X be the subspace of R3 obtained as the union of the unit sphere and the
three coordinate planes, i.e.

X = {‖ (x, y, z) ‖= 1} ∪ {(x, y, 0)} ∪ {(x, 0, z)} ∪ {0, y, z)}.

Compute π1(X).

Solution:
It is easy to see that X is path connected, and we will not do it explicitly.

Let Y = {(x, y, z) ∈ X |‖ (x, y, z) ‖≤ 1} be the space obtained intersecting
X with the closed unit ball. First, note that Y is homotopic equivalent to X.
An homotopy is given by

H((x, y, z), t) =

{
(x, y, z) if (x, y, z) ∈ Y

(x,y,z)
(1−t)+t‖(x,y,z)‖ else

Thus, we only need to compute the fundamental group of Y . Now, consider
A = Y ∩ {(x, y, z) | x < 1

3
} and B = Y ∩ {(x, y, z) | x > −1

3
}. It is not hard to

see that the intersection between A and B is homotopic equivalent to a disk.
Thus, if we can show that A and B are simply connected, then so it is X. Note
that A and B are (homotopic equivalent to) a disk union the upper hemisphere
of a sphere union two ”crossing walls” that divide the interior of such a ”half
sphere” in 4 parts.

Let A1 = A ∩ {(x, y, z) | y > −1
3
} and A2 = A ∩ {(x, y, z) | y < 1

3
}. Again,

the intersection of A1 and A2 is homotopic equivalent to a disk (the shape is
the one of half a disk), and each of those is homotopic equivalent to ”half” of
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A, that is to 2 of the 4 parts in which A is divided. Subdividing again with
respect to the last coordinate, we obtain two homeomorphic spaces that are
homotopic equivalent to a 2-sphere. Since the 2-sphere is simply connected.
By the previous observations, we have that π1(X) = {1}.

A more intuitive picture is that when we consider the space Y , we can think
of it as made of 8 parts, each of which is homeomorphic to a sphere (note that
some small amount of details is needed to make those parts open). Since they
all intersect along disks, we get the result.

Ex.2:

Using Van Kampen’s Theorem, compute the fundamental group of the torus.

Solution:
We recall that the torus can be written as A ∪B as in the picture.

On the right hand side, the sets A and B. The sides of B are glued corresponding

to the colors (since they are open, there must be some overlap). The intersection

A ∩B is homotopy equivalent to the boundary of the square, that is to a circle.

It is important to fix the basepoint. Remember that A∩B looks like a ”picture
frame” such that every edge has a color, as the set B. We can ”move” the
overlap a little bit, so the the black dot on the torus lies on our favorite corner
of the frame A ∩ B. We choose it to be on the top left corner, that is the
yellow-blue corner. Let x0 be such a basepoint.

It is easy to see that B is homotopic equivalent to the rose R2. Let iA and
iB be the inclusions of A ∩ B in A and B respectively. Since π1(B, x0) = {1},
we have that iB∗ has to be the trivial map. Thus, the formula simplifies and
we have that

π1(T, x0) =
π1(A, x0)

〈〈iA∗(π1(A ∩B, x0))〉〉
.
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From the observations before we know that π1(A, x0) ∼= F2 and π1(A∩B, x0) ∼=
Z. We need to understand the maps. Let a and b be the generators of π1(A, x0)
as showed in the picture. Let t be the generator of π1(A ∩ B, x0) obtained
by going once clocwise around A ∩ B. It is easy to see from the picture
that the image of t under iA follows the colors: yellow - red - green - blue.
This corresponds to the concatenation aba−1b−1. Note that the orientation is
important. Thus, the image of π1(A∩ b, x0) in π1(A, x0) is the group generated
by the image of the generator t, that is iA∗(π1(A∩B, x0)) = 〈aba−1b−1〉. Thus:

π1(T, x0) ∼=
F2

〈〈aba−1b−1〉〉
∼= Z2.

Ex.3:

We want to give a topological proof to the Fundamental Theorem of Algebra in
a simpler case: for every polynomial p = zn + a1z

n−1 + · · · + an with n > 0 and
‖ a1 ‖ + · · ·+ ‖ an ‖< 1, show that p admits at least one root.

1. Let f : S1 → C − {0} be the map defined as z 7→ zn. Show that f is not
null-homotopic.

Solution:
It is easy to see that the map (C − {0}) × [0, 1] → S1 defined as
(z, t) 7→ z

(1−t)+t‖z‖ is an homotopy equivalence between C − {0} to S1

that is constant on S1. Thus π1(C− {0}) = Z. Since the equivalence is
constant on S1, the class of f in π1(S

1, (1, 0)) is (up to choose the correct
basepoint) the class of the loop t 7→ (cos(2πnt), i sin(2πnt)), which, for
n > 0, is not a trivial element of π1(S

1, (1, 0)). Since non-triviality of an
element does not depend on the basepoint (see solution of Question 4 b),
Exercise sheet 12), we have that f does not represent the trivial element
in π1(S

1). Thus it is not null-homotopic in S1 and hence in C− {0}.

2. Show that there is an homotopy H between f and the restriction of p on
S−1, such that H has values in C− {0}. (Hint: here we use the assumption
on the coefficients.)
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Solution:
Consider the homotopy

H(z, t) = zn + t(a1z
n−1 + · · ·+ a0).

It is clear that H is an homotopy between f and p. We need to show
that for every z, t, H(z, t) 6= 0. We will show that ‖ H(s, t) ‖> 0, which
implies the claim. Recall that z ∈ S1. We have:

‖ H(z, t) ‖ =‖ zn + t(a1z
n−1 + · · ·+ an) ‖≥‖ zn ‖ − ‖ t(a1zn−1 + · · ·+ a0) ‖≥

≥ 1− t(‖ a1zn−1 ‖ + · · ·+ ‖ an ‖) ≥ 1− t(‖ a1 ‖ + · · ·+ ‖ an ‖) > 0

3. Assume, by contradiction, that p does not admit any root. Show that this
implies that p is null-homotopic in C− {0}. This provides a contradiction.

Solution:
Note that the image p(C) is contained in C − {0}. In particular, this is
true for p(B2), where B2 is the closed unit ball in C. This means that
p|S1 bounds a disk in C − {0} (see Exercise Sheet 10, Question 2), thus
is null-homotopic.

We could also give an explicit homotopy: H(z, t) = p((1− t)z).

The case without the assumption on the coefficient is just an algebraic
trick to reduce to the case above. You can find it on Munkres, Theorem
56.1

Ex.4:

Let p1, p2 be distinct points in Rn. Show that there is a linear map L : Rn → R
such that L(p1) 6= L(p2).

Solution:
Since p1 6= p2, there is a coordinate in which they differ, let this coordinate be
xj. Then the map L is given by the projection on the j-th coordinate.

Let {p1, . . . , pn} be a finite subset of Rn, for n ≥ 3, and let X = Rn −
{p1, . . . , pn}. Show that π1(X) = {1}.
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Solution:
We will proceed by induction. First suppose that n = 1. Then Rn − {p1}
is homotopic equivalent to the sphere Sn−1 ∼= {x ∈ Rn | d(x, p1) = 1} (to
see this, consider H(x, t) = x−p1

(1−t)+t‖x−p1‖ + p1). Since π1(S
n−1) = {1} when

n − 1 ≥ 2, we get the result. Now, assume by induction hypothesis that the
result holds for every subset of Rn consisting of at most n − 1 points, and
consider {p1, . . . pn}. We can assume that p1 6= p2 (otherwise we are done by
induction), and consider a linear map L as in the part above. Up to exchange
p1 and p2, assume that L(p2) > L(p1).

Consider the open setsA = L−1((L(p1),∞))∩X andB = L−1(−∞, L(p1))∩
X. We have that A ∩B = L−1((L(p1), L(p2)) ∩X. In particular, each of A,B
and A ∩ B is an open subset of X. Since L is linear, each one of A,B and
A∩B is homeomorphic to Rn−{k points} with k ≤ n−1. Thus by induction,
each of those is simply connected. Then Van Kampen’s Theorem gives that X
is simply connected.
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