Topology

Prof. Dr. Alessandro Sisto
Luca De Rosa

Exercise Sheet 9
Due to April 30

Ex.1:

Let X be a topological space, $q: X \rightarrow Y$ be the quotient map and let $f: Y \rightarrow Z$ be any function. Then f is continuous if and only if $f \circ q$ is continuous.

Solution:

Since q is continuous, it is cleat that if f is continuous, so is $f \circ q$. So suppose that $f \circ q$ is continuous, and let $U \subseteq Z$. We want to show that $f^{-1}(U)$ is open. But since $q^{-1}\left(f^{-1}(U)\right)$ is open, this is true by definition of quotient topology.

Ex.2:

Let X be a Hausdorff space and let K be a non-open compact in X. Show that the quotient X / K is Hausdorff.

Hint: It can be helpful to write down explicitly how the elements $[x] \in X / K$ look like, distinguishing the case $x \in K$ or not.

Solution:

Let $q: X \rightarrow X / K$ be the quotient map. The elements of X / K are equivalence classes $[x]$ such that $[x]=\{x\}$ if $x \notin K$ and $[x]=K$ otherwise. Let $[x] \neq[y]$ be distinct points of X / K. There are two cases: either both x and y are points of $X-K$, or (up to exchange x and y), $[y]=K$. In the first case, since X is Hausdorff there exist two disjoint open sets U, V such that $x \in U$ and $y \in V$. We want to modify U and V such that they do not intersect K. Note that, since X is Hausdorff, K is closed. Thus $X-K$ is open (and contains x, y). This means that, up to replace U with $U \cap(X-K)$ and similarly for V, we can assume that U and V are disjoint open sets contained in $X-K$. We claim that $q(U)$ and $q(Y)$ are disjoint open sets that contain $[x]$ and $[y]$ respectively.

It is clear that $[x] \in q(U),[y] \in q(U)$ and that $q(U) \cap q(V)=\emptyset$. Moreover, by the definition of the quotient map, $q^{-1}(q(U))=U$ and similarly for V. Thus, by definition of quotient topology, $q(U)$ and $q(V)$ are open.

Consider now the case $[y]=K$. If we can find disjoint open sets U and V such that $x \in U$ and $K \subseteq V$, then the same reasoning as before gives that $q(U)$ and $q(V)$ are disjoint open sets containing $[x],[y]$ respectively. For each point $k \in K$, let U_{k} and V_{k} be disjoint open sets such that $x \in U_{k}$ and $k \in V_{k}$. The existence of such open sets is guaranteed by the fact that X is Hausdorff. Note that $\left\{V_{k} \cap K\right\}$ is an open cover for K, thus it admits a finite subcover. Let $\left\{V_{h}\right\}_{h \in H}$ be such a subcover. Set $U=\bigcap_{h \in H} U_{h}, V=\bigcup_{h \in H} V_{h}$. Since H is finite, both V and U are open. Moreover, it is clear by construction that U and V are disjoint, which concludes the proof.

Ex.3:

Let X be a topological space, and let Δ be the diagonal of $X \times X$, i.e. the set $\Delta=\{(x, y) \in X \times X \mid x=y\}$. Show that X is Hausdorff if and only in Δ is closed in $X \times X$.

Solution:

Assume that X is Hausdorff, we will show that $Y=(X \times X)-\Delta$ is open. Let $(x, y) \in Y$, that is $x \neq y$. Then there exists disjoint open sets U, V such that $x \in U$ and $y \in V$. Then $U \times V$ is an open of $X \times X$ which contains (x, y). We claim that is contained in Y. Indeed, suppose that there was $z \in X$ such that $(z, z) \in U \times V$. This implies that $z \in U \cap V$, which is a contradiction.

On the other hand, assume that the space Y above is open, and let $(x, y) \in$ Y. We want to find disjoint open sets U and V as before. Since Y is open, there is an open set O contained in Y that contains (x, y). By the definition of product topology, O is the union of products of the form $U_{i} \times V_{i}$, where U_{i} and V_{i} are open in X. In particular, there exists j such that $(x, y) \in U_{j} \times V_{j} \subseteq O \subseteq Y$. Then, as before, U_{j} and V_{j} are the desired open sets.

Ex.4:

Let X be Hausdorff, and let \sim be an equivalence relation on X. Let $R=\{(x, y) \in$ $X \times X \mid x \sim y\}$. Suppose that $p: X \rightarrow X / \sim$ is open. Show that X / \sim is Hausdorff if and only if R is closed in $X \times X$.

Solution:

We start with the easier part: assume that X / \sim is Hausdorff, and let $(x, y) \in$ $(X \times X)-R$. By definition of R we have that $p(x) \neq p(y)$. Thus we can find disjoint open sets U_{x}, U_{y} in X_{\sim} that contain $p(x)$ and $p(y)$ respectively. By definition of quotient topology, $p^{-1}\left(U_{x}\right)$ and $p^{-1}\left(U_{y}\right)$ are open in X. Moreover, $p^{-1}\left(U_{x}\right) \times p^{-1}\left(U_{y}\right) \subseteq X \times X-R$. Indeed, suppose that there was a point $(z, t) \in R$ with $z \in p^{-1}\left(U_{x}\right)$ and $t \in p^{-1}\left(U_{y}\right)$. Then $z \sim t$ which contradicts U and V being disjoint in X / \sim.

Now, let's consider the first implication. By Exercise Sheet 2, Question 6.a we have that $p \times p$ is open. By hypothesis, $X \times X-R$ is open. This implies that $p(X \times X-R)$ is open in $X / \sim \times X / \sim$. We claim that $p(X \times X-R)=$ $X / \sim \times X / \sim-\Delta$, where Δ is the diagonal of X / \sim. Note that then the exercise is concluded by Question 3.

Ex.5:

Show that there is a quotient map $q:(-2,2) \rightarrow[-1,1]$, but not a quotient map $p:[-2,2] \rightarrow(-1,1)$ (This means that there is a quotient of $(-2,2)$ that is homeomorphic to $[-1,1]$).

Solution:

Let $K=(-2,1] \cup[1,2)$. Then $(-2,2) / K$ is homeomorphic to $[-1,1]$. On the other hand, if there was a continuous surjection $p:[-2,2] \rightarrow(-1,1)$, we would have that the latter is compact, which is a contradiction.

