Probability and Statistics

Exercise sheet 10

Exercise 10.1 Let X and Y be independent random variables such that $X \sim \operatorname{Poi}(\lambda)$ and $Y \sim \operatorname{Poi}(\mu)$. Show that given $X+Y=s$, the conditional distribution of X is $\operatorname{Bin}\left(s, \frac{\lambda}{\lambda+\mu}\right)$.

Exercise 10.2 Let X, Y and Z be $\stackrel{\text { iid }}{\sim} \operatorname{Exp}(1)$.
(a) Find $E[X \sqrt{X+Y}]$.
(b) Find $P(X<2 Y<3 Z)$.

Exercise 10.3 Suppose $X \sim \mathcal{N}(0,1)$ and $Y \mid X=x \sim \mathcal{N}(x+1,1)$.
(a) What is the marginal distribution of Y ?
(b) Find $\operatorname{cov}(X, Y)$ and the correlation of X and Y.
(c) Find the conditional distribution of X given $Y=y$.

Exercise 10.4 Gaussian (normal) vectors.
A vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is said to be a Gaussian vector if there is a matrix $A \in \mathbb{R}^{n \times n}$, a vector $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ with $Z_{1}, \ldots, Z_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1)$ and $\mu \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
X \stackrel{\mathrm{~d}}{=} \mu+A Z \tag{1}
\end{equation*}
$$

In this case, note that $E(X)=\mu$ and $\operatorname{var}(X)=A A^{T}=: \Sigma$. Here, the covariance matrix Σ is not necessarily invertible. If it is, then X admits a density with respect to Lebesgue measure on \mathbb{R}^{n}.
(a) Show that if X is a Gaussian vector, then any linear combination of X_{1}, \ldots, X_{n} is a normal random variable.
(b) We want to show that the condition in (a) is also sufficient: i.e., that if any linear combination of X_{1}, \ldots, X_{n} is a normal random variable, then X is a Gaussian vector.

1. Explain why you can write $\Sigma=P^{T} D P$ with P orthogonal and D a diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n} \geq 0$. Let $A:=P^{T} D^{\frac{1}{2}}$, where $D^{\frac{1}{2}}$ is defined as the diagonal matrix with entries $\lambda_{1}^{\frac{1}{2}}, \ldots, \lambda_{n}^{\frac{1}{2}}$.
2. For a fixed $v \in \mathbb{R}^{n}$, find the distribution of $v^{T}(\mu+A Z)$ with $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ with $Z_{1}, \ldots, Z_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1)$.
Hint: From a previous exercise sheet, you know that a linear combination of i.i.d standard Gaussians has a Gaussian distribution $\mathcal{N}\left(a, b^{2}\right)$. What are the parameters a, b^{2} here?
3. What is the distribution of $v^{T} X$?
4. To conclude, use that fact that two random vectors W_{1}, W_{2} in \mathbb{R}^{n} have the same distribution if and only if

$$
v^{T} W_{1} \stackrel{\mathrm{~d}}{=} v^{T} W_{2} \quad \forall v \in \mathbb{R}^{n} .
$$

(c) Let $X \sim \mathcal{N}(0,1)$ and Z be a discrete random variable such that $X \Perp Z$ and $P(Z=-1)=$ $P(Z=1)=\frac{1}{2}$.
Consider the random variable Y, defined by

$$
Y=\left\{\begin{array}{cc}
X, & \text { if } Z=1 \\
-X, & \text { if } Z=-1
\end{array}\right.
$$

- Show that marginally, $Y \sim \mathcal{N}(0,1)$.
- Find $P(X+Y=0)$.
- Is (X, Y) a Gaussian vector? What do you conclude from this exercise?

Exercise 10.5 (optional).
The goal of this exercise is to manipulate the Jacobian formula to obtain the density of a convolution.

Let X and Y be two independent random variables with density f_{X} and f_{Y} respectively. We are interested in deriving the density of the random variable $X+Y$.
(a) Let $S:=X+Y, T:=Y$ and consider the map

$$
\begin{aligned}
g: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto(s, t)=(x+y, y)
\end{aligned}
$$

Show that g is bijective with Jacobian $\neq 0$ at any $(x, y) \in \mathbb{R}^{2}$. Conclude that the random pair (S, T) has point density $f_{(S, T)}$ given by

$$
f_{(S, T)}(s, t)=f_{X}(s-t) f_{Y}(t)
$$

(b) Conclude that

$$
f_{S}(s)=\int_{\mathbb{R}} f_{X}(s-y) f_{Y}(y) d y
$$

(c) Give the density of the convolution $X+Y$ in the following cases:

- $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu)$. Do you recognise the distribution when $\mu=\lambda$?
- $X \sim G\left(\alpha_{1}, \beta\right)$ and $G\left(\alpha_{2}, \beta\right)$.
- $X \sim \mathcal{N}\left(0, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(0, \sigma_{2}^{2}\right)$.

