Probability and Statistics

Exercise sheet 11

Exercise 11.1 (Breaking a stick) Suppose $X \sim \mathrm{U}([0,1])$ and $Y \mid X \sim \mathrm{U}([0, X])$. Consider now $U=1-X, V=Y, W=X-Y$ (this represents breaking a stick into parts with length X and U, and then breaking the left piece again into V and $W)$. Find $E[\max (U, V, W)]$.

Exercise 11.2 (Uniforms, uniforms...) Suppose $X \sim U([0,1])$ and consider $Y=2 X$.
(a) What is the joint distribution of (X, Y) ?
(b) Does this joint distribution have a density with respect to the Lebesgue measure on \mathbb{R}^{2} ?
(c) (Probability of a diamond) Let X, Y and Z be $\stackrel{i i d}{\sim} \mathrm{U}([-1,1])$. Find $P(|X|+|Y|+|Z| \leq 1)$.

Exercise 11.3 Recall that $X=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right) \sim \mathcal{N}(\mu, \Sigma)$ (a Gaussian vector with expectation $\mu=\left(\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{n}\end{array}\right) \in \mathbb{R}^{n}$ and covariance matrix $\left.\Sigma \in \mathbb{R}^{n \times n}\right)$ if for any $v \in \mathbb{R}^{n}$,

$$
v^{T} X=\sum_{i=1}^{n} v_{i} X_{i} \sim \mathcal{N}\left(v^{T} \mu, v^{T} \Sigma v\right)
$$

The goal of this exercise is to show the following remarkable property:
$(*) X_{1}, \ldots, X_{n}$ are independent if and only if for all $i \neq j, \Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)=0$.
(a) Show that $(*)$ is necessary.
(b) To show it is sufficient, we shall use the following result:
X_{1}, \ldots, X_{n} are independent if and only if

$$
\Psi_{X}(t):=E\left(e^{t^{T} X}\right)=\prod_{i=1}^{n} \Psi_{X_{i}}\left(t_{i}\right)\left(=\prod_{i=1}^{n} E\left(e^{t_{i} X_{i}}\right)\right)
$$

for all $t \in \mathbb{R}^{n}$.
Compute $\Psi_{X}(t)$ when $\Sigma_{i j}=0$ for all $i \neq j$ and conclude.
Hint: $t^{T} X$ is a normal random variable, for which we know the expression of the moment generating function.
(c) Taking $n \geq 3$, let $Y \in \mathbb{R}^{p}$ (for $2 \leq p \leq n-1$) be a subset of the original vector X. Using a simple argument, explain why Y is also a Gaussian vector. When are the components of Y independent?
(d) Let $X=\left(\begin{array}{c}X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{5}\end{array}\right) \in \mathbb{R}^{5}$ have a $\mathcal{N}(\mu, \Sigma)$ distribution, where

$$
\mu=\left(\begin{array}{c}
-1 \\
2 \\
0 \\
\frac{1}{2} \\
3
\end{array}\right), \quad \Sigma=\left(\begin{array}{ccccc}
9 & 0 & 0 & 1 & 2 \\
0 & 2 & 0 & -1 & 6 \\
0 & 0 & 16 & 0 & 3 \\
1 & -1 & 0 & 4 & 3 \\
2 & 6 & 3 & 3 & 49
\end{array}\right)
$$

Which subsets of X_{1}, \ldots, X_{5} can you say are independent?
(e) Consider the case $n=2$, and $\left(X_{1}, X_{2}\right)^{T}$ a Gaussian pair with expectation $\mu=\left(\mu_{1}, \mu_{2}\right)^{T}$ and a 2×2 covariance matrix

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

where $\sigma_{1}^{2}, \sigma_{2}^{2}>0$ are the (marginal) variances and ρ is the correlation.
Find a and b such that $X_{1}+X_{2}$ and $a X_{1}+b X_{2}$ are independent.
Exercise 11.4 (I hope you're arriving soon)
Alice and Viera plan to meet at a café, and each will arrive at a random time between 15:00 and $15: 30$, independently of each other. Find the probability that the first to arrive has to wait between 5 and 10 minutes for the other to arrive.

Exercise 11.5 (Cauchy-Schwarz) (optional)

The goal of this exercise is to show the Cauchy-Schwarz inequality, which is stated as follows.
Let X and Y be two random variables defined on the same probability space, such that $E\left(X^{2}\right)<\infty$ and $E\left(Y^{2}\right)<\infty$. Then,

$$
\begin{equation*}
|E(X Y)| \leq \sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)} \tag{1}
\end{equation*}
$$

with equality if and only if $P(X=0)=1$ or $P(Y=a X)=1$ for some $a \in \mathbb{R}$.

1. For $t \in \mathbb{R}$, write $E\left[(Y-t X)^{2}\right]$ as a function of t.
2. Using the fact that $E\left[(Y-t X)^{2}\right] \geq 0$ for any $t \in \mathbb{R}$, conclude that either $P(X=0)=1$ or

$$
E\left(X^{2}\right)\left(t-\frac{E(X Y)}{E\left(X^{2}\right)}\right)^{2}-\frac{E(X Y)^{2}}{E\left(X^{2}\right)}+E\left(Y^{2}\right) \geq 0
$$

for $t \in \mathbb{R}$.
3. Prove the inequality (1).
4. If $P(X=0)<1$, show that equality case in (1) holds if and only if $P\left(Y=t^{*} X\right)=1$, and give the expression for t^{*}.
Hint: Remember that for Z a non-negative random variable, $E(Z)=0$ if and only if $P(Z=0)=1$.
5. Conclude on the condition for the equality case to hold.

