Probability and Statistics

Exercise sheet 11

Exercise 11.1 (Breaking a stick) Suppose $X \sim U([0, 1])$ and $Y \mid X \sim U([0, X])$. Consider now U = 1 - X, V = Y, W = X - Y (this represents breaking a stick into parts with length X and U, and then breaking the left piece again into V and W). Find $E[\max(U, V, W)]$.

$$\underbrace{\begin{array}{c} Y & X \\ 0 & V & W & U \end{array}}_{V & W & U & 1}$$

Exercise 11.2 (Uniforms, uniforms...) Suppose $X \sim U([0, 1])$ and consider Y = 2X.

- (a) What is the joint distribution of (X, Y)?
- (b) Does this joint distribution have a density with respect to the Lebesgue measure on \mathbb{R}^2 ?
- (c) (Probability of a diamond) Let X, Y and Z be $\stackrel{iid}{\sim}$ U([-1,1]). Find $P(|X| + |Y| + |Z| \le 1)$.

Exercise 11.3 Recall that $X = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \sim \mathcal{N}(\mu, \Sigma)$ (a Gaussian vector with expectation $\mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} \in \mathbb{R}^n$ and covariance matrix $\Sigma \in \mathbb{R}^{n \times n}$) if for any $v \in \mathbb{R}^n$,

$$v^T X = \sum_{i=1}^n v_i X_i \sim \mathcal{N}(v^T \mu, v^T \Sigma v).$$

The goal of this exercise is to show the following remarkable property:

(*) $X_1, ..., X_n$ are independent if and only if for all $i \neq j$, $\Sigma_{ij} = \text{cov}(X_i, X_j) = 0$.

- (a) Show that (*) is necessary.
- (b) To show it is sufficient, we shall use the following result: $X_1, ..., X_n$ are independent if and only if

$$\Psi_X(t) := E(e^{t^T X}) = \prod_{i=1}^n \Psi_{X_i}(t_i) \left(= \prod_{i=1}^n E(e^{t_i X_i}) \right)$$

for all $t \in \mathbb{R}^n$.

Compute $\Psi_X(t)$ when $\Sigma_{ij} = 0$ for all $i \neq j$ and conclude.

Hint: $t^T X$ is a normal random variable, for which we know the expression of the moment generating function.

(c) Taking $n \ge 3$, let $Y \in \mathbb{R}^p$ (for $2 \le p \le n-1$) be a subset of the original vector X. Using a simple argument, explain why Y is also a Gaussian vector. When are the components of Y independent?

(d) Let
$$X = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{pmatrix} \in \mathbb{R}^5$$
 have a $\mathcal{N}(\mu, \Sigma)$ distribution, where

$$\mu = \begin{pmatrix} -1 \\ 2 \\ 0 \\ \frac{1}{2} \\ 3 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 9 & 0 & 0 & 1 & 2 \\ 0 & 2 & 0 & -1 & 6 \\ 0 & 0 & 16 & 0 & 3 \\ 1 & -1 & 0 & 4 & 3 \\ 2 & 6 & 3 & 3 & 49 \end{pmatrix}$$

Which subsets of $X_1, ..., X_5$ can you say are independent?

(e) Consider the case n = 2, and $(X_1, X_2)^T$ a Gaussian pair with expectation $\mu = (\mu_1, \mu_2)^T$ and a 2 × 2 covariance matrix

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

where $\sigma_1^2, \sigma_2^2 > 0$ are the (marginal) variances and ρ is the correlation.

Find a and b such that $X_1 + X_2$ and $aX_1 + bX_2$ are independent.

Exercise 11.4 (I hope you're arriving soon)

Alice and Viera plan to meet at a café, and each will arrive at a random time between 15:00 and 15:30, independently of each other. Find the probability that the first to arrive has to wait between 5 and 10 minutes for the other to arrive.

Exercise 11.5 (Cauchy-Schwarz) (optional)

The goal of this exercise is to show the Cauchy-Schwarz inequality, which is stated as follows. Let X and Y be two random variables defined on the same probability space, such that $E(X^2) < \infty$ and $E(Y^2) < \infty$. Then,

$$|E(XY)| \le \sqrt{E(X^2)}\sqrt{E(Y^2)} \tag{1}$$

with equality if and only if P(X = 0) = 1 or P(Y = aX) = 1 for some $a \in \mathbb{R}$.

- 1. For $t \in \mathbb{R}$, write $E[(Y tX)^2]$ as a function of t.
- 2. Using the fact that $E[(Y tX)^2] \ge 0$ for any $t \in \mathbb{R}$, conclude that either P(X = 0) = 1 or

$$E(X^2)\left(t - \frac{E(XY)}{E(X^2)}\right)^2 - \frac{E(XY)^2}{E(X^2)} + E(Y^2) \ge 0$$

for $t \in \mathbb{R}$.

- 3. Prove the inequality (1).
- 4. If P(X = 0) < 1, show that equality case in (1) holds if and only if $P(Y = t^*X) = 1$, and give the expression for t^* .

Hint: Remember that for Z a non-negative random variable, E(Z) = 0 if and only if P(Z = 0) = 1.

5. Conclude on the condition for the equality case to hold.