Probability and Statistics

Exercise sheet 12

Exercise 12.1 The goal of this exercise is to show that if $X=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim \mathcal{N}(\mu, \Sigma)$ with Σ invertible, then X admits a density with respect to the Lebesgue measure on $\left(\mathbb{R}^{n}, \mathcal{B}_{\mathbb{R}^{n}}\right)$, given by

$$
\begin{equation*}
f(x)=f_{X}(x)=\frac{1}{(\sqrt{2 \pi})^{n}} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} \tag{1}
\end{equation*}
$$

for any $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$.
Before showing this, we first settle some questions around the covariance matrix Σ (this is done in the first two parts). In (a) and (b), the random vector X can have any distribution (not necessarily normal).
(a) Recall that the covariance matrix of X, Σ, has entries $\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$ for $1 \leq i, j \leq n$. Show that

$$
\Sigma=E\left[(X-\mu)(X-\mu)^{T}\right]
$$

Remark: Expectations are evaluated componentwise, i.e. if M is a random matrix,

$$
E\left[\left(\begin{array}{ccc}
M_{11} & \ldots & M_{1 n} \\
\vdots & \ddots & \vdots \\
M_{n 1} & \ldots & M_{n n}
\end{array}\right)\right]=\left(\begin{array}{ccc}
E\left(M_{11}\right) & \ldots & E\left(M_{1 n}\right) \\
\vdots & \ddots & \vdots \\
E\left(M_{n 1}\right) & \ldots & E\left(M_{n n}\right)
\end{array}\right)
$$

(b) Let $A \in \mathbb{R}^{p \times n}$ be a fixed (deterministic) matrix. Show that the covariance matrix of $A X$ is $A \Sigma A^{T}$.
If $A=a^{T} \in \mathbb{R}^{1 \times n}$, what is the covariance of $a^{T} X$? Conclude that Σ is semi-positive definite.
(c) Now take $X \sim \mathcal{N}(\mu, \Sigma)$. By definition, $X \stackrel{\mathrm{~d}}{=} \mu+A Z$ with $A A^{T}=\Sigma$ (i.e., A is a square root of Σ), and Z is standard normal, i.e. $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ for $Z_{1}, \ldots, Z_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1)$.

- Check that Σ is indeed the covariance matrix of X.
- Assuming that Σ is invertible, show that A is also invertible. Using the Jacobian formula, show that X has density given by (1) almost everywhere.
(d) Suppose you are given a density in the form (1). Can you find the marginal density of $X_{i}(i \in\{1, \ldots, n\})$ without additional calculations?
(e) (optional).

For $d=2$, if $\sigma_{1}^{2}=\operatorname{var}\left(X_{1}\right)>0, \sigma_{2}^{2}=\operatorname{var}\left(X_{2}\right)>0$ and $\operatorname{cov}\left(X_{1}, X_{2}\right)=\sigma_{1} \sigma_{2} \rho$ with ρ the correlation between X_{1} and X_{2}. What is the condition on ρ for Σ to be invertible? What is the expression of the density in this case?

Exercise 12.2 (some training) Let X_{1}, \ldots, X_{n} be i.i.d with density $f\left(\cdot \mid \theta_{0}\right)$, where the true value of θ_{0} is unknown.
(a) For the following models, find the moment estimator and MLE for $\theta_{0} \in \Theta$ as well as the Fisher information $I\left(\theta_{0}\right)$ (you may assume that all regularity conditions are fulfilled).

1. (Geometric)

$$
f(x \mid \theta)=(1-\theta)^{x-1} \theta
$$

for $x \in \mathbb{N}_{\geq 1}$, where $\theta \in \Theta=(0,1)$.
2. (Bernoulli)

$$
f(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}
$$

for $x \in\{0,1\}$, where $\theta \in \Theta=(0,1)$.
3. $(\operatorname{Beta}(1, \theta))$

$$
f(x \mid \theta)=\theta(1-x)^{\theta-1} \mathbb{1}_{x \in(0,1)}
$$

where $\theta \in \Theta=(0,+\infty)$.
4. (Laplace)

$$
f(x \mid \theta)=\frac{\theta}{2} e^{-\theta|x|}
$$

for $x \in \mathbb{R}$, where $\theta \in \Theta=(0,+\infty)$.
Hint: Note that for $X \sim$ Laplace $(\theta), E(X)=0$ and therefore one needs to use the next order moment.
(b) For the first model $\operatorname{Geo}(\theta)$, construct an asymptotic confidence interval of level $1-\alpha$ for θ_{0}, based on the asymptotic normality of the MLE $\hat{\theta}$, and approximating $I\left(\theta_{0}\right)$ by $I(\hat{\theta})$.
(c) In a study of feeding behaviors of birds, the number of hops between flights was counted for $n=130$ birds. The data are given in the following table.

\# Hops	1	2	3	4	5	6	7	8	9	10	11	12
Frequency	48	31	20	9	6	5	4	2	1	1	2	1

For example: in 48 occasions, a bird had just 1 hop before flying again, in 20 occasions they had 3 hops, etc. Assume that the number of hops can be modelled as a geometric random variable with unknown success probability $\theta_{0} \in(0,1)$. Compute the MLE based on the data in the table, and find an asymptotic confidence interval of level 95%.

Exercise 12.3

(a) Find a sufficient statistic for the parameters generating the following models:
1.

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathrm{U}([0, \theta]), \quad \theta \in(0,+\infty)
$$

2.

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \operatorname{Exp}(\lambda), \quad \lambda \in(0,+\infty)
$$

3.

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right), \quad \theta=(\mu, \sigma)^{T} \in \mathbb{R} \times(0,+\infty)
$$

4.

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathrm{U}([\theta, \theta+1]), \quad \theta \in \mathbb{R}
$$

(b) Show that in general, if $T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for $\theta \in \Theta$ (where $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ $f(\cdot \mid \theta))$, then for any $c \in \mathbb{R} \backslash\{0\}, c T\left(X_{1}, \ldots, X_{n}\right)$ is also sufficient for θ.
Hint: Use the factorisation theorem.

Exercise 12.4 Let $(X, Y)^{T}$ be a random vector. We want to show that $\operatorname{var}(X \mid Y)=0$ with probability 1 , if and only if there is a measurable function h such that $P(X=h(Y))=1$.

We consider only the case where the vector is discrete (takes either finitely many or countably many different values).
(a) State the definition of $\operatorname{var}(X \mid Y=y)$.
(b) Show that $\operatorname{var}(X \mid Y)=0$ with probability 1 if and only if $P(X=E(X \mid Y))=1$.
(c) Conclude.

Exercise 12.5 (optional).
The goal here is to justify why the idea of maximising the likelihood is a good one.
(a) For $X \sim f\left(\cdot \mid \theta_{0}\right)$ and $\theta \in \Theta$, assume that $E[\log f(X \mid \theta)]$ exists.

Show that $E[\log f(X \mid \theta)] \leq E\left[\log f\left(X \mid \theta_{0}\right)\right]$.
Hint: Show that $E\left[\log \left(\frac{f\left(X \mid \theta_{0}\right)}{f(X \mid \theta)}\right)\right] \geq 0$ by using Jensen's inequality for the convex function $t \mapsto-\log t, t \in(0,+\infty)$.
(b) Recall the weak law of large numbers: if Y_{1}, \ldots, Y_{n} are i.i.d. such that $E\left(\left|Y_{1}\right|\right)<\infty$, then

$$
\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{\mathbb{P}} E\left(Y_{1}\right) \quad(n \rightarrow \infty)
$$

Using the WLLN, explain why the MLE would be a reasonable estimator.

