Probability and Statistics

Exercise sheet 12

Exercise 12.1 The goal of this exercise is to show that if $X = (X_1, ..., X_n)^T \sim \mathcal{N}(\mu, \Sigma)$ with Σ invertible, then X admits a density with respect to the Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$, given by

$$f(x) = f_X(x) = \frac{1}{(\sqrt{2\pi})^n} \frac{1}{\sqrt{\det(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$
(1)

for any $x = (x_1, ..., x_n)^T \in \mathbb{R}^n$.

Before showing this, we first settle some questions around the covariance matrix Σ (this is done in the first two parts). In (a) and (b), the random vector X can have any distribution (not necessarily normal).

(a) Recall that the covariance matrix of X, Σ , has entries $\Sigma_{ij} = \operatorname{cov}(X_i, X_j)$ for $1 \le i, j \le n$. Show that

$$\Sigma = E[(X - \mu)(X - \mu)^T].$$

Remark: Expectations are evaluated componentwise, i.e. if M is a random matrix,

$$E\left[\left(\begin{array}{cccc}M_{11}&\ldots&M_{1n}\\\vdots&\ddots&\vdots\\M_{n1}&\ldots&M_{nn}\end{array}\right)\right]=\left(\begin{array}{cccc}E(M_{11})&\ldots&E(M_{1n})\\\vdots&\ddots&\vdots\\E(M_{n1})&\ldots&E(M_{nn})\end{array}\right).$$

(b) Let $A \in \mathbb{R}^{p \times n}$ be a fixed (deterministic) matrix. Show that the covariance matrix of AX is $A\Sigma A^T$.

If $A = a^T \in \mathbb{R}^{1 \times n}$, what is the covariance of $a^T X$? Conclude that Σ is semi-positive definite.

- (c) Now take $X \sim \mathcal{N}(\mu, \Sigma)$. By definition, $X \stackrel{d}{=} \mu + AZ$ with $AA^T = \Sigma$ (i.e., A is a square root of Σ), and Z is standard normal, i.e. $Z = (Z_1, ..., Z_n)^T$ for $Z_1, ..., Z_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$.
 - Check that Σ is indeed the covariance matrix of X.
 - Assuming that Σ is invertible, show that A is also invertible. Using the Jacobian formula, show that X has density given by (1) almost everywhere.
- (d) Suppose you are given a density in the form (1). Can you find the marginal density of X_i $(i \in \{1, ..., n\})$ without additional calculations?
- (e) (optional).

For d = 2, if $\sigma_1^2 = \operatorname{var}(X_1) > 0$, $\sigma_2^2 = \operatorname{var}(X_2) > 0$ and $\operatorname{cov}(X_1, X_2) = \sigma_1 \sigma_2 \rho$ with ρ the correlation between X_1 and X_2 . What is the condition on ρ for Σ to be invertible? What is the expression of the density in this case?

Exercise 12.2 (some training) Let $X_1, ..., X_n$ be i.i.d with density $f(\cdot | \theta_0)$, where the true value of θ_0 is unknown.

(a) For the following models, find the moment estimator and MLE for $\theta_0 \in \Theta$ as well as the Fisher information $I(\theta_0)$ (you may assume that all regularity conditions are fulfilled).

1. (Geometric)

$$f(x \mid \theta) = (1 - \theta)^{x - 1} \theta$$

- for $x \in \mathbb{N}_{\geq 1}$, where $\theta \in \Theta = (0, 1)$.
- 2. (Bernoulli)

$$f(x \mid \theta) = \theta^x (1 - \theta)^{1 - x}$$

- for $x \in \{0, 1\}$, where $\theta \in \Theta = (0, 1)$.
- 3. $(Beta(1,\theta))$

$$f(x \mid \theta) = \theta(1-x)^{\theta-1} \mathbb{1}_{x \in (0,1)},$$

where $\theta \in \Theta = (0, +\infty)$.

4. (Laplace)

$$f(x \mid \theta) = \frac{\theta}{2} e^{-\theta |x|}$$

for $x \in \mathbb{R}$, where $\theta \in \Theta = (0, +\infty)$.

Hint: Note that for $X \sim \text{Laplace}(\theta)$, E(X) = 0 and therefore one needs to use the next order moment.

- (b) For the first model $\text{Geo}(\theta)$, construct an asymptotic confidence interval of level 1α for θ_0 , based on the asymptotic normality of the MLE $\hat{\theta}$, and approximating $I(\theta_0)$ by $I(\hat{\theta})$.
- (c) In a study of feeding behaviors of birds, the number of hops between flights was counted for n = 130 birds. The data are given in the following table.

# Hops	1	2	3	4	5	6	7	8	9	10	11	12
Frequency	48	31	20	9	6	5	4	2	1	1	2	1

For example: in 48 occasions, a bird had just 1 hop before flying again, in 20 occasions they had 3 hops, etc. Assume that the number of hops can be modelled as a geometric random variable with unknown success probability $\theta_0 \in (0, 1)$. Compute the MLE based on the data in the table, and find an asymptotic confidence interval of level 95%.

Exercise 12.3

- (a) Find a sufficient statistic for the parameters generating the following models:
 - 1. $X_1, ..., X_n \stackrel{\text{iid}}{\sim} \mathrm{U}([0,\theta]), \quad \theta \in (0,+\infty).$

$$X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \operatorname{Exp}(\lambda), \quad \lambda \in (0, +\infty)$$

3.

$$X_1, \dots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2), \quad \theta = (\mu, \sigma)^T \in \mathbb{R} \times (0, +\infty).$$

4.

$$X_1, ..., X_n \stackrel{\text{iid}}{\sim} \mathrm{U}([\theta, \theta + 1]), \quad \theta \in \mathbb{R}$$

(b) Show that in general, if $T(X_1, ..., X_n)$ is a sufficient statistic for $\theta \in \Theta$ (where $X_1, ..., X_n \stackrel{\text{iid}}{\sim} f(\cdot \mid \theta)$), then for any $c \in \mathbb{R} \setminus \{0\}$, $cT(X_1, ..., X_n)$ is also sufficient for θ .

Hint: Use the factorisation theorem.

Exercise 12.4 Let $(X, Y)^T$ be a random vector. We want to show that var(X | Y) = 0 with probability 1, if and only if there is a measurable function h such that P(X = h(Y)) = 1.

We consider only the case where the vector is discrete (takes either finitely many or countably many different values).

- (a) State the definition of $var(X \mid Y = y)$.
- (b) Show that $var(X \mid Y) = 0$ with probability 1 if and only if $P(X = E(X \mid Y)) = 1$.
- (c) Conclude.

Exercise 12.5 (optional).

The goal here is to justify why the idea of maximising the likelihood is a good one.

- (a) For $X \sim f(\cdot \mid \theta_0)$ and $\theta \in \Theta$, assume that $E[\log f(X \mid \theta)]$ exists. Show that $E[\log f(X \mid \theta)] \leq E[\log f(X \mid \theta_0)]$. *Hint:* Show that $E\left[\log\left(\frac{f(X\mid\theta_0)}{f(X\mid\theta)}\right)\right] \geq 0$ by using Jensen's inequality for the convex function $t \mapsto -\log t, t \in (0, +\infty)$.
- (b) Recall the weak law of large numbers: if $Y_1, ..., Y_n$ are i.i.d. such that $E(|Y_1|) < \infty$, then

$$\overline{Y}_n = \frac{1}{n} \sum_{i=1}^n Y_i \xrightarrow{\mathbb{P}} E(Y_1) \quad (n \to \infty)$$

Using the WLLN, explain why the MLE would be a reasonable estimator.