
ETH Zürich, Spring 2019
Lecturer: Fadoua Balabdaoui Coordinator: David Martins

Probability and Statistics

Exercise sheet 12

Exercise 12.1 The goal of this exercise is to show that if X = (X1, ..., Xn)T ∼ N (µ,Σ) with Σ
invertible, then X admits a density with respect to the Lebesgue measure on (Rn,BRn), given by

f(x) = fX(x) = 1
(
√

2π)n
1√

det(Σ)
e−

1
2 (x−µ)T Σ−1(x−µ) (1)

for any x = (x1, ..., xn)T ∈ Rn.
Before showing this, we first settle some questions around the covariance matrix Σ (this is

done in the first two parts). In (a) and (b), the random vector X can have any distribution (not
necessarily normal).

(a) Recall that the covariance matrix of X, Σ, has entries Σij = cov(Xi, Xj) for 1 ≤ i, j ≤ n.
Show that

Σ = E[(X − µ)(X − µ)T ].

Remark: Expectations are evaluated componentwise, i.e. if M is a random matrix,

E


 M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn


 =

 E(M11) . . . E(M1n)
...

. . .
...

E(Mn1) . . . E(Mnn)

 .

(b) Let A ∈ Rp×n be a fixed (deterministic) matrix. Show that the covariance matrix of AX is
AΣAT .
If A = aT ∈ R1×n, what is the covariance of aTX? Conclude that Σ is semi-positive definite.

(c) Now take X ∼ N (µ,Σ). By definition, X d= µ+AZ with AAT = Σ (i.e., A is a square root
of Σ), and Z is standard normal, i.e. Z = (Z1, ..., Zn)T for Z1, ..., Zn

iid∼ N (0, 1).

• Check that Σ is indeed the covariance matrix of X.
• Assuming that Σ is invertible, show that A is also invertible. Using the Jacobian formula,

show that X has density given by (1) almost everywhere.

(d) Suppose you are given a density in the form (1). Can you find the marginal density of
Xi (i ∈ {1, ..., n}) without additional calculations?

(e) (optional).
For d = 2, if σ2

1 = var(X1) > 0, σ2
2 = var(X2) > 0 and cov(X1, X2) = σ1σ2ρ with ρ the

correlation between X1 and X2.What is the condition on ρ for Σ to be invertible? What is
the expression of the density in this case?

Exercise 12.2 (some training) Let X1, ..., Xn be i.i.d with density f(· | θ0), where the true value
of θ0 is unknown.

(a) For the following models, find the moment estimator and MLE for θ0 ∈ Θ as well as the
Fisher information I(θ0) (you may assume that all regularity conditions are fulfilled).

1 / 3



Probability and Statistics, Spring 2019 Exercise sheet 12

1. (Geometric)

f(x | θ) = (1− θ)x−1θ

for x ∈ N≥1,where θ ∈ Θ = (0, 1).
2. (Bernoulli)

f(x | θ) = θx(1− θ)1−x

for x ∈ {0, 1}, where θ ∈ Θ = (0, 1).
3. (Beta(1, θ))

f(x | θ) = θ(1− x)θ−1
1x∈(0,1),

where θ ∈ Θ = (0,+∞).
4. (Laplace)

f(x | θ) = θ

2e
−θ|x|

for x ∈ R, where θ ∈ Θ = (0,+∞).
Hint: Note that for X ∼ Laplace(θ), E(X) = 0 and therefore one needs to use the next
order moment.

(b) For the first model Geo(θ), construct an asymptotic confidence interval of level 1− α for θ0,
based on the asymptotic normality of the MLE θ̂, and approximating I(θ0) by I(θ̂).

(c) In a study of feeding behaviors of birds, the number of hops between flights was counted for
n = 130 birds. The data are given in the following table.

# Hops 1 2 3 4 5 6 7 8 9 10 11 12
Frequency 48 31 20 9 6 5 4 2 1 1 2 1

For example: in 48 occasions, a bird had just 1 hop before flying again, in 20 occasions they
had 3 hops, etc. Assume that the number of hops can be modelled as a geometric random
variable with unknown success probability θ0 ∈ (0, 1). Compute the MLE based on the data
in the table, and find an asymptotic confidence interval of level 95%.

Exercise 12.3

(a) Find a sufficient statistic for the parameters generating the following models:

1.
X1, ..., Xn

iid∼ U([0, θ]), θ ∈ (0,+∞).

2.
X1, ..., Xn

iid∼ Exp(λ), λ ∈ (0,+∞).

3.
X1, ..., Xn

iid∼ N (µ, σ2), θ = (µ, σ)T ∈ R× (0,+∞).

4.
X1, ..., Xn

iid∼ U([θ, θ + 1]), θ ∈ R.

(b) Show that in general, if T (X1, ..., Xn) is a sufficient statistic for θ ∈ Θ (where X1, ..., Xn
iid∼

f(· | θ)), then for any c ∈ R \ {0}, cT (X1, ..., Xn) is also sufficient for θ.
Hint: Use the factorisation theorem.
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Exercise 12.4 Let (X,Y )T be a random vector. We want to show that var(X | Y ) = 0 with
probability 1, if and only if there is a measurable function h such that P (X = h(Y )) = 1.

We consider only the case where the vector is discrete (takes either finitely many or countably
many different values).

(a) State the definition of var(X | Y = y).

(b) Show that var(X | Y ) = 0 with probability 1 if and only if P (X = E(X | Y )) = 1.

(c) Conclude.

Exercise 12.5 (optional).
The goal here is to justify why the idea of maximising the likelihood is a good one.

(a) For X ∼ f(· | θ0) and θ ∈ Θ, assume that E[log f(X | θ)] exists.
Show that E[log f(X | θ)] ≤ E[log f(X | θ0)].

Hint: Show that E
[
log
(
f(X|θ0)
f(X|θ)

)]
≥ 0 by using Jensen’s inequality for the convex function

t 7→ − log t, t ∈ (0,+∞).

(b) Recall the weak law of large numbers: if Y1, ..., Yn are i.i.d. such that E(|Y1|) <∞, then

Y n = 1
n

n∑
i=1

Yi
P→ E(Y1) (n→∞).

Using the WLLN, explain why the MLE would be a reasonable estimator.
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