Probability and Statistics

Exercise sheet 2

Exercise 2.1 Birthday problem (without Stirling's approximation).
Consider again n people assumed to have the same probability of being born on any day of the year calendar. Assume also that this calendar consists of 365 days. Write

$$
A_{n}=\{\text { at least } 2 \text { people in the group have the same birthday }\} .
$$

The aim of this exercise is to find bounds for $P\left(A_{n}^{c}\right)$ for any fixed $2 \leq n \leq 365=N$.
(a) Show that for any two given people i and $j(1 \leq i \neq j \leq n)$ from the group,

$$
P(i \text { and } j \text { have the same birthday })=\frac{1}{N}
$$

(b) Using (a), and the known inequality

$$
\log (1+x) \leq x, \quad x \in(-1, \infty)
$$

show that

$$
1-\frac{n(n-1)}{2 N} \leq P\left(A_{n}^{c}\right) \leq \exp \left(-\frac{n(n-1)}{2 N}\right)
$$

(c) Find that $n_{m}=23$ is the smallest n so that $P\left(A_{n}\right) \geq \frac{1}{2}$.

Exercise 2.2 We have a box which contains 3 different coins. Each of these coins has a different probability to show heads after it is tossed. Call these probabilities $p_{j}, j=1,2,3$. We know that

$$
p_{1}=\frac{1}{4}, \quad p_{2}=\frac{1}{2}, \quad p_{3}=\frac{3}{4} .
$$

(a) We select a coin from the box completely at random. When this coin is tossed, it shows heads. What is the conditional probability that coin j was selected?
(b) The same coin is tossed again. What is the conditional probability of obtaining heads again?
(c) ${ }^{1}$ Prove the following result:

Let A_{1}, \ldots, A_{k} be a partition of Ω, and B, C events in Ω with $P(B \cap C)>0$ and $P\left(A_{i} \cap B\right)>$ 0 for $i=1, \ldots, k$. Then,

$$
P\left(A_{j} \mid B \cap C\right)=\frac{P\left(A_{j} \mid B\right) P\left(C \mid A_{j} \cap B\right)}{\sum_{i=1}^{k} P\left(A_{i} \mid B\right) P\left(C \mid A_{i} \cap B\right)}
$$

(This result is called the conditional Bayes' theorem.)
(d) If the same coin shows again heads at the second toss, what is the conditional probability that coin j was selected?

[^0]Exercise 2.3 (Simpson's paradox).
We are interested in studying the probability of success of a student at an entrance exam for two departments of a university. Consider the following events:

$$
\begin{gathered}
A:=\{\text { The student is a man }\} \\
A^{c}=\{\text { The student is a woman }\} \\
B:=\{\text { The student applied for department I }\} \\
B^{c}=\{\text { The student applied for department II }\} \\
C:=\{\text { The student was accepted }\} \\
C^{c}=\{\text { The student was not accepted }\}
\end{gathered}
$$

We assume the following probabilities:

$$
\begin{gathered}
P(A)=0.73 \\
P(B \mid A)=0.69, P\left(B \mid A^{c}\right)=0.24 \\
P(C \mid A \cap B)=0.62, P\left(C \mid A^{c} \cap B\right)=0.82 \\
P\left(C \mid A \cap B^{c}\right)=0.06, P\left(C \mid A^{c} \cap B^{c}\right)=0.07
\end{gathered}
$$

(a) Draw a tree describing the situation with the probabilities associated.
(b) From examining the probabilities in the tree, do you think that in the selection process the women are disadvantaged?
(c) Calculate $P(C \mid A)$ and $P\left(C \mid A^{c}\right)$. Do you agree with your answer in 3.2? What is going on?

[^0]: ${ }^{1}$ This part was updated a posteriori.

