Probability and Statistics

Exercise sheet 4

Exercise 4.1 (On measurability)

(a) Consider $X_1, ..., X_m$ $(m \ge 1)$ random variables defined on some (Ω, \mathcal{A}, P) and taking values in $(\mathbb{R}, \mathcal{B})$, where \mathcal{A} is a σ -algebra on Ω , P is a probability measure on \mathcal{A} and \mathcal{B} is the Borel σ -field.

Show that

$$-X_1, \max_{1 \le i \le m} X_i, \min_{1 \le i \le m} X_i$$

are random variables.

(b) Consider now a sequence $(X_n)_{n\geq 1}$ of random variables $X_1, X_2, ...$ defined on (Ω, \mathcal{A}, P) and taking values in $(\mathbb{R}, \mathcal{B})$ as in (a).

Show that:

$$\sup_{n \ge 1} X_n, \inf_{n \ge 1} X_n, \limsup_{n \to \infty} X_n, \liminf_{n \to \infty} X_n, \lim_{n \to \infty} X_n$$

are all random variables, in the case of the limit assuming that it exists. Here, recall the definition of

$$\limsup_{n \to \infty} := \inf_{n \ge 1} (\sup_{k \ge n} X_k)$$

and

$$\liminf_{n \to \infty} := \sup_{n \ge 1} (\inf_{k \ge n} X_k).$$

Exercise 4.2 (On the cdf of min and max of i.i.d random variables) Let $X_1, ..., X_n$ be $\stackrel{\text{iid}}{\sim} F$.

- (a) Let $S_n := \max_{1 \le i \le n} X_i$. Find the cdf of S_n as a function of F.
- (b) Do the same but for $I_n := \min_{1 \le i \le n} X_i$.
- (c) Fix $x \in \mathbb{R}$ such that $F(x) \in (0,1)$. What is the limit of the cdf of S_n at x as $n \to \infty$? What about the cdf of I_n ? How would you interpret these results? What does this mean if $X_1, ..., X_n$ take values in a finite set $\{\xi_1, ..., \xi_k\}$?

Exercise 4.3 (On expectation)

(a) For any cdf F show that

$$P(X \in (a, b]) = F(b) - F(a)$$

for any a < b and where X is a random variable with cdf F.

(b) Let X be a nonnegative discrete random variable taking its values in the set $\{x_1, x_2, ...\}$ (possibly countably infinite), where we assume that the values are ordered by $x_1 < x_2 < ...$ Suppose E(X) exists. Show that

$$E(X) = \sum_{j=0}^{\infty} (x_{j+1} - x_j) P(X > x_j)$$

with $x_0 := 0$.

Does this match with the tail sum seen in the lecture?

(c) Show that if F is the cdf of X (the same X as in (b)), then E(X) can also be given by the formula

$$E(X) = \int_0^\infty (1 - F(x)) dx.$$
 (1)

(d) Show that for a general discrete random variable (possibly taking values in $(-\infty, 0)$),

$$E(X) = -\int_{-\infty}^{0} P(X < x) dx + \int_{0}^{\infty} (1 - F(x)) dx$$
(2)

provided that E(X) exists.

Remark: Actually, the formulas in 1 and 2 are true in general for any type of nonnegative and general random variables. Also, $\int_{-\infty}^{0} P(X < x) dx$ can be replaced by $\int_{-\infty}^{0} F(x) dx$.

Exercise 4.4 (Quantiles)

For a given $0 < \alpha < 1$, we call the α -quantile of F the quantity

$$q_{\alpha} = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\},\$$

where F is a given cdf.

Remark: The function $\alpha \mapsto q_{\alpha}$ is also called the generalised inverse of the cdf F. If $\alpha = \frac{1}{2}$, $q_{\frac{1}{2}}$ is called the median.

- (a) Show that $\alpha \mapsto q_{\alpha}$ is non-decreasing on (0, 1).
- (b) Toss a fair coin n times and record

$$X_i = \begin{cases} 1 & \text{if heads at the } i\text{th toss} \\ 0 & \text{otherwise.} \end{cases}$$

Let

$$Y_n = \sum_{i=1}^n X_i$$

be the number of heads obtained in the n tosses.

Find the cdf of Y_n . Call it F_n .

(c) What is the median of F_n when n is even and when it is odd?

Exercise 4.5 (an interesting property of expectations)

- (a) Suppose that X is a random variable. Show that $E(X^2) < \infty$ if and only if $var(X) < \infty$.
- (b) Suppose $var(X) < \infty$. Show that E(X) minimises the function

$$a \mapsto E[(X-a)^2] \quad (a \in \mathbb{R}).$$

Exercise 4.6 (Optional, for the more courageous)

Consider again the birthday problem from another perspective. Suppose that people are coming to a party and you are assigned the mission of writing down the birth date of each guest as they show up.

Let X be the number of people that showed up until you see for the first time a person born on the same day as somebody who showed up earlier.

- (a) Find an expression for E(X) (this can be done in two different ways).
- (b) Find an expression for $\sigma = \sqrt{\operatorname{var}(X)}$.
- (c) The numerical values are given as

$$E(X) \approx 24.62,$$

$$\sigma \approx 12.19.$$

Find an interval [a, b] which satisfies

$$P(a \le X \le b) \ge 0.5.$$

Hint: Use Chebyshev's inequality.