Probability and Statistics

Exercise sheet 7

Exercise 7.1 (Getting the distribution of independent Binomials.)
We recall for this question the following (general) definition:
For X and Y two random variables, not necessarily defined on the same probability space, we say that X and Y have the same distribution (denoted $X \stackrel{d}{=} Y$) if

$$
\begin{equation*}
F_{X}=F_{Y} \text { on } \mathbb{R} \tag{1}
\end{equation*}
$$

with F_{X} and F_{Y} the cdf's of X and Y, respectively. Note that when X and Y are discrete, (1) is equivalent to $p_{X}=p_{Y}$, where p_{X} and p_{Y} are the pmf's of X and Y respectively.

Consider now X_{1} and X_{2} two independent random variables such that $X_{1} \sim \operatorname{Bin}\left(n_{1}, p\right)$ and $X_{2} \sim \operatorname{Bin}\left(n_{2}, p\right)$, with $n_{1} \geq 1, n_{2} \geq 1$ in \mathbb{N} and $p \in(0,1)$. We want to show that

$$
X_{1}+X_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)
$$

(a) The hard way:

Assume without loss of generality that $n_{1} \leq n_{2}$. Let $k \in\left\{0, \ldots, n_{1}+n_{2}\right\}$. Show that

$$
P\left(X_{1}+X_{2}=k\right)=\left[\sum_{j=\max \left(0, k-n_{2}\right)}^{\min \left(k, n_{1}\right)}\binom{n_{1}}{j}\binom{n_{2}}{k-j}\right] p^{k}(1-p)^{n_{1}+n_{2}-k} .
$$

Using the fact that the pmf of any random variable with distribution $\operatorname{Hypergeo}(n, D, N)$ has to add up to 1 , show that

$$
\sum_{j=\max \left(0, k-n_{2}\right)}^{\min \left(k, n_{1}\right)}\binom{n_{1}}{j}\binom{n_{2}}{k-j}=\binom{n_{1}+n_{2}}{k}
$$

and conclude.
(b) A more elegant way:

On $\Omega=\{0,1\}^{n_{1}+n_{2}}$ define the Bernoulli random variables $Y_{1}, \ldots, Y_{n_{1}}, Y_{n_{i}+1}, \ldots, Y_{n_{1}+n_{2}}$ such that they are all $\stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(p)$.
Here, the Y_{i} have the natural definition that for each $i \in\left\{1, \ldots, n_{1}+n_{2}\right\}$,

$$
Y_{i}\left(\omega_{1}, \ldots, \omega_{n_{1}+n_{2}}\right)=\omega_{i}
$$

for $\left(\omega_{1}, \ldots, \omega_{n_{1}+n_{2}}\right) \in\{0,1\}^{n_{1}+n_{2}}$, and Ω is equipped with the probability measure P such that

$$
P\left(\left(\omega_{1}, \ldots, \omega_{n_{1}+n_{2}}\right)\right)=p^{\omega_{1}}(1-p)^{1-\omega_{1}} \ldots p^{\omega_{n_{1}+n_{2}}}(1-p)^{1-\omega_{n_{1}+n_{2}}}
$$

defined on $\mathcal{A}=2^{\Omega}$.
Define the random variables

$$
X_{1}^{\prime}:=Y_{1}+\ldots+Y_{n_{1}}
$$

$$
X_{2}^{\prime}:=Y_{n_{1}+1}+\ldots+Y_{n_{1}+n_{2}}
$$

Show using a simple argument that

$$
X_{1}+X_{2} \stackrel{d}{=} X_{1}^{\prime}+X_{2}^{\prime}
$$

(without computing their cdf's or pmf's explicitly).
Conclude now that $X_{1}+X_{2} \sim \operatorname{Bin}\left(n_{1}+n_{2}, p\right)$.

Exercise 7.2

(a) Let

$$
f(x):=\frac{1}{x^{k}} \mathbb{1}_{x \in[1,+\infty)}
$$

For what value of k, if any, is f a density function?
(b) Give an example of a density function f such that $c \sqrt{f}$ cannot be a density function for any $c>0$.
(c) Let

$$
f(x)=c|x|\left(1-x^{2}\right) \mathbb{1}_{|x| \leq 1} .
$$

1. Find $c>0$ so that f is a density function.
2. Find the cdf corresponding to this density.
3. Compute $P\left(X<-\frac{1}{2}\right)$ and $P\left(|X| \leq \frac{1}{2}\right)$.

Exercise 7.3 (On moment generating functions).
For a random variable X, the moment generating function is defined as

$$
\Psi_{X}(t):=E\left[e^{t X}\right]
$$

for any $t \in \mathbb{R}$ for which this expectation is finite.
In this question, we will assume that for two random variables X and Y (not necessarily defined on the same probability space), we have the equivalence

$$
X \stackrel{d}{=} Y \Leftrightarrow \Psi_{X}=\Psi_{Y} \text { on }(a, b)
$$

for some non-empty open interval (a, b) containing 0 . (One can prove this equivalence indeed holds, as long as such an interval (a, b) exists where the moment generating functions are defined).
(a) Let $X \sim \operatorname{Bin}(n, p)$. Compute Ψ_{X} (on its domain of definition). If $X_{1} \sim \operatorname{Bin}\left(n_{1}, p\right)$ and $X_{2} \sim \operatorname{Bin}\left(n_{2}, p\right)$ are independent, compute $\Psi_{X_{1}+X_{2}}$. Can you conclude again that $X_{1}+X_{2} \sim$ $\operatorname{Bin}\left(n_{1}+n_{2}, p\right) ?$
(b) Let $X \sim \mathcal{N}(0,1)$. Compute Ψ_{X} (on its domain of definition). If $X_{1}, X_{2}, \ldots, X_{n}$ are $\stackrel{\text { iid }}{\sim} \mathcal{N}(0,1)$, compute $\Psi_{X_{1}+\ldots+X_{n}}$. What is then the distribution of $X_{1}+\ldots+X_{n}$?
(c) Let $X \sim \operatorname{Exp}(\lambda)$ for some $\lambda>0$. Recall that this means that the density of X is given by

$$
f(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \in(0, \infty)}
$$

Compute Ψ_{X} (on its domain of definition).
(d) Let $X \sim G(\alpha, \beta), \alpha>0, \beta>0$. Compute Ψ_{X} (on its domain of definition). If X_{1}, \ldots, X_{n} are independent such that $X_{i} \sim G\left(\alpha_{i}, \beta\right)$ for $\alpha_{i}>0, \beta>0$, compute $\Psi_{X_{1}+\ldots+X_{n}}$. What is the distribution of $X_{1}+\ldots+X_{n}$?

Exercise 7.4 (Optional).
The first goal of this exercise is to show that:
(a) $X:(\Omega, \mathcal{A}, P) \rightarrow\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ is an absolutely continuous random variable with density f if and only if

$$
\forall x \in \mathbb{R} \quad F(x)=\int_{(-\infty, x]} f d \lambda=\int_{-\infty}^{x} f(t) d t
$$

1. Show that the condition is necessary.
2. To show that it is sufficient, define the probability measure

$$
\mu_{1}(B)=\int_{B} f d \lambda=\int_{B} f(t) d t, \forall B \in \mathcal{B}_{\mathbb{R}}
$$

Use Carathéodory's extension theorem to show that μ_{1} and P_{X} have to be equal and conclude.
The second goal is to show the following:
(b) A measurable function $f \geq 0$ on $\left(\mathbb{R}, \mathcal{B}_{\mathbb{R}}\right)$ is the density of some absolutely continuous random variable if and only if

$$
\int_{\mathbb{R}} f(t) d t=1
$$

1. Show that this condition is necessary.
2. To show that it is sufficient, define

$$
F(x):=\int_{-\infty}^{x} f(t) d t, x \in \mathbb{R}
$$

Show that:

- F is non-decreasing on \mathbb{R},
- $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow+\infty} F(x)=1$,
- F is right-continuous on \mathbb{R}.

Conclude from this that F has to be the cdf of some random variable X (simply invoke a result from the lecture; no need to give a formal proof).
Finally, show that this X has to be absolutely continuous with density f (for this use (a)).

