Probability and Statistics

Exercise sheet 8

Exercise 8.1

(a) Let $X \sim \mathrm{U}([0,1])$. Compute $E\left(X^{n}\right), E\left(X^{\frac{1}{n}}\right)(n \geq 1)$, and $\Psi_{X}(t)=E\left[e^{t X}\right]$ whenever it is defined.
(b) Let $X \sim \operatorname{Beta}(\alpha, \beta), \alpha>0$ and $\beta>0$. Compute $E(X)$ and $\operatorname{var}(X)$.

Hint: Use the "trick" that any density function f has to integrate to 1.
(c) Let $X \sim \operatorname{Exp}(\lambda)$, for $\lambda>0$. Compute the cdf of X and $E\left(X^{n}\right)$ for $n \geq 1$.

Remark: Watch out for the parametrisation - different sources may use different parametrisations. In the lectures we consider the density function of an $\operatorname{Exp}(\lambda)$-distributed random variable to be $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$.

Exercise 8.2 (Waiting time.)

An auto towing company services a 50 mile stretch of a highway. The company is located 20 miles from one end of the stretch. Breakdowns occur uniformly along the highway and the towing trucks travel at a constant speed of 50 mph . Find the mean and variance of the time elapsed between the instant the company is called and a towing truck arrives.

Exercise 8.3 (Uniforms, uniforms...)
(a) Consider a random variable $X \sim \mathrm{U}\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$. Find $E(\sin (X))$ and $\operatorname{var}(\sin (X))$.
(b) The lengths of the sides of a triangle are $X, 2 X$ and $2.5 X$ with $X \sim \mathrm{U}([0, \alpha])$ for some $\alpha>0$.

- Find the mean and variance of its area.

Hint: Recall that if

$$
s=\frac{a+b+c}{2}
$$

with a, b, c the lengths, then the area of the triangle is

$$
|\Delta|=\sqrt{s(s-a)(s-b)(s-c)}
$$

(Heron's formula).

- How should we choose α so that the mean area is ≥ 1 ?
(c) Take X_{1}, \ldots, X_{n} to be $\stackrel{\text { iid }}{\sim} \mathrm{U}([0,1])$. Let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$. Find the cdf and pdf of M_{n}. Can you recognise this distribution? What are $E\left(M_{n}\right)$ and $\operatorname{var}\left(M_{n}\right)$?

Exercise 8.4 (Quantile transformation.) Recall that for a given $\operatorname{cdf} F$, the quantile t_{α} of order $\alpha \in(0,1)$ is defined as

$$
t_{\alpha}=\inf \{t: F(t) \geq \alpha\}=: F^{-1}(\alpha)
$$

F^{-1} denotes the generalised inverse of F. When the latter is bijective (at least in the neighbourhood of t_{α}), then F^{-1} is the inverse of F in the classical sense.
(a) Consider $U \sim \mathrm{U}([0,1])$. Show that $1-U \sim \mathrm{U}([0,1])$.

Hint: Compute, for example, the cdf or the pdf of $1-U$.
(b) Consider

$$
X:=-\frac{1}{\lambda} \log (U)
$$

(for ω : $U(\omega)=0$, take $X(\omega)=0$, say).
Find the cdf of X. Can you recognise this distribution?
(c) Now, consider the following problem: take a cdf F which is bijective when viewed as a map $F:(a, b) \rightarrow(0,1)$, for some $-\infty \leq a<b \leq+\infty$.
Define $X=F^{-1}(U)$, with $U \sim \mathrm{U}([0,1])$.

- Compute the cdf of X.

Hint: You may need to consider the cases $a=-\infty, a>-\infty, b=+\infty, b<+\infty$.

- Compute the pdf of X, assuming that F is C^{1} on (a, b) with $F^{\prime}(x)>0 \forall x \in(a, b)$.
- Can you make the link to (b)?
(d) Suppose you are given a numerical algorithm which enables you to generate a random number from $[0,1]$. You would like to generate a random number X which follows the Cauchy distribution, i.e.

$$
f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}, x \in \mathbb{R}
$$

Can you propose a way to do that, based on your previous findings?
Exercise 8.5 (Optional.) Let X_{1}, \ldots, X_{n} (for some $n \geq 2$) be random variables defined on the same probability space (Ω, \mathcal{A}, P). A necessary and sufficient condition for (mutual) independence of X_{1}, \ldots, X_{n} is that

$$
\begin{equation*}
P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq x_{i}\right) \tag{1}
\end{equation*}
$$

for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
The goal of this exercise is to show that when X_{1}, \ldots, X_{n} are discrete, (1) is equivalent to

$$
\begin{equation*}
P\left(X_{i_{1}}=x_{1}, \ldots, X_{i_{m}}=x_{m}\right)=\prod_{j=1}^{m} P\left(X_{i_{j}}=x_{j}\right) \tag{2}
\end{equation*}
$$

for any $1 \leq m \leq n$ and $i_{1}<\ldots<i_{m},\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$.
(a) Take $m=n$ (in which case $i_{1}=1, i_{2}=2, \ldots, i_{m}=n$).

- Focus on X_{1} and show that (2) implies that for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
P\left(X_{1} \leq x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1} \leq x_{1}\right) P\left(X_{2}=x_{2}\right) \ldots P\left(X_{n}=x_{n}\right)
$$

- Repeating this argument inductively, show that (1) holds.
(b) Now, we want to show that (1) implies (2). Fix $\left\{i_{1}, \ldots, i_{m}\right\}=\mathcal{J} \subset\{1, \ldots, n\}$, with strict inclusion.
- Show that (1) implies that

$$
P\left(X_{i_{1}} \leq x_{1}, \ldots, X_{i_{m}} \leq x_{m}\right)=\prod_{j=1}^{m} P\left(X_{i_{j}} \leq x_{j}\right)
$$

Hint: You may want to take limits in (1) as $x_{i} \rightarrow+\infty$ for $i \notin \mathcal{J}$.

- Focus on i_{1} (hold the other events depending on i_{2}, \ldots, i_{m} fixed).

Show that we have

$$
P\left(X_{i_{1}}<x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right)=P\left(X_{i_{1}}<x_{1}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
$$

for any $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$.
Hint: Consider $A_{k}:=\left\{X_{i_{1}} \leq x_{1}-\frac{1}{k}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right\}$ and use the monotone convergence theorem.

- Conclude that

$$
P\left(X_{i_{1}}=x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right)=P\left(X_{i_{1}}=x_{1}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
$$

- Repeat your argument inductively to conclude.

