Probability and Statistics

Exercise sheet 10

Exercise 10.1 Let X and Y be independent random variables such that $X \sim \operatorname{Poi}(\lambda)$ and $Y \sim \operatorname{Poi}(\mu)$. Show that given $X+Y=s$, the conditional distribution of X is $\operatorname{Bin}\left(s, \frac{\lambda}{\lambda+\mu}\right)$.

Solution 10.1 We have $X \sim \operatorname{Poi}(\lambda)$ and $Y \sim \operatorname{Poi}(\mu)$ with $\lambda, \mu \in(0,+\infty)$, and X and Y are independent. For $s \in \mathbb{N}$,

$$
P(X=k \mid X+Y=s)=\frac{P(X=k, X+Y=s)}{P(X+Y=s)}=\left\{\begin{array}{cc}
\frac{P(X=k) P(Y=s-k)}{P(X+Y=s)} & \text { if } 0 \leq k \leq s \\
0 & \text { otherwise }
\end{array}\right.
$$

Since $X+Y \sim \operatorname{Poi}(\lambda+\mu)$, it follows that

$$
\begin{aligned}
\frac{P(X=k) P(Y=s-k)}{P(X+Y=s)} & =\frac{e^{-\lambda} \lambda^{k}}{k!} \frac{e^{-\mu} \mu^{s-k}}{(s-k)!} \frac{s!}{e^{-(\lambda+\mu)}(\lambda+\mu)^{s}} \\
& =\frac{\lambda^{k} \mu^{s-k}}{(\lambda+\mu)^{s}}\binom{s}{k} \\
& =\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{s-k}\binom{s}{k} .
\end{aligned}
$$

Letting $p=\frac{\lambda}{\lambda+\mu}$,

$$
P(X=k \mid X+Y=s)=\left\{\begin{array}{cc}
\binom{s}{k} p^{k}(1-p)^{s-k}, & k \in\{0, \ldots, s\} \\
0, & \text { otherwise }
\end{array}\right.
$$

In other words, $X \mid X+Y=s \sim \operatorname{Bin}(s, p)$.
Exercise 10.2 Let X, Y and Z be $\stackrel{\text { iid }}{\sim} \operatorname{Exp}(1)$.
(a) Find $E[X \sqrt{X+Y}]$.
(b) Find $P(X<2 Y<3 Z)$.

Solution 10.2

(a) Note that by the symmetry of the distribution (exchanging the roles of X and Y),

$$
E(X \sqrt{X+Y})=E(Y \sqrt{Y+X})
$$

Hence,

$$
E(X \sqrt{X+Y})=\frac{1}{2} E((X+Y) \sqrt{X+Y})=\frac{1}{2} E\left((X+Y)^{\frac{3}{2}}\right)
$$

Recall that if X_{1}, \ldots, X_{n} are independent such that $X_{i} \sim G\left(\alpha_{i}, \beta\right), \alpha_{1}, \ldots, \alpha_{n}, \beta>0$, then $X_{1}+\ldots+X_{n} \sim G\left(\alpha_{1}+\ldots+\alpha_{n}, \beta\right)$.

Therefore, $X+Y \sim G(2,1)($ since $\operatorname{Exp}(1) \stackrel{\mathrm{d}}{=} G(1,1))$.
It follows that

$$
\begin{aligned}
E\left((X+Y)^{\frac{3}{2}}\right) & =E\left(S^{\frac{3}{2}}\right) \quad(\text { where } S \sim G(2,1)) \\
& =\int_{0}^{\infty} \frac{1^{2}}{\Gamma(2)} s e^{-s} s^{\frac{3}{2}} d s \\
& =\int_{0}^{\infty} s^{\frac{5}{2}} e^{-s} d s \quad(\text { since } \Gamma(2)=1!=1) \\
& =\Gamma\left(\frac{7}{2}\right) \int_{0}^{\infty} \frac{1^{\frac{7}{2}}}{\Gamma\left(\frac{7}{2}\right)} s^{\frac{7}{2}} e^{-s} d s \\
& =\Gamma\left(\frac{7}{2}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
E(X \sqrt{X+Y}) & =\frac{1}{2} \Gamma\left(\frac{7}{2}\right) \\
& =\frac{1}{2} \Gamma\left(\frac{5}{2}+1\right) \\
& =\frac{1}{2} \frac{5}{2} \Gamma\left(\frac{5}{2}\right) \\
& =\ldots \\
& =\frac{1}{2} \frac{5}{2} \frac{3}{2} \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \\
& =\frac{15}{16} \sqrt{\pi}
\end{aligned}
$$

(b)

$$
P(X<2 Y<3 Z)=\iiint_{D} e^{-x} e^{-y} e^{-z} d x d y d z
$$

with

$$
D=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq x<2 y<3 z\right\}=\left\{(x, y, z) \in \mathbb{R}^{3}: x \geq 0, y>\frac{x}{2}, z>\frac{2}{3} y\right\}
$$

By Fubini's Theorem, we have that

$$
\begin{aligned}
P(X<2 Y<3 Z) & =\int_{0}^{\infty} \int_{\frac{x}{2}}^{\infty} \int_{\frac{2}{3} y}^{\infty} e^{-z} e^{-y} e^{-x} d x d y d z \\
& =\int_{0}^{\infty} \int_{\frac{x}{2}}^{\infty}\left(\int_{\frac{2}{3} y}^{\infty} e^{-z} d z\right) e^{-y} e^{-x} d y d x \\
& =\int_{0}^{\infty} \int_{\frac{x}{2}}^{\infty} e^{-\frac{2}{3} y-y} e^{-x} d y d x \\
& =\int_{0}^{\infty}\left(\int_{\frac{x}{2}}^{\infty} e^{-\frac{5}{3} y} d y\right) e^{-x} d x \\
& =\int_{0}^{\infty} \frac{3}{5} e^{-\frac{5}{6} x-x} d x \\
& =\frac{3}{5} \int_{0}^{\infty} e^{-\frac{11}{6} x} d x \\
& =\frac{3}{5} \frac{6}{11} \\
& =\frac{18}{55} .
\end{aligned}
$$

Exercise 10.3 Suppose $X \sim \mathcal{N}(0,1)$ and $Y \mid X=x \sim \mathcal{N}(x+1,1)$.
(a) What is the marginal distribution of Y ?
(b) Find $\operatorname{cov}(X, Y)$ and the correlation of X and Y.
(c) Find the conditional distribution of X given $Y=y$.

Solution 10.3

(a) The marginal density of Y is given by

$$
f_{Y}(y)=\int_{\mathbb{R}} f(x, y) d x
$$

where f is the joint density of (X, Y). Now,

$$
\begin{aligned}
f(x, y) & =f(y \mid x) f_{X}(x) \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-x-1)^{2}}{2}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \\
& =\frac{1}{2 \pi} e^{-\frac{1}{2}\left((y-1)^{2}-2(y-1) x+x^{2}+x^{2}\right)} \\
& =\frac{1}{2 \pi} e^{-\frac{1}{2}\left(2 x^{2}-2(y-1) x+(y-1)^{2}\right)} \\
& =\frac{1}{2 \pi} e^{-\left(x^{2}-(y-1) x+\frac{(y-1)^{2}}{2}\right)} \\
& =\frac{1}{2 \pi} e^{-\left(x^{2}-2 \frac{(y-1)}{2} x+\frac{(y-1)^{2}}{4}+\frac{(y-1)^{2}}{4}\right)} \\
& =\frac{1}{2 \pi} e^{\left(-\frac{(y-1)^{2}}{4}\right)} e^{-\left(x-\frac{y-1}{2}\right)^{2}} .
\end{aligned}
$$

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{2 \pi} e^{-\frac{(y-1)^{2}}{4}} \int_{\mathbb{R}} e^{-\left(x-\frac{y-1}{2}\right)^{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \frac{e^{-\frac{(y-1)^{2}}{4}}}{\sqrt{2}}\left(\frac{1}{\sqrt{2 \pi}}\left(\frac{1}{\sqrt{2}}\right)^{-1} \int_{\mathbb{R}} e^{-\frac{\left(x-\frac{y-1}{2}\right)^{2}}{2 \frac{1}{2}}} d x\right) \\
& =\frac{1}{\sqrt{2 \pi} \sqrt{2}} e^{-\frac{(y-1)^{2}}{2 \times 2}}
\end{aligned}
$$

(since we take the integral of the density of $\mathcal{N}\left(\frac{y-1}{2}, \frac{1}{2}\right)$) and so $Y \sim \mathcal{N}(1,2)$.
(b)

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E(X Y)-E(X) E(Y) & & \\
& =E(X Y) & & \text { (as } E(X)=0) \\
& =E(E(X Y \mid X)) & & \text { (iterated expectation) } \\
& =E(X E(Y \mid X)) & & \\
& =E(X(X+1)) & & \\
& =E\left(X^{2}\right)+E(X) & & \\
& =E\left(X^{2}\right) & & (\text { as } E(X)=0) \\
& =\operatorname{var}(X) & & \\
& =1 & &
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{corr}(X, Y) & =\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}} \\
& =\frac{1}{\sqrt{1} \sqrt{2}} \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

(c) Note that the previous calculations give already that

$$
\begin{aligned}
f(x, y) & =\frac{1}{\sqrt{2 \pi} \sqrt{2}} e^{-\frac{(y-1)^{2}}{4}} \frac{1}{\sqrt{2 \pi}} \sqrt{2} e^{-\frac{\left(x-\frac{y-1}{2}\right)^{2}}{2 \frac{1}{2}}} \\
& =f_{Y}(y) f(x \mid y)
\end{aligned}
$$

implying that $X \left\lvert\, Y=y \sim \mathcal{N}\left(\frac{y-1}{2}, \frac{1}{2}\right)\right.$.
Exercise 10.4 Gaussian (normal) vectors.
A vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is said to be a Gaussian vector if there is a matrix $A \in \mathbb{R}^{n \times n}$, a vector $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ with $Z_{1}, \ldots, Z_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1)$ and $\mu \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
X \stackrel{\mathrm{~d}}{=} \mu+A Z \tag{1}
\end{equation*}
$$

In this case, note that $E(X)=\mu$ and $\operatorname{var}(X)=A A^{T}=: \Sigma$. Here, the covariance matrix Σ is not necessarily invertible. If it is, then X admits a density with respect to Lebesgue measure on \mathbb{R}^{n}.
(a) Show that if X is a Gaussian vector, then any linear combination of X_{1}, \ldots, X_{n} is a normal random variable.
(b) We want to show that the condition in (a) is also sufficient: i.e., that if any linear combination of X_{1}, \ldots, X_{n} is a normal random variable, then X is a Gaussian vector.

1. Explain why you can write $\Sigma=P^{T} D P$ with P orthogonal and D a diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n} \geq 0$. Let $A:=P^{T} D^{\frac{1}{2}}$, where $D^{\frac{1}{2}}$ is defined as the diagonal matrix with entries $\lambda_{1}^{\frac{1}{2}}, \ldots, \lambda_{n}^{\frac{1}{2}}$.
2. For a fixed $v \in \mathbb{R}^{n}$, find the distribution of $v^{T}(\mu+A Z)$ with $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ with $Z_{1}, \ldots, Z_{n} \stackrel{\text { iid }}{\sim} \mathcal{N}(0,1)$.
Hint: From a previous exercise sheet, you know that a linear combination of i.i.d standard Gaussians has a Gaussian distribution $\mathcal{N}\left(a, b^{2}\right)$. What are the parameters a, b^{2} here?
3. What is the distribution of $v^{T} X$?
4. To conclude, use that fact that two random vectors W_{1}, W_{2} in \mathbb{R}^{n} have the same distribution if and only if

$$
v^{T} W_{1} \stackrel{\mathrm{~d}}{=} v^{T} W_{2} \quad \forall v \in \mathbb{R}^{n}
$$

(c) Let $X \sim \mathcal{N}(0,1)$ and Z be a discrete random variable such that $X \Perp Z$ and $P(Z=-1)=$ $P(Z=1)=\frac{1}{2}$.
Consider the random variable Y, defined by

$$
Y=\left\{\begin{array}{cc}
X, & \text { if } Z=1 \\
-X, & \text { if } Z=-1
\end{array}\right.
$$

- Show that marginally, $Y \sim \mathcal{N}(0,1)$.
- Find $P(X+Y=0)$.
- Is (X, Y) a Gaussian vector? What do you conclude from this exercise?

Solution 10.4

(a) For this question, we recall the following facts:

- If X_{1}, \ldots, X_{n} are independent with $X_{i} \sim \mathcal{N}\left(\mu_{i}, \sigma_{i}^{2}\right)$, then

$$
\sum_{i=1}^{n} a_{i} X_{i} \sim \mathcal{N}\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right)
$$

- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then $X+c \sim \mathcal{N}\left(\mu+c, \sigma^{2}\right)$ (the latter can be shown easily and is left as a small exercise).

Let

$$
a=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)
$$

Then

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} X_{i} & =a^{T} X \\
& \stackrel{\mathrm{~d}}{=} a^{T} \mu+a^{T} A Z \\
& =c+b^{T} Z \quad\left(\text { where } c=a^{T} \mu \text { and } b=A^{T} a\right) \\
& =c+\sum_{i=1}^{n} b_{i} Z_{i} \\
& =\mathcal{N}\left(c, \sum_{i=1}^{n} b_{i}^{2}\right)
\end{aligned}
$$

using the two known facts recalled above.
(b) 1. By definition of Σ, we know that

$$
\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right), \quad 1 \leq i, j \leq n
$$

For any vector $v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right) \in \mathbb{R}^{n}$,

$$
\begin{aligned}
v^{T} \Sigma v & =\sum_{1 \leq i, j \leq n} v_{i} v_{j} \Sigma_{i j} \\
& =\sum_{1 \leq i, j \leq n} v_{i} v_{j} \operatorname{cov}\left(X_{i}, X_{j}\right) \\
& =\operatorname{var}\left(\sum_{i=1}^{n} \sigma_{i} X_{i}\right) \\
& \geq 0
\end{aligned}
$$

Thus, Σ is symmetric and also positive semi-definite. Now, symmetry implies that Σ is diagonalisable and we can find an orthogonal matrix P in $\mathbb{R}^{n \times n}$, and D a diagonalisable matrix with diagonal entries $\lambda_{1}, \ldots, \lambda_{n}$ such that

$$
\Sigma=P^{T} D P
$$

Furthermore, $\lambda_{i} \geq 0 \forall i \in\{1, \ldots, n\}$, since if we take $v=P^{-1} e_{i}\left(e_{i}\right.$ is the $i^{\text {th }}$ standard basis vector in \mathbb{R}^{n}), then

$$
0 \leq v^{T} \Sigma v=e_{i}^{T} D e_{i}=\lambda_{i}
$$

Then, define $D^{\frac{1}{2}}$ as the diagonal matrix with entries $\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}$ (now we know we can define it).
2. Using the same arguments as for (a), for $v=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right) \in \mathbb{R}^{n}$, we have that

$$
v^{T}(\mu+A Z) \sim \mathcal{N}\left(v^{T} \mu, \sum_{i=1}^{n} b_{i}^{2}\right)
$$

where $b=A^{T} v$.
Now, note that

$$
\begin{aligned}
\sum_{i=1}^{n} b_{i}^{2} & =b^{T} b \\
& =v^{T} A A^{T} b \\
& =v^{T} P^{T} D^{\frac{1}{2}} D^{\frac{1}{2}} P v \\
& =v^{T} P^{T} D P v \\
& =v^{T} \Sigma v
\end{aligned}
$$

and therefore, $v^{T}(\mu+A Z) \sim \mathcal{N}\left(v^{T} \mu, v^{T} \Sigma v\right)$.
3. Since we assume now that any linear combination of X_{1}, \ldots, X_{n} is a normal random variable, it follows that $v^{T} X=v_{1} X_{1}+\ldots+v_{n} X_{n}$ is normal. To characterise its distribution, it is enough to compute its mean and variance.

$$
\begin{aligned}
E\left(v^{T} X\right) & =v^{T} E(X)=v^{T} \mu \\
\operatorname{var}\left(v^{T} X\right) & =\operatorname{var}\left(\sum_{i=1}^{n} v_{i} X_{i}\right) \\
& =\sum_{1 \leq i, j \leq n} v_{i} v_{j} \operatorname{cov}\left(X_{i}, X_{j}\right) \\
& =\sum_{1 \leq i, j \leq n} v_{i} v_{j} \Sigma_{i, j} \\
& =v^{T} \Sigma v
\end{aligned}
$$

so that $v^{T} X \sim \mathcal{N}\left(v^{T} \mu, v^{T} \Sigma v\right)$.
4. We have $\forall v \in \mathbb{R}^{n}, v^{T} X \stackrel{\text { d }}{=} v^{T}(\mu+A Z)$ with $A=P^{T} D^{\frac{1}{2}}$. We conclude from the hint that

$$
X \stackrel{\mathrm{~d}}{=} \mu+A Z
$$

(c) \bullet To find the distribution of Y, it is enough to compute its cdf. For $y \in \mathbb{R}$:

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(\{X \leq y, Z=1\} \cup\{-X \leq y, Z=-1\}) \\
& =P(X \leq y, Z=1)+P(-X \leq y, Z=-1) \\
& =P(X \leq y) P(Z=1)+P(-X \leq y) P(Z=-1) \\
& =\frac{1}{2} \Phi(y)+\frac{1}{2}(1-\Phi(-y)) \quad \text { (since } \mathcal{N}(0,1) \text { is continuous) } \\
& =\frac{1}{2} \Phi(y)+\frac{1}{2} \Phi(y) \quad \text { (by symmetry of the standard normal) } \\
& =\Phi(y)
\end{aligned}
$$

Thus, $Y \sim \mathcal{N}(0,1)$.

$$
\begin{aligned}
P(X+Y=0) & =P(2 X=0, Z=1)+P(X-X=0, Z=-1) \\
& =P(X=0) P(Z=1)+P(Z=-1) \\
& =\frac{1}{2}
\end{aligned}
$$

- If (X, Y) were a Gaussian vector, then any linear combination of X and Y is a normal random variable, and hence should either be absolutely continuous or a constant, neither of which is the case, since we would need either $P(X+Y=0)=0$ or $P(X+Y=0)=1$. Thus (X, Y) is not a Gaussian vector.
- From this exercise we can conclude that putting together two random variables (on the same probability space), which have normal marginal distributions, does not guarantee that they form a Gaussian vector.

Exercise 10.5 (optional).

The goal of this exercise is to manipulate the Jacobian formula to obtain the density of a convolution.

Let X and Y be two independent random variables with density f_{X} and f_{Y} respectively. We are interested in deriving the density of the random variable $X+Y$.
(a) Let $S:=X+Y, T:=Y$ and consider the map

$$
\begin{aligned}
g: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto(s, t)=(x+y, y)
\end{aligned}
$$

Show that g is bijective with Jacobian $\neq 0$ at any $(x, y) \in \mathbb{R}^{2}$. Conclude that the random pair (S, T) has point density $f_{(S, T)}$ given by

$$
f_{(S, T)}(s, t)=f_{X}(s-t) f_{Y}(t)
$$

(b) Conclude that

$$
f_{S}(s)=\int_{\mathbb{R}} f_{X}(s-y) f_{Y}(y) d y
$$

(c) Give the density of the convolution $X+Y$ in the following cases:

- $X \sim \operatorname{Exp}(\lambda)$ and $Y \sim \operatorname{Exp}(\mu)$. Do you recognise the distribution when $\mu=\lambda$?
- $X \sim G\left(\alpha_{1}, \beta\right)$ and $G\left(\alpha_{2}, \beta\right)$.
- $X \sim \mathcal{N}\left(0, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(0, \sigma_{2}^{2}\right)$.

Solution 10.5

(a)

$$
g(x, y)=(x+y, y)=(s, t) \Leftrightarrow x=s-t, y=t
$$

Thus, g is bijective and $g^{-1}(s, t)=(s-t, t)$. Also, g is differentiable and

$$
\nabla g(x, y)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Thus the Jacobian is given by

$$
J_{g}(x, y)=\operatorname{det}(\nabla g)=1
$$

(b) Using the Jacobian formula, it follows that

$$
f_{(S, T)}(s, t)=f_{(X, Y)}(s-t, t) \times \frac{1}{1}=f_{X}(s-t) f_{Y}(t)
$$

by independence of X and Y.
Hence

$$
f_{S}(s)=\int_{\mathbb{R}} f_{X}(s-t) f_{Y}(t) d t=\int_{\mathbb{R}} f_{X}(s-y) f_{Y}(y) d y
$$

(c) - We compute:

$$
\begin{aligned}
f_{S}(s) & =\int_{\mathbb{R}} \lambda e^{-\lambda(s-y)} \mathbb{1}_{0 \leq s-y} \mu e^{-\mu y} \mathbb{1}_{y \geq 0} d y \\
& =\lambda \mu e^{-\lambda s} \mathbb{1}_{s \geq 0} \int_{0}^{s} e^{(\lambda-\mu) y} d y
\end{aligned}
$$

(rewriting the conditions as $\mathbb{1}_{0 \leq s-y} \mathbb{1}_{y \geq 0}=\mathbb{1}_{s \geq 0} \mathbb{1}_{0 \leq y \leq s}$).
Hence,

$$
\begin{aligned}
f_{S}(s) & =\left\{\begin{array}{cc}
\lambda \mu e^{-\lambda s} \mathbb{1}_{s \geq 0} \frac{e^{(\lambda-\mu) s}-1}{\lambda-\mu} & \text { if } \lambda \neq \mu \\
\lambda^{2} e^{-\lambda s} s \mathbb{1}_{s \geq 0} & \text { if } \lambda=\mu
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\frac{\lambda \mu}{\lambda-\mu}\left(e^{-\mu s}-e^{-\lambda s}\right) \mathbb{1}_{s \geq 0} & \text { if } \lambda \neq \mu \\
\lambda^{2} s e^{-\lambda s} \mathbb{1}_{s \geq 0} & \text { if } \lambda=\mu .
\end{array}\right.
\end{aligned}
$$

Once again, we find that $X+Y \sim G(1,2)$ if X, Y are i.i.d $\operatorname{Exp}(\lambda)$.

- For $X \sim G\left(\alpha_{1}, \beta\right)$ and $Y \sim G\left(\alpha_{2}, \beta\right)$,

$$
\begin{aligned}
f_{S}(s) & =\mathbb{1}_{s \geq 0} \int_{0}^{s} \frac{\beta^{\alpha_{1}}}{\Gamma\left(\alpha_{1}\right)}(s-y)^{\alpha_{1}-1} e^{-\beta(s-y)} \frac{\beta^{\alpha_{2}}}{\Gamma\left(\alpha_{2}\right)} y^{\alpha_{2}-1} e^{-\beta y} d y \\
& =\frac{\beta^{\alpha_{1}+\alpha_{2}}}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} e^{-\beta s} \mathbb{1}_{s \geq 0} \int_{0}^{s}(s-y)^{\alpha_{1}-1} y^{\alpha_{2}-1} d y
\end{aligned}
$$

Putting $t=\frac{y}{s}$ so that $d t=\frac{d y}{s}$,

$$
\begin{aligned}
\int_{0}^{s}(s-y)^{\alpha_{1}-1} y^{\alpha_{2}-1} d y & =\int_{0}^{s} s(1-t)^{\alpha_{1}-1} t^{\alpha_{2}-1} s^{\alpha_{1}+\alpha_{2}-2} d t \\
& =s^{\alpha_{1}+\alpha_{2}-1} \int_{0}^{1}(1-t)^{\alpha_{1}} t^{\alpha_{2}-1} d t \\
& =s^{\alpha_{1}+\alpha_{2}-1} \frac{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}
\end{aligned}
$$

(since $\frac{\Gamma\left(\alpha_{1}\right)+\Gamma\left(\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} t^{\alpha_{1}-1}(1-t)^{\alpha_{2}-2} \mathbb{1}_{t \in(0,1)}$ is the density of $\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)$). Hence,

$$
f_{S}(s)=\frac{\beta^{\alpha_{1}+\alpha_{2}}}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} s^{\alpha_{1}+\alpha_{2}-1} e^{-\beta s} \mathbb{1}_{s \geq 0}
$$

We find again that $X+Y \sim G\left(\alpha_{1}+\alpha_{2}, \beta\right)$.

- For $X \sim \mathcal{N}\left(0, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(0, \sigma_{2}^{2}\right)$,

$$
f_{S}(s)=\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi} \sigma_{1}} e^{-\frac{(s-y)^{2}}{2 \sigma_{2}^{2}}} \frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{y^{2}}{2 \sigma_{2}^{2}}} d y
$$

We manipulate the exponent to make this easier to integrate:

$$
\begin{aligned}
\frac{(s-y)^{2}}{2 \sigma_{1}^{2}}+\frac{y^{2}}{2 \sigma_{2}^{2}} & =\frac{1}{2} \frac{\sigma_{2}^{2}\left(s^{2}-2 s y+y^{2}\right)+\sigma_{1}^{2} y^{2}}{\sigma_{1}^{2} \sigma_{2}^{2}} \\
& =\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\left(y^{2}-\frac{2 \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} s y+\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} s^{2}\right) \\
& =\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\left(\left(y-\frac{\sigma_{2}^{2} s}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}-\frac{\sigma_{2}^{4}}{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}} s^{2}+\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} s^{2}\right) \\
& =\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\left(y-\frac{\sigma_{2}^{2} s}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}+\frac{s^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}
\end{aligned}
$$

Thus, letting $\sigma^{2}=\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}$, we get that

$$
\begin{aligned}
f_{S}(s) & =\frac{1}{\sqrt{2 \pi} \sigma_{1}} \frac{1}{\sqrt{2 \pi} \sigma_{2}} e^{-\frac{s^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}} \int_{\mathbb{R}} e^{-\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2 \sigma_{1}^{2} \sigma_{2}^{2}}\left(y-\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}} d y \\
& =\frac{1}{\sqrt{2 \pi} \sigma_{1} \sigma_{2}} \sigma e^{-\frac{s^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}} \frac{1}{\sqrt{2 \pi} \sigma} \int_{\mathbb{R}} e^{-\frac{\left(y-\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2} \sigma^{2}}{2}} d y \\
& =\frac{1}{\sqrt{2 \pi}} \frac{\sigma_{1} \sigma_{2}}{\sigma_{1} \sigma_{2} \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}} e^{-\frac{s^{s^{2}}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}} e^{-\frac{s^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}}
\end{aligned}
$$

Hence we find the expected result that

$$
X+Y \sim \mathcal{N}\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

