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Probability and Statistics

Exercise sheet 10

Exercise 10.1 Let X and Y be independent random variables such that X ∼ Poi(λ) and
Y ∼ Poi(µ). Show that given X + Y = s, the conditional distribution of X is Bin

(
s, λ
λ+µ

)
.

Solution 10.1 We have X ∼ Poi(λ) and Y ∼ Poi(µ) with λ, µ ∈ (0,+∞), and X and Y are
independent. For s ∈ N,

P (X = k | X + Y = s) = P (X = k,X + Y = s)
P (X + Y = s) =

{
P (X=k)P (Y=s−k)

P (X+Y=s) if 0 ≤ k ≤ s,
0 otherwise.

Since X + Y ∼ Poi(λ+ µ), it follows that

P (X = k)P (Y = s− k)
P (X + Y = s) = e−λλk

k!
e−µµs−k

(s− k)!
s!

e−(λ+µ)(λ+ µ)s

= λkµs−k

(λ+ µ)s

(
s

k

)
=
(

λ

λ+ µ

)k (
µ

λ+ µ

)s−k (
s

k

)
.

Letting p = λ
λ+µ ,

P (X = k | X + Y = s) =
{ (

s
k

)
pk(1− p)s−k, k ∈ {0, ..., s}

0, otherwise.

In other words, X | X + Y = s ∼ Bin(s, p).

Exercise 10.2 Let X,Y and Z be iid∼ Exp(1).

(a) Find E[X
√
X + Y ].

(b) Find P (X < 2Y < 3Z).

Solution 10.2

(a) Note that by the symmetry of the distribution (exchanging the roles of X and Y ),

E(X
√
X + Y ) = E(Y

√
Y +X).

Hence,

E(X
√
X + Y ) = 1

2E((X + Y )
√
X + Y ) = 1

2E((X + Y ) 3
2 ).

Recall that if X1, ..., Xn are independent such that Xi ∼ G(αi, β), α1, ..., αn, β > 0, then
X1 + ...+Xn ∼ G(α1 + ...+ αn, β).
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Therefore, X + Y ∼ G(2, 1) (since Exp(1) d= G(1, 1)).
It follows that

E((X + Y ) 3
2 ) = E(S 3

2 ) (where S ∼ G(2, 1))

=
∫ ∞

0

12

Γ(2)se
−ss

3
2 ds

=
∫ ∞

0
s

5
2 e−sds (since Γ(2) = 1! = 1)

= Γ
(

7
2

)∫ ∞
0

1 7
2

Γ
( 7

2
)s 7

2 e−sds

= Γ
(

7
2

)
.

Thus,

E(X
√
X + Y ) = 1

2Γ
(

7
2

)
= 1

2Γ
(

5
2 + 1

)
= 1

2
5
2Γ
(

5
2

)
= ...

= 1
2

5
2

3
2

1
2Γ
(

1
2

)
= 15

16
√
π.

(b)
P (X < 2Y < 3Z) =

∫∫∫
D

e−xe−ye−z dx dy dz

with

D = {(x, y, z) ∈ R3 : 0 ≤ x < 2y < 3z} = {(x, y, z) ∈ R3 : x ≥ 0, y > x

2 , z >
2
3y}.

By Fubini’s Theorem, we have that

2 / 10



Probability and Statistics, Spring 2019 Exercise sheet 10

P (X < 2Y < 3Z) =
∫ ∞

0

∫ ∞
x
2

∫ ∞
2
3y

e−ze−ye−xdxdydz

=
∫ ∞

0

∫ ∞
x
2

(∫ ∞
2
3y

e−zdz

)
e−ye−xdydx

=
∫ ∞

0

∫ ∞
x
2

e−
2
3y−ye−xdydx

=
∫ ∞

0

(∫ ∞
x
2

e−
5
3ydy

)
e−xdx

=
∫ ∞

0

3
5e
− 5

6x−xdx

= 3
5

∫ ∞
0

e−
11
6 xdx

= 3
5

6
11

= 18
55 .

Exercise 10.3 Suppose X ∼ N (0, 1) and Y | X = x ∼ N (x+ 1, 1).

(a) What is the marginal distribution of Y ?

(b) Find cov(X,Y ) and the correlation of X and Y .

(c) Find the conditional distribution of X given Y = y.

Solution 10.3

(a) The marginal density of Y is given by

fY (y) =
∫
R
f(x, y)dx

where f is the joint density of (X,Y ). Now,

f(x, y) = f(y | x)fX(x)

= 1√
2π
e−

(y−x−1)2
2

1√
2π
e−

x2
2

= 1
2π e

− 1
2 ((y−1)2−2(y−1)x+x2+x2)

= 1
2π e

− 1
2 (2x2−2(y−1)x+(y−1)2)

= 1
2π e

−(x2−(y−1)x+ (y−1)2
2 )

= 1
2π e

−(x2−2 (y−1)
2 x+ (y−1)2

4 + (y−1)2
4 )

= 1
2π e

(− (y−1)2
4 )e−(x− y−1

2 )2
.
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fY (y) = 1
2π e

− (y−1)2
4

∫
R
e−(x− y−1

2 )2
dx

= 1√
2π

e−
(y−1)2

4
√

2

 1√
2π

(
1√
2

)−1 ∫
R
e
−

(x− y−1
2 )2

2 1
2 dx


= 1√

2π
√

2
e−

(y−1)2
2×2

(since we take the integral of the density of N
(
y−1

2 , 1
2
)
) and so Y ∼ N (1, 2).

(b)

cov(X,Y ) = E(XY )− E(X)E(Y )
= E(XY ) (as E(X) = 0)
= E(E(XY | X)) (iterated expectation)
= E(XE(Y | X))
= E(X(X + 1))
= E(X2) + E(X)
= E(X2) (as E(X) = 0)
= var(X) (as E(X) = 0)
= 1

and

corr(X,Y ) = cov(X,Y )√
var(X)

√
var(Y )

= 1√
1
√

2

= 1√
2
.

(c) Note that the previous calculations give already that

f(x, y) = 1√
2π
√

2
e−

(y−1)2
4

1√
2π
√

2e
−

(x− y−1
2 )2

2 1
2

= fY (y)f(x | y)

implying that X | Y = y ∼ N
(
y−1

2 , 1
2
)
.

Exercise 10.4 Gaussian (normal) vectors.
A vector X = (X1, ..., Xn)T is said to be a Gaussian vector if there is a matrix A ∈ Rn×n, a

vector Z = (Z1, ..., Zn)T with Z1, ..., Zn
iid∼ N (0, 1) and µ ∈ Rn such that

X
d= µ+AZ. (1)

In this case, note that E(X) = µ and var(X) = AAT =: Σ. Here, the covariance matrix Σ is not
necessarily invertible. If it is, then X admits a density with respect to Lebesgue measure on Rn.
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(a) Show that if X is a Gaussian vector, then any linear combination of X1, ..., Xn is a normal
random variable.

(b) We want to show that the condition in (a) is also sufficient: i.e., that if any linear combination
of X1, ..., Xn is a normal random variable, then X is a Gaussian vector.

1. Explain why you can write Σ = PTDP with P orthogonal and D a diagonal matrix
with entries λ1, ..., λn ≥ 0. Let A := PTD

1
2 , where D 1

2 is defined as the diagonal matrix
with entries λ

1
2
1 , ..., λ

1
2
n .

2. For a fixed v ∈ Rn, find the distribution of vT (µ + AZ) with Z = (Z1, ..., Zn)T with
Z1, ..., Zn

iid∼ N (0, 1).
Hint: From a previous exercise sheet, you know that a linear combination of i.i.d standard
Gaussians has a Gaussian distribution N (a, b2). What are the parameters a, b2 here?

3. What is the distribution of vTX?
4. To conclude, use that fact that two random vectors W1,W2 in Rn have the same

distribution if and only if

vTW1
d= vTW2 ∀v ∈ Rn.

(c) Let X ∼ N (0, 1) and Z be a discrete random variable such that X |= Z and P (Z = −1) =
P (Z = 1) = 1

2 .

Consider the random variable Y , defined by

Y =
{

X, if Z = 1
−X, if Z = −1.

• Show that marginally, Y ∼ N (0, 1).
• Find P (X + Y = 0).
• Is (X,Y ) a Gaussian vector? What do you conclude from this exercise?

Solution 10.4

(a) For this question, we recall the following facts:

• If X1, ..., Xn are independent with Xi ∼ N (µi, σ2
i ), then

n∑
i=1

aiXi ∼ N

(
n∑
i=1

aiµi,

n∑
i=1

a2
iσ

2
i

)
.

• If X ∼ N (µ, σ2), then X + c ∼ N (µ+ c, σ2) (the latter can be shown easily and is left
as a small exercise).

Let

a =

 a1
...
an

 .

Then
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n∑
i=1

aiXi = aTX

d= aTµ+ aTAZ

= c+ bTZ (where c = aTµ and b = ATa)

= c+
n∑
i=1

biZi

= N
(
c,

n∑
i=1

b2i

)

using the two known facts recalled above.

(b) 1. By definition of Σ, we know that

Σij = cov(Xi, Xj), 1 ≤ i, j ≤ n.

For any vector v =

 v1
...
vn

 ∈ Rn,

vTΣv =
∑

1≤i,j≤n
vivjΣij

=
∑

1≤i,j≤n
vivjcov(Xi, Xj)

= var
(

n∑
i=1

σiXi

)
≥ 0.

Thus, Σ is symmetric and also positive semi-definite. Now, symmetry implies that Σ is
diagonalisable and we can find an orthogonal matrix P in Rn×n, and D a diagonalisable
matrix with diagonal entries λ1, ..., λn such that

Σ = PTDP.

Furthermore, λi ≥ 0 ∀i ∈ {1, ..., n}, since if we take v = P−1ei (ei is the ith standard
basis vector in Rn), then

0 ≤ vTΣv = eTi Dei = λi.

Then, define D 1
2 as the diagonal matrix with entries

√
λ1, ...,

√
λn (now we know we can

define it).

2. Using the same arguments as for (a), for v =

 v1
...
vn

 ∈ Rn, we have that

vT (µ+AZ) ∼ N
(
vTµ,

n∑
i=1

b2i

)
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where b = AT v.
Now, note that

n∑
i=1

b2i = bT b

= vTAAT b

= vTPTD
1
2D

1
2Pv

= vTPTDPv

= vTΣv

and therefore, vT (µ+AZ) ∼ N (vTµ, vTΣv).
3. Since we assume now that any linear combination of X1, ..., Xn is a normal random

variable, it follows that vTX = v1X1 + ... + vnXn is normal. To characterise its
distribution, it is enough to compute its mean and variance.

E(vTX) = vTE(X) = vTµ,

var(vTX) = var
(

n∑
i=1

viXi

)
=

∑
1≤i,j≤n

vivjcov(Xi, Xj)

=
∑

1≤i,j≤n
vivjΣi,j

= vTΣv.

so that vTX ∼ N (vTµ, vTΣv).

4. We have ∀v ∈ Rn, vTX d= vT (µ + AZ) with A = PTD
1
2 . We conclude from the hint

that

X
d= µ+AZ.

(c) • To find the distribution of Y , it is enough to compute its cdf. For y ∈ R:

FY (y) = P (Y ≤ y)
= P ({X ≤ y, Z = 1} ∪ {−X ≤ y, Z = −1})
= P (X ≤ y, Z = 1) + P (−X ≤ y, Z = −1)
= P (X ≤ y)P (Z = 1) + P (−X ≤ y)P (Z = −1)

= 1
2Φ(y) + 1

2(1− Φ(−y)) (since N (0, 1) is continuous)

= 1
2Φ(y) + 1

2Φ(y) (by symmetry of the standard normal)

= Φ(y).

Thus, Y ∼ N (0, 1).
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•
P (X + Y = 0) = P (2X = 0, Z = 1) + P (X −X = 0, Z = −1)

= P (X = 0)P (Z = 1) + P (Z = −1)

= 1
2 .

• If (X,Y ) were a Gaussian vector, then any linear combination of X and Y is a normal
random variable, and hence should either be absolutely continuous or a constant, neither
of which is the case, since we would need either P (X +Y = 0) = 0 or P (X +Y = 0) = 1.
Thus (X,Y ) is not a Gaussian vector.
• From this exercise we can conclude that putting together two random variables (on the

same probability space), which have normal marginal distributions, does not guarantee
that they form a Gaussian vector.

Exercise 10.5 (optional).
The goal of this exercise is to manipulate the Jacobian formula to obtain the density of a

convolution.
Let X and Y be two independent random variables with density fX and fY respectively. We

are interested in deriving the density of the random variable X + Y .

(a) Let S := X + Y , T := Y and consider the map

g : R2 → R2

(x, y) 7→ (s, t) = (x+ y, y).

Show that g is bijective with Jacobian 6= 0 at any (x, y) ∈ R2. Conclude that the random
pair (S, T ) has point density f(S,T ) given by

f(S,T )(s, t) = fX(s− t)fY (t).

(b) Conclude that

fS(s) =
∫
R
fX(s− y)fY (y)dy.

(c) Give the density of the convolution X + Y in the following cases:

• X ∼ Exp(λ) and Y ∼ Exp(µ). Do you recognise the distribution when µ = λ?
• X ∼ G(α1, β) and G(α2, β).
• X ∼ N (0, σ2

1) and Y ∼ N (0, σ2
2).

Solution 10.5

(a)
g(x, y) = (x+ y, y) = (s, t)⇔ x = s− t, y = t.

Thus, g is bijective and g−1(s, t) = (s− t, t). Also, g is differentiable and

∇g(x, y) =
(

1 1
0 1

)
.

Thus the Jacobian is given by

Jg(x, y) = det(∇g) = 1.
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(b) Using the Jacobian formula, it follows that

f(S,T )(s, t) = f(X,Y )(s− t, t)×
1
1 = fX(s− t)fY (t)

by independence of X and Y .
Hence

fS(s) =
∫
R
fX(s− t)fY (t)dt =

∫
R
fX(s− y)fY (y)dy.

(c) • We compute:

fS(s) =
∫
R
λe−λ(s−y)

10≤s−yµe
−µy

1y≥0 dy

= λµe−λs1s≥0

∫ s

0
e(λ−µ)y dy

(rewriting the conditions as 10≤s−y1y≥0 = 1s≥010≤y≤s).
Hence,

fS(s) =
{

λµe−λs1s≥0
e(λ−µ)s−1

λ−µ if λ 6= µ

λ2e−λss1s≥0 if λ = µ

=
{ λµ

λ−µ (e−µs − e−λs)1s≥0 if λ 6= µ

λ2se−λs1s≥0 if λ = µ.

Once again, we find that X + Y ∼ G(1, 2) if X,Y are i.i.d Exp(λ).
• For X ∼ G(α1, β) and Y ∼ G(α2, β),

fS(s) = 1s≥0

∫ s

0

βα1

Γ(α1) (s− y)α1−1e−β(s−y) βα2

Γ(α2)y
α2−1e−βy dy

= βα1+α2

Γ(α1)Γ(α2)e
−βs

1s≥0

∫ s

0
(s− y)α1−1yα2−1 dy.

Putting t = y
s so that dt = dy

s ,

∫ s

0
(s− y)α1−1yα2−1dy =

∫ s

0
s(1− t)α1−1tα2−1sα1+α2−2dt

= sα1+α2−1
∫ 1

0
(1− t)α1tα2−1dt

= sα1+α2−1 Γ(α1)Γ(α2)
Γ(α1 + α2)

(since Γ(α1)+Γ(α2)
Γ(α1)Γ(α2) t

α1−1(1− t)α2−2
1t∈(0,1) is the density of Beta(α1, α2)).

Hence,

fS(s) = βα1+α2

Γ(α1 + α2)s
α1+α2−1e−βs1s≥0.

We find again that X + Y ∼ G(α1 + α2, β).

9 / 10



Probability and Statistics, Spring 2019 Exercise sheet 10

• For X ∼ N (0, σ2
1) and Y ∼ N (0, σ2

2),

fS(s) =
∫
R

1√
2πσ1

e
− (s−y)2

2σ2
2

1√
2πσ2

e
− y2

2σ2
2 dy

We manipulate the exponent to make this easier to integrate:

(s− y)2

2σ2
1

+ y2

2σ2
2

= 1
2
σ2

2(s2 − 2sy + y2) + σ2
1y

2

σ2
1σ

2
2

= σ2
1 + σ2

2
2σ2

1σ
2
2

(
y2 − 2σ2

2
σ2

1 + σ2
2
sy + σ2

2
σ2

1 + σ2
2
s2
)

= σ2
1 + σ2

2
2σ2

1σ
2
2

((
y − σ2

2s

σ2
1 + σ2

2

)2

− σ4
2

(σ2
1 + σ2

2)2 s
2 + σ2

2
σ2

1 + σ2
2
s2

)

= σ2
1 + σ2

2
2σ2

1σ
2
2

(
y − σ2

2s

σ2
1 + σ2

2

)2

+ s2

2(σ2
1 + σ2

2) .

Thus, letting σ2 = σ2
1σ

2
2

σ2
1+σ2

2
, we get that

fS(s) = 1√
2πσ1

1√
2πσ2

e
− s2

2(σ2
1+σ2

2)

∫
R
e
−
σ2

1+σ2
2

2σ2
1σ

2
2

(
y−

σ2
2

σ2
1+σ2

2

)2

dy

= 1√
2πσ1σ2

σe
− s2

2(σ2
1+σ2

2) 1√
2πσ

∫
R
e−

(
y−

σ2
2

σ2
1+σ2

2
s

)2

2σ2 dy

= 1√
2π

σ1σ2

σ1σ2
√
σ2

1 + σ2
2
e
− s2

2(σ2
1+σ2

2)

= 1√
2π

1√
σ2

1 + σ2
2
e
− s2

2(σ2
1+σ2

2) .

Hence we find the expected result that

X + Y ∼ N (0, σ2
1 + σ2

2).
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