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Probability and Statistics

Exercise sheet 11

Exercise 11.1 (Breaking a stick) Suppose X ∼ U([0, 1]) and Y | X ∼ U([0, X]). Consider now
U = 1−X,V = Y,W = X − Y (this represents breaking a stick into parts with length X and U ,
and then breaking the left piece again into V and W ). Find E[max(U, V,W )].

0 1
XY

V W U

Solution 11.1
Solution 1
Note that (Y,X − Y, 1−X) has the same distribution as (XZ,X(1− Z), 1−X) where X |= Z

and Z ∼ U([0, 1]). To see this, we define Z := Y
X and show that Z ∼ U([0,1]) independently of X.

Consider the map g(x, y) =
(
x, y

x

)T defined on R \ {0} × R.
Solving for g(x, y) = (u, v)T we have x = u and y = uv. Hence, g : R \ {0} × R→ R \ {0} × R

is bijective. Also, g is C1(R \ {0} × R) with gradient at (x, y)T ∈ R \ {0} × R given by

∇g(x, y) =
(

∂g1
∂x (x, y) ∂g1

∂y (x, y)
∂g2
∂x (x, y) ∂g2

∂y (x, y)

)
=
(

1 0
− y

x2
1
x

)
.

Thus,
Jg(x, y) = det(∇g(x, y)) = 1

x
6= 0.

Furthermore, by construction of Y , the random vector (X,Y ) satisfies

P ((X,Y )T ∈ O := (0, 1)× (0, 1)) = 1.

If f denotes the joint density of (X,Y )T , then it follows from the Jacobian formula that

f(X,Z)T (x, z) = f(g−1(x, z)) 1
1
x

1(x,z)T∈g(O)

= f(g−1(x, z))x1(x,z)T∈(0,1)×(0,+∞)

= f(x, xz)x1x∈(0,1)1z∈(0,+∞).

The joint density f is given by:

f(x, y) a.e.= f(y | x)fX(x)

= 1
x
1y∈(0,x)1x∈(0,1).

Thus,

f(X,Z)T (x, z) a.e.= 1xz∈(0,x)1x∈(0,1)1x∈(0,1)1z∈(0,+∞)

= 1z∈(0,1)1x∈(0,1)1x∈(0,1)1z∈(0,+∞)

= 1x∈(0,1)1z∈(0,1).
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We then conclude that X,Z are indeed i.i.d with U([0, 1]) distribution.
Now note that

max(XZ,X(1−Z), 1−X) = max(max(XZ,X(1−Z)), 1−X) =
{

max(XZ, 1−X), if Z ≥ 1
2

max(X(1− Z), 1−X), otherwise.

Then, exploiting also the symmetry (X,Z) d= (X, 1− Z),

E[max(XZ,X(1− Z), 1−X)] = E[max(XZ, 1−X)1Z≥ 1
2
] + E[max(X(1− Z), 1−X)1Z< 1

2
]

= 2E[max(XZ, 1−X)1Z≥ 1
2
].

We can then use the joint density f(x, z) = 1x∈[0,1]×1z∈[0,1] to compute this expectation. Note
that we will need to split the integral in order to compute the maximum, and the cutoff point can
be calculated by

xz ≤ 1− x⇔ x(1 + z) ≤ 1⇔ x ≤ 1
1 + z

.

Thus we get:

E[max(XZ, 1−X)1Z≥ 1
2
] =

∫∫
max(xz, 1− x)f(x, z)1z≥ 1

2
dxdz

=
∫ 1

1
2

∫ 1
1+z

0
(1− x)dxdz +

∫ 1

1
2

∫ 1

1
1+z

xzdxdz

= I1 + I2.

We compute each of these integrals:

I1 =
∫ 1

1
2

[
− (1− x)2

2

] 1
1+z

0
dz

= 1
2

∫ 1

1
2

(
1−

(
1− 1

1 + z

)2
)
dz

= 1
2

∫ 1

1
2

(
2

1 + z
− 1

(1 + z)2

)
dz

= 1
2

(
2[log(1 + z)]11

2
+
[

1
1 + z

]1

1
2

)

= log(2)− log
(

3
2

)
+ 1

2

(
1
2 −

2
3

)
= log

(
4
3

)
− 1

12 .
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I2 =
∫ 1

1
2

(∫ 1

1
1+z

xdx

)
zdz

=
∫ 1

1
2

[
x2

2

]1

1
1+z

zdz

= 1
2

∫ 1

1
2

(
1− 1

(1 + z)2

)
zdz

= 1
2

(∫ 1

1
2

zdz −
∫ 1

1
2

z + 1− 1
(1 + z)2 dz

)

= 1
2

(∫ 1

1
2

zdz −
∫ 1

1
2

1
1 + z

dz +
∫ 1

1
2

1
(1 + z)2 dz

)

= 1
2

([
z2

2

]1

1
2

− [log(1 + z)]11
2
−
[

1
1 + z

]1

1
2

)

= 1
2

(
3
8 − log(2) + log

(
3
2

)
+ 2

3 −
1
2

)
= 13

48 −
1
2 log

(
4
3

)
.

Finally

E[max(XZ,X(1− Z), 1−X)] = 2(I1 + I2)

= 2
(

log
(

4
3

)
− 1

12 + 13
48 −

1
2 log

(
4
3

))
= 3

8 + log
(

4
3

)
.

Solution 2
Note that

max(u, v, w) = max(u,max(v, w)).

As a first step, consider Z := max(V,W ). Conditionally on X = x,

FZ|X(z | x) = P (Z ≤ z | X = x)
= P (max(Y, x− Y ) ≤ z | X = x)
= P (x− z ≤ Y ≤ z | X = x).

Since Y | X = x ∼ U(0, x), a case-by-case calculation yields that

FZ|X(z | x) =

 0, z ≤ x
22

x

(
z − x

2
)
, x

2 ≤ z ≤ x
1, x ≤ z.

For example, in the middle case, we can check that 0 ≤ x− z ≤ z ≤ x and therefore

P (Y ∈ [x− z, z] | X = x) = 1
x

(z − (x− z)) = 2
x

(
z − x

2

)
.
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The point of this is that, from looking at the conditional cdf above, and differentiating:

fZ|X(z | x) = 2
x
1 x

2≤z≤x,

we conclude that Z | X = x ∼ U( x
2 , x).

To conclude, we need to calculate E[max(Z,U)]. We will exploit the conditional distribution
we found for Z by working with the law of iterated expectation:

E[max(Z,U)] = E[max(Z, 1−X)] = E[E[max(Z, 1−X) | X]].

We calculate the conditional expectation as follows:

E[max(Z, 1−X) | X = x] =

 E(1−X | X = x), x ≤ 1
2

E[max(Z, 1−X) | X = x], 1
2 ≤ x ≤

2
3

E(Z | X = x), x ≥ 2
3

=


1− x, x ≤ 1

2∫ 1−x
x
2

2(1−x)
x dz +

∫ x

1−x
2z
x dz,

1
2 ≤ x ≤

2
3

3x
4 , x ≥ 2

3

=


1− x, x ≤ 1

2(
1− 3x

2
) 2(1−x)

x + x2−(1−x)2

x , 1
2 ≤ x ≤

2
3

3x
4 , x ≥ 2

3

=


1− x, x ≤ 1

2(
1− 3x

2
) 2(1−x)

x + x2−(1−x)2

x , 1
2 ≤ x ≤

2
3

3x
4 , x ≥ 2

3

=


1− x, x ≤ 1

2
3x− 3 + 1

x ,
1
2 ≤ x ≤

2
3

3x
4 , x ≥ 2

3 .

 =: g(x)

Finally,

E(max(U, V,W )) = E[E[max(Z, 1−X) | X]]
= E[g(X)]

=
∫ 1

0
g(x)dx

=
∫ 1

2

0
(1− x)dx+

∫ 2
3

1
2

(
3x− 3 + 1

x

)
dx+

∫ 1

2
3

3x
4 dx

= 1
2 −

1
8 + 7

24 −
1
2 + log

(
4
3

)
+ 5

24

= log
(

4
3

)
+ 3

8 .

Exercise 11.2 (Uniforms, uniforms...) Suppose X ∼ U([0, 1]) and consider Y = 2X.

(a) What is the joint distribution of (X,Y )?

(b) Does this joint distribution have a density with respect to the Lebesgue measure on R2?

(c) (Probability of a diamond) Let X,Y and Z be iid∼ U([−1, 1]). Find P (|X|+ |Y |+ |Z| ≤ 1).
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Solution 11.2
Remark: We use here the common shorthand notation

x ∧ y := min(x, y).

(a) The (joint) cdf of (X,Y ) is given by

FX,Y (x, y) = P (X ≤ x, Y ≤ y)
= P (X ≤ x, 2X ≤ y)

= P
(
X ≤ x ∧ y2

)
=

 0, if x ∧ y
2 < 0

x ∧ y
2 , if 0 ≤ x ∧ y

2 < 1
1, if x ∧ y

2 ≥ 1.

(b) We have that P ((X,Y ) ∈ B) = 1, where B = {(x, y) ∈ R2 : y = 2x}. Since λ2(B) = 0,
where λ2 denotes the Lebesgue measure on (R2,BR2), it follows that P(X,Y ) is not absolutely
continuous with respect to λ2, and hence cannot, by the Radon-Nikodym theorem, admit a
density with respect to λ2.

(c) We want to calculate

p := P (|X|+ |Y |+ |Z| ≤ 1) = 1
8

∫∫∫
D

1x∈[−1,1]1y∈[−1,1]1z∈[−1,1]dxdydz

where D :=
{

(x, y, z) ∈ R3 : |x|+ |y|+ |z| ≤ 1
}
.

By symmetry, the integral on one octant is equal to the integral on any of the other octants:

p = 8
8

∫∫∫
D+

1x∈[−1,1]1y∈[−1,1]1z∈[−1,1]dxdydz

where D+ :=
{

(x, y, z) ∈ R3 : |x|+ |y|+ |z| ≤ 1, 0 ≤ x, y, z ≤ 1
}
.

After these considerations, we compute (using Fubini’s Theorem):

p =
∫ 1

0

∫ 1−z

0

(∫ 1−z−y

0
dx

)
dydz

=
∫ 1

0

(∫ 1−z

0
(1− z − y)dy

)
dz

=
∫ 1

0

(1− z)2

2 dz

= −1
6
[
(1− z)3]z=3

z=0

= 1
6 .
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Exercise 11.3 Recall that X =

 X1
...
Xn

 ∼ N (µ,Σ) (a Gaussian vector with expectation

µ =

 µ1
...
µn

 ∈ Rn and covariance matrix Σ ∈ Rn×n) if for any v ∈ Rn,

vTX =
n∑

i=1
viXi ∼ N (vTµ, vT Σv).

The goal of this exercise is to show the following remarkable property:
(∗) X1, ..., Xn are independent if and only if for all i 6= j, Σij = cov(Xi, Xj) = 0.

(a) Show that (∗) is necessary.

(b) To show it is sufficient, we shall use the following result:
X1, ..., Xn are independent if and only if

ΨX(t) := E(etT X) =
n∏

i=1
ΨXi

(ti)
(

=
n∏

i=1
E(etiXi)

)
for all t ∈ Rn.
Compute ΨX(t) when Σij = 0 for all i 6= j and conclude.
Hint: tTX is a normal random variable, for which we know the expression of the moment
generating function.

(c) Taking n ≥ 3, let Y ∈ Rp (for 2 ≤ p ≤ n− 1) be a subset of the original vector X. Using a
simple argument, explain why Y is also a Gaussian vector. When are the components of Y
independent?

(d) Let X =


X1
X2
X3
X4
X5

 ∈ R5 have a N (µ,Σ) distribution, where

µ =


−1
2
0
1
2
3

 , Σ =


9 0 0 1 2
0 2 0 −1 6
0 0 16 0 3
1 −1 0 4 3
2 6 3 3 49

 .

Which subsets of X1, ..., X5 can you say are independent?

(e) Consider the case n = 2, and (X1, X2)T a Gaussian pair with expectation µ = (µ1, µ2)T and
a 2× 2 covariance matrix

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
where σ2

1 , σ
2
2 > 0 are the (marginal) variances and ρ is the correlation.

Find a and b such that X1 +X2 and aX1 + bX2 are independent.
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Solution 11.3

(a) If X1, ..., Xn are independent, then for i 6= j,

Σij = cov(Xi, Xj)
= E[(Xi − E(Xi))(Xj − E(Xj))]
= E[(Xi − E(Xi))]E[(Xj − E(Xj))] = 0.

(b) For t ∈ Rn,

ΨX(t) = E[etT X ] = exp
(
tTµ+ tT Σt

2

)
since tTX ∼ N (tTµ, tT Σt), and we know the mgf of the normal distribution. If Σij = 0 for
all i 6= j, it follows immediately that

tT Σt =
n∑

i=1
t2i Σii

implying that

ΨX(t) = exp
(

n∑
i=1

tiµi + 1
2

n∑
i=1

t2i Σii

)

=
n∏

i=1
exp

(
tiµi + 1

2 t
2
i Σii

)

=
n∏

i=1
ΨXi

(ti).

Therefore, X1, ..., Xn are independent, using the hint.

(c) Without loss of generality, we can focus on the case Y = (X1, ..., Xp)T . For any a ∈ Rp,

aTY =
p∑

i=1
aiXi =

n∑
i=1

viXi

where vi = ai for 1 ≤ i ≤ p and vi = 0 otherwise. Thus aTY is a linear combination of the Xi,
and so it is normally distributed. As a ∈ Rp is arbitrary, it follows that Y is Gaussian in Rp.
Thus, by (c), the components of Y are independent if and only if all their covariances are 0,
i.e. if all the entries Σij = 0, where i 6= j and Xi, Xj are components of Y .

(d) Note that Σ12 = Σ13 = Σ23 = Σ34 = 0. Therefore, {X1, X2, X3} (and subsets) are indepen-
dent, and {X3, X4} are independent.

(e) (
X1 +X2
aX1 + bX2

)
=
(

1 1
a b

)(
X1
X2

)
hence it is a Gaussian vector, as a linear transformation of the Gaussian vector

(
X1
X2

)
.
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Thus, X1 +X2 and aX1 + bX2 are independent if and only if

cov(X1 +X2, aX1 + bX2) = 0
⇔ a var(X1) + b cov(X1, X2) + a cov(X1, X2) + b var(X2) = 0
⇔ aσ2

1 + bσ1σ2ρ+ aσ1σ2ρ+ bσ2
2 = 0

⇔ σ1(σ1 + σ2ρ)a = −σ2(σ2 + σ1ρ)b

Therefore, X1 +X2 and aX1 + bX2 are independent if and only if a and b are in the above
ratio.
We should look at the special case where the coefficients are both 0. Since σ1 > 0, σ2 > 0, we
must have σ1 + σ2ρ = σ2 + σ1ρ = 0 and then

−ρ = σ1

σ2
= −1

ρ
.

Since σ1 > 0, σ2 > 0 and ρ ∈ [−1, 1], this is only possible if and only if σ1 = σ2 and ρ = −1.
In that special case (and only then), indeed, X1 +X2 = 0 and for any (a, b) ∈ R2, X1 +X2 is
independent from aX1 + bX2.

Exercise 11.4 (I hope you’re arriving soon)
Alice and Viera plan to meet at a café, and each will arrive at a random time between 15:00

and 15:30, independently of each other. Find the probability that the first to arrive has to wait
between 5 and 10 minutes for the other to arrive.

Solution 11.4
Remark: Similarly to question 2(c), we use both notations

x ∧ y := min(x, y), x ∨ y := max(x, y).

Let Alice arrive X minutes after 15h, and similarly let Viera arrive Y minutes after 15h. It is
assumed that X,Y iid∼ U([0, 30]).

We have

p = P (X ∨ Y −X ∧ Y ∈ [5, 10]) =
∫∫

D

f(x, y)dxdy

where D = {(x, y) ∈ R2 : x ∨ y − x ∧ y ∈ [5, 10]} and f(x, y) = 1
301x∈[0,30]

1
301y∈[0,30] is the joint

density.
We can decompose D = D1 ∪ D2 where D1 = {(x, y) ∈ R2 : x ≥ y, x − y ∈ [5, 10]} and

D2 = {(x, y) ∈ R2 : x < y, y − x ∈ [5, 10]}, and by symmetry it is clear that the integral on each is
the same. Therefore,

p = 2
∫∫

D1

f(x, y)dxdy

= 2
900

(∫ 20

0

(∫ y+10

y+5
dx

)
dy +

∫ 25

20

(∫ 30

y+5
dx

)
dy

)
= 2

900

(∫ 20

0
5dy +

∫ 25

20
(25− y)dy

)
= 2

9 + 1
36

= 1
4
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Exercise 11.5 (Cauchy-Schwarz) (optional)
The goal of this exercise is to show the Cauchy-Schwarz inequality, which is stated as follows.
Let X and Y be two random variables defined on the same probability space, such that

E(X2) <∞ and E(Y 2) <∞. Then,

|E(XY )| ≤
√
E(X2)

√
E(Y 2) (1)

with equality if and only if P (X = 0) = 1 or P (Y = aX) = 1 for some a ∈ R.

1. For t ∈ R, write E[(Y − tX)2] as a function of t.

2. Using the fact that E[(Y − tX)2] ≥ 0 for any t ∈ R, conclude that either P (X = 0) = 1 or

E(X2)
(
t− E(XY )

E(X2)

)2
− E(XY )2

E(X2) + E(Y 2) ≥ 0

for t ∈ R.

3. Prove the inequality (1).

4. If P (X = 0) < 1, show that equality case in (1) holds if and only if P (Y = t∗X) = 1, and
give the expression for t∗.
Hint: Remember that for Z a non-negative random variable, E(Z) = 0 if and only if
P (Z = 0) = 1.

5. Conclude on the condition for the equality case to hold.

Solution 11.5

1.
E((Y − tX)2) = E(Y 2 − 2tXY + t2X2) = t2E(X2)− 2tE(XY ) + E(Y 2).

2. If E(X2) = 0, then P (X = 0) = 1. Otherwise, if E(X2) > 0,

E((Y − tX)2) = E(X2)
(
t2 − 2tE(XY )

E(X2) + E(XY )2

E(X2)2

)
− E(XY )2

E(X2) + E(Y 2)

= E(X2)
(
t− E(XY )

E(X2)

)2
+ E(Y 2)− E(XY )2

E(X2) ≥ 0

since the original expression E((Y − tX)2) ≥ 0 for any t ∈ R.

3. In the case that P (X = 0) = 1, E(XY ) = 0 and the inequality (1) holds. Otherwise, we have
the inequality above for any t ∈ R. That applies in particular to the choice

t∗ = E(XY )
E(X2) ,

and therefore
E(Y 2) ≥ E(XY )2

E(X2)
or equivalently,

|E(XY )| ≤
√
E(X2)

√
E(Y 2)

as we wanted.
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4. Suppose that equality holds and P (X = 0) < 1. As above, we must then have E(Y 2) = E(XY )2

E(X2) .

Then, with the same t∗ as before, we get that

E[(Y − t∗X)2] = E(X2)
(
t∗ − E(XY )

E(X2)

)2
= 0.

Following the hint, this means that 1 = P ((Y − t∗X)2 = 0) = P (Y = t∗X).
The converse is obvious: if P (Y = t∗X) = 1, then

E(XY ) = E(Xt∗X) = t∗E(X2) =
√
E(X2)

√
E((t∗X)2) =

√
E(X2)

√
E(Y 2).

5. From the previous part, if equality holds then either P (X = 0) = 1 or P (Y = t∗X) = 1 for
some t∗ ∈ R. Conversely, we already saw that P (Y = t∗X) = 1 implies that equality holds,
and similarly if P (X = 0) = 1 then

0 = E(XY ) =
√

0
√
E(Y 2).

Therefore equality holds if and only if either P (X = 0) = 1 or P (Y = t∗X) = 1 for some
t∗ ∈ R.
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