Probability and Statistics

Exercise sheet 11

Exercise 11.1 (Breaking a stick) Suppose $X \sim \mathrm{U}([0,1])$ and $Y \mid X \sim \mathrm{U}([0, X])$. Consider now $U=1-X, V=Y, W=X-Y$ (this represents breaking a stick into parts with length X and U, and then breaking the left piece again into V and $W)$. Find $E[\max (U, V, W)]$.

Solution 11.1

Solution 1
Note that $(Y, X-Y, 1-X)$ has the same distribution as $(X Z, X(1-Z), 1-X)$ where $X \Perp Z$ and $Z \sim \mathrm{U}([0,1])$. To see this, we define $Z:=\frac{Y}{X}$ and show that $Z \sim \mathrm{U}([0,1])$ independently of X.

Consider the map $g(x, y)=\left(x, \frac{y}{x}\right)^{T}$ defined on $\mathbb{R} \backslash\{0\} \times \mathbb{R}$.
Solving for $g(x, y)=(u, v)^{T}$ we have $x=u$ and $y=u v$. Hence, $g: \mathbb{R} \backslash\{0\} \times \mathbb{R} \rightarrow \mathbb{R} \backslash\{0\} \times \mathbb{R}$ is bijective. Also, g is $C^{1}(\mathbb{R} \backslash\{0\} \times \mathbb{R})$ with gradient at $(x, y)^{T} \in \mathbb{R} \backslash\{0\} \times \mathbb{R}$ given by

$$
\nabla g(x, y)=\left(\begin{array}{cc}
\frac{\partial g_{1}}{\partial x}(x, y) & \frac{\partial g_{1}}{\partial y}(x, y) \\
\frac{\partial g_{2}}{\partial x}(x, y) & \frac{\partial g_{2}}{\partial y}(x, y)
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{y}{x^{2}} & \frac{1}{x}
\end{array}\right)
$$

Thus,

$$
J_{g}(x, y)=\operatorname{det}(\nabla g(x, y))=\frac{1}{x} \neq 0 .
$$

Furthermore, by construction of Y, the random vector (X, Y) satisfies

$$
P\left((X, Y)^{T} \in \mathcal{O}:=(0,1) \times(0,1)\right)=1
$$

If f denotes the joint density of $(X, Y)^{T}$, then it follows from the Jacobian formula that

$$
\begin{aligned}
f_{(X, Z)^{T}}(x, z) & =f\left(g^{-1}(x, z)\right) \frac{1}{\frac{1}{x}} \mathbb{1}_{(x, z)^{T} \in g(\mathcal{O})} \\
& =f\left(g^{-1}(x, z)\right) x \mathbb{1}_{(x, z)^{T} \in(0,1) \times(0,+\infty)} \\
& =f(x, x z) x \mathbb{1}_{x \in(0,1)} \mathbb{1}_{z \in(0,+\infty)} .
\end{aligned}
$$

The joint density f is given by:

$$
\begin{aligned}
f(x, y) & \stackrel{\text { a.e. }}{=} f(y \mid x) f_{X}(x) \\
& =\frac{1}{x} \mathbb{1}_{y \in(0, x)} \mathbb{1}_{x \in(0,1)}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
f_{(X, Z)^{T}}(x, z) & \stackrel{\text { a.e. }}{=} \mathbb{1}_{x z \in(0, x)} \mathbb{1}_{x \in(0,1)} \mathbb{1}_{x \in(0,1)} \mathbb{1}_{z \in(0,+\infty)} \\
& =\mathbb{1}_{z \in(0,1)} \mathbb{1}_{x \in(0,1)} \mathbb{1}_{x \in(0,1)} \mathbb{1}_{z \in(0,+\infty)} \\
& =\mathbb{1}_{x \in(0,1)} \mathbb{1}_{z \in(0,1)} .
\end{aligned}
$$

We then conclude that X, Z are indeed i.i.d with $\mathrm{U}([0,1])$ distribution.
Now note that
$\max (X Z, X(1-Z), 1-X)=\max (\max (X Z, X(1-Z)), 1-X)=\left\{\begin{array}{cc}\max (X Z, 1-X), & \text { if } Z \geq \frac{1}{2} \\ \max (X(1-Z), 1-X), & \text { otherwise }\end{array}\right.$
Then, exploiting also the symmetry $(X, Z) \stackrel{\mathrm{d}}{=}(X, 1-Z)$,

$$
\begin{aligned}
E[\max (X Z, X(1-Z), 1-X)] & =E\left[\max (X Z, 1-X) \mathbb{1}_{Z \geq \frac{1}{2}}\right]+E\left[\max (X(1-Z), 1-X) \mathbb{1}_{Z<\frac{1}{2}}\right] \\
& =2 E\left[\max (X Z, 1-X) \mathbb{1}_{Z \geq \frac{1}{2}}\right]
\end{aligned}
$$

We can then use the joint density $f(x, z)=\mathbb{1}_{x \in[0,1]} \times \mathbb{1}_{z \in[0,1]}$ to compute this expectation. Note that we will need to split the integral in order to compute the maximum, and the cutoff point can be calculated by

$$
x z \leq 1-x \Leftrightarrow x(1+z) \leq 1 \Leftrightarrow x \leq \frac{1}{1+z}
$$

Thus we get:

$$
\begin{aligned}
E\left[\max (X Z, 1-X) \mathbb{1}_{Z \geq \frac{1}{2}}\right] & =\iint \max (x z, 1-x) f(x, z) \mathbb{1}_{z \geq \frac{1}{2}} d x d z \\
& =\int_{\frac{1}{2}}^{1} \int_{0}^{\frac{1}{1+z}}(1-x) d x d z+\int_{\frac{1}{2}}^{1} \int_{\frac{1}{1+z}}^{1} x z d x d z \\
& =I_{1}+I_{2}
\end{aligned}
$$

We compute each of these integrals:

$$
\begin{aligned}
I_{1} & =\int_{\frac{1}{2}}^{1}\left[-\frac{(1-x)^{2}}{2}\right]_{0}^{\frac{1}{1+z}} d z \\
& =\frac{1}{2} \int_{\frac{1}{2}}^{1}\left(1-\left(1-\frac{1}{1+z}\right)^{2}\right) d z \\
& =\frac{1}{2} \int_{\frac{1}{2}}^{1}\left(\frac{2}{1+z}-\frac{1}{(1+z)^{2}}\right) d z \\
& =\frac{1}{2}\left(2[\log (1+z)]_{\frac{1}{2}}^{1}+\left[\frac{1}{1+z}\right]_{\frac{1}{2}}^{1}\right) \\
& =\log (2)-\log \left(\frac{3}{2}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{2}{3}\right) \\
& =\log \left(\frac{4}{3}\right)-\frac{1}{12}
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & =\int_{\frac{1}{2}}^{1}\left(\int_{\frac{1}{1+z}}^{1} x d x\right) z d z \\
& =\int_{\frac{1}{2}}^{1}\left[\frac{x^{2}}{2}\right]_{\frac{1}{1+z}}^{1} z d z \\
& =\frac{1}{2} \int_{\frac{1}{2}}^{1}\left(1-\frac{1}{(1+z)^{2}}\right) z d z \\
& =\frac{1}{2}\left(\int_{\frac{1}{2}}^{1} z d z-\int_{\frac{1}{2}}^{1} \frac{z+1-1}{(1+z)^{2}} d z\right) \\
& =\frac{1}{2}\left(\int_{\frac{1}{2}}^{1} z d z-\int_{\frac{1}{2}}^{1} \frac{1}{1+z} d z+\int_{\frac{1}{2}}^{1} \frac{1}{(1+z)^{2}} d z\right) \\
& =\frac{1}{2}\left(\left[\frac{z^{2}}{2}\right]_{\frac{1}{2}}^{1}-[\log (1+z)]_{\frac{1}{2}}^{1}-\left[\frac{1}{1+z}\right]_{\frac{1}{2}}^{1}\right) \\
& =\frac{1}{2}\left(\frac{3}{8}-\log (2)+\log \left(\frac{3}{2}\right)+\frac{2}{3}-\frac{1}{2}\right)^{1} \\
& =\frac{13}{48}-\frac{1}{2} \log \left(\frac{4}{3}\right) \cdot
\end{aligned}
$$

Finally

$$
\begin{aligned}
E[\max (X Z, X(1-Z), 1-X)] & =2\left(I_{1}+I_{2}\right) \\
& =2\left(\log \left(\frac{4}{3}\right)-\frac{1}{12}+\frac{13}{48}-\frac{1}{2} \log \left(\frac{4}{3}\right)\right) \\
& =\frac{3}{8}+\log \left(\frac{4}{3}\right)
\end{aligned}
$$

Solution 2

Note that

$$
\max (u, v, w)=\max (u, \max (v, w))
$$

As a first step, consider $Z:=\max (V, W)$. Conditionally on $X=x$,

$$
\begin{aligned}
F_{Z \mid X}(z \mid x) & =P(Z \leq z \mid X=x) \\
& =P(\max (Y, x-Y) \leq z \mid X=x) \\
& =P(x-z \leq Y \leq z \mid X=x)
\end{aligned}
$$

Since $Y \mid X=x \sim \mathrm{U}(0, x)$, a case-by-case calculation yields that

$$
F_{Z \mid X}(z \mid x)=\left\{\begin{array}{cc}
0, & z \leq \frac{x}{2} \\
\frac{2}{x}\left(z-\frac{x}{2}\right), & \frac{x}{2} \leq z \leq x \\
1, & x \leq z
\end{array}\right.
$$

For example, in the middle case, we can check that $0 \leq x-z \leq z \leq x$ and therefore

$$
P(Y \in[x-z, z] \mid X=x)=\frac{1}{x}(z-(x-z))=\frac{2}{x}\left(z-\frac{x}{2}\right) .
$$

The point of this is that, from looking at the conditional cdf above, and differentiating:

$$
f_{Z \mid X}(z \mid x)=\frac{2}{x} \mathbb{1}_{\frac{x}{2} \leq z \leq x}
$$

we conclude that $Z \left\lvert\, X=x \sim \mathrm{U}\left(\frac{x}{2}, x\right)\right.$.
To conclude, we need to calculate $E[\max (Z, U)]$. We will exploit the conditional distribution we found for Z by working with the law of iterated expectation:

$$
E[\max (Z, U)]=E[\max (Z, 1-X)]=E[E[\max (Z, 1-X) \mid X]]
$$

We calculate the conditional expectation as follows:

$$
\begin{aligned}
& E[\max (Z, 1-X) \mid X=x]=\left\{\begin{array}{cc}
E(1-X \mid X=x), & x \leq \frac{1}{2} \\
E[\max (Z, 1-X) \mid X=x], & \frac{1}{2} \leq x \leq \frac{2}{3} \\
E(Z \mid X=x), & x \geq \frac{2}{3}
\end{array}\right. \\
& =\left\{\begin{array}{cc}
1-x, & x \leq \frac{1}{2} \\
\int_{\frac{x}{2}}^{1-x} \frac{2(1-x)}{x} d z+\int_{1-x}^{x} \frac{2 z}{x} d z, & \frac{1}{2} \leq x \leq \frac{2}{3} \\
\frac{3 x}{4}, & x \geq \frac{2}{3}
\end{array}\right. \\
& =\left\{\begin{array}{cc}
1-x, & x \leq \frac{1}{2} \\
\left(1-\frac{3 x}{2}\right) \frac{2(1-x)}{x}+\frac{x^{2}-(1-x)^{2}}{x}, & \frac{1}{2} \leq x \leq \frac{2}{3} \\
\frac{3 x}{4}, & x \geq \frac{2}{3}
\end{array}\right. \\
& =\left\{\begin{array}{cc}
1-x, & x \leq \frac{1}{2} \\
\left(1-\frac{3 x}{2}\right) \frac{2(1-x)}{x}+\frac{x^{2}-(1-x)^{2}}{x}, & \frac{1}{2} \leq x \leq \frac{2}{3} \\
\frac{3 x}{4}, & x \geq \frac{2}{3}
\end{array}\right. \\
& =\left\{\begin{array}{cc}
1-x, & x \leq \frac{1}{2} \\
3 x-3+\frac{1}{x}, & \frac{1}{2} \leq x \leq \frac{2}{3} \\
\frac{3 x}{4}, & x \geq \frac{2}{3} .
\end{array}\right\}=: g(x)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
E(\max (U, V, W)) & =E[E[\max (Z, 1-X) \mid X]] \\
& =E[g(X)] \\
& =\int_{0}^{1} g(x) d x \\
& =\int_{0}^{\frac{1}{2}}(1-x) d x+\int_{\frac{1}{2}}^{\frac{2}{3}}\left(3 x-3+\frac{1}{x}\right) d x+\int_{\frac{2}{3}}^{1} \frac{3 x}{4} d x \\
& =\frac{1}{2}-\frac{1}{8}+\frac{7}{24}-\frac{1}{2}+\log \left(\frac{4}{3}\right)+\frac{5}{24} \\
& =\log \left(\frac{4}{3}\right)+\frac{3}{8}
\end{aligned}
$$

Exercise 11.2 (Uniforms, uniforms...) Suppose $X \sim U([0,1])$ and consider $Y=2 X$.
(a) What is the joint distribution of (X, Y) ?
(b) Does this joint distribution have a density with respect to the Lebesgue measure on \mathbb{R}^{2} ?
(c) (Probability of a diamond) Let X, Y and Z be $\stackrel{i i d}{\sim} \mathrm{U}([-1,1])$. Find $P(|X|+|Y|+|Z| \leq 1)$.

Solution 11.2

Remark: We use here the common shorthand notation

$$
x \wedge y:=\min (x, y)
$$

(a) The (joint) cdf of (X, Y) is given by

$$
\begin{aligned}
F_{X, Y}(x, y) & =P(X \leq x, Y \leq y) \\
& =P(X \leq x, 2 X \leq y) \\
& =P\left(X \leq x \wedge \frac{y}{2}\right) \\
& =\left\{\begin{array}{cc}
0, & \text { if } x \wedge \frac{y}{2}<0 \\
x \wedge \frac{y}{2}, & \text { if } 0 \leq x \wedge \frac{y}{2}<1 \\
1, & \text { if } x \wedge \frac{y}{2} \geq 1 .
\end{array}\right.
\end{aligned}
$$

(b) We have that $P((X, Y) \in B)=1$, where $B=\left\{(x, y) \in \mathbb{R}^{2}: y=2 x\right\}$. Since $\lambda_{2}(B)=0$, where λ_{2} denotes the Lebesgue measure on $\left(\mathbb{R}^{2}, \mathcal{B}_{\mathbb{R}^{2}}\right)$, it follows that $P_{(X, Y)}$ is not absolutely continuous with respect to λ_{2}, and hence cannot, by the Radon-Nikodym theorem, admit a density with respect to λ_{2}.
(c) We want to calculate

$$
p:=P(|X|+|Y|+|Z| \leq 1)=\frac{1}{8} \iiint_{D} \mathbb{1}_{x \in[-1,1]} \mathbb{1}_{y \in[-1,1]} \mathbb{1}_{z \in[-1,1]} d x d y d z
$$

where $D:=\left\{(x, y, z) \in \mathbb{R}^{3}:|x|+|y|+|z| \leq 1\right\}$.
By symmetry, the integral on one octant is equal to the integral on any of the other octants:

$$
p=\frac{8}{8} \iiint_{D^{+}} \mathbb{1}_{x \in[-1,1]} \mathbb{1}_{y \in[-1,1]} \mathbb{1}_{z \in[-1,1]} d x d y d z
$$

where $D^{+}:=\left\{(x, y, z) \in \mathbb{R}^{3}:|x|+|y|+|z| \leq 1,0 \leq x, y, z \leq 1\right\}$.
After these considerations, we compute (using Fubini's Theorem):

$$
\begin{aligned}
p & =\int_{0}^{1} \int_{0}^{1-z}\left(\int_{0}^{1-z-y} d x\right) d y d z \\
& =\int_{0}^{1}\left(\int_{0}^{1-z}(1-z-y) d y\right) d z \\
& =\int_{0}^{1} \frac{(1-z)^{2}}{2} d z \\
& =-\frac{1}{6}\left[(1-z)^{3}\right]_{z=0}^{z=3} \\
& =\frac{1}{6}
\end{aligned}
$$

Exercise 11.3 Recall that $X=\left(\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right) \sim \mathcal{N}(\mu, \Sigma)$ (a Gaussian vector with expectation $\mu=\left(\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{n}\end{array}\right) \in \mathbb{R}^{n}$ and covariance matrix $\left.\Sigma \in \mathbb{R}^{n \times n}\right)$ if for any $v \in \mathbb{R}^{n}$,

$$
v^{T} X=\sum_{i=1}^{n} v_{i} X_{i} \sim \mathcal{N}\left(v^{T} \mu, v^{T} \Sigma v\right)
$$

The goal of this exercise is to show the following remarkable property:
$(*) X_{1}, \ldots, X_{n}$ are independent if and only if for all $i \neq j, \Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)=0$.
(a) Show that $(*)$ is necessary.
(b) To show it is sufficient, we shall use the following result:
X_{1}, \ldots, X_{n} are independent if and only if

$$
\Psi_{X}(t):=E\left(e^{t^{T} X}\right)=\prod_{i=1}^{n} \Psi_{X_{i}}\left(t_{i}\right)\left(=\prod_{i=1}^{n} E\left(e^{t_{i} X_{i}}\right)\right)
$$

for all $t \in \mathbb{R}^{n}$.
Compute $\Psi_{X}(t)$ when $\Sigma_{i j}=0$ for all $i \neq j$ and conclude.
Hint: $t^{T} X$ is a normal random variable, for which we know the expression of the moment generating function.
(c) Taking $n \geq 3$, let $Y \in \mathbb{R}^{p}$ (for $2 \leq p \leq n-1$) be a subset of the original vector X. Using a simple argument, explain why Y is also a Gaussian vector. When are the components of Y independent?
(d) Let $X=\left(\begin{array}{c}X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{5}\end{array}\right) \in \mathbb{R}^{5}$ have a $\mathcal{N}(\mu, \Sigma)$ distribution, where

$$
\mu=\left(\begin{array}{c}
-1 \\
2 \\
0 \\
\frac{1}{2} \\
3
\end{array}\right), \quad \Sigma=\left(\begin{array}{ccccc}
9 & 0 & 0 & 1 & 2 \\
0 & 2 & 0 & -1 & 6 \\
0 & 0 & 16 & 0 & 3 \\
1 & -1 & 0 & 4 & 3 \\
2 & 6 & 3 & 3 & 49
\end{array}\right)
$$

Which subsets of X_{1}, \ldots, X_{5} can you say are independent?
(e) Consider the case $n=2$, and $\left(X_{1}, X_{2}\right)^{T}$ a Gaussian pair with expectation $\mu=\left(\mu_{1}, \mu_{2}\right)^{T}$ and a 2×2 covariance matrix

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

where $\sigma_{1}^{2}, \sigma_{2}^{2}>0$ are the (marginal) variances and ρ is the correlation.
Find a and b such that $X_{1}+X_{2}$ and $a X_{1}+b X_{2}$ are independent.

Solution 11.3

(a) If X_{1}, \ldots, X_{n} are independent, then for $i \neq j$,

$$
\begin{aligned}
\Sigma_{i j} & =\operatorname{cov}\left(X_{i}, X_{j}\right) \\
& =E\left[\left(X_{i}-E\left(X_{i}\right)\right)\left(X_{j}-E\left(X_{j}\right)\right)\right] \\
& =E\left[\left(X_{i}-E\left(X_{i}\right)\right)\right] E\left[\left(X_{j}-E\left(X_{j}\right)\right)\right]=0 .
\end{aligned}
$$

(b) For $t \in \mathbb{R}^{n}$,

$$
\Psi_{X}(t)=E\left[e^{t^{T} X}\right]=\exp \left(t^{T} \mu+\frac{t^{T} \Sigma t}{2}\right)
$$

since $t^{T} X \sim \mathcal{N}\left(t^{T} \mu, t^{T} \Sigma t\right)$, and we know the mgf of the normal distribution. If $\Sigma_{i j}=0$ for all $i \neq j$, it follows immediately that

$$
t^{T} \Sigma t=\sum_{i=1}^{n} t_{i}^{2} \Sigma_{i i}
$$

implying that

$$
\begin{aligned}
\Psi_{X}(t) & =\exp \left(\sum_{i=1}^{n} t_{i} \mu_{i}+\frac{1}{2} \sum_{i=1}^{n} t_{i}^{2} \Sigma_{i i}\right) \\
& =\prod_{i=1}^{n} \exp \left(t_{i} \mu_{i}+\frac{1}{2} t_{i}^{2} \Sigma_{i i}\right) \\
& =\prod_{i=1}^{n} \Psi_{X_{i}}\left(t_{i}\right)
\end{aligned}
$$

Therefore, X_{1}, \ldots, X_{n} are independent, using the hint.
(c) Without loss of generality, we can focus on the case $Y=\left(X_{1}, \ldots, X_{p}\right)^{T}$. For any $a \in \mathbb{R}^{p}$,

$$
a^{T} Y=\sum_{i=1}^{p} a_{i} X_{i}=\sum_{i=1}^{n} v_{i} X_{i}
$$

where $v_{i}=a_{i}$ for $1 \leq i \leq p$ and $v_{i}=0$ otherwise. Thus $a^{T} Y$ is a linear combination of the X_{i}, and so it is normally distributed. As $a \in \mathbb{R}^{p}$ is arbitrary, it follows that Y is Gaussian in \mathbb{R}^{p}.
Thus, by (c), the components of Y are independent if and only if all their covariances are 0 , i.e. if all the entries $\Sigma_{i j}=0$, where $i \neq j$ and X_{i}, X_{j} are components of Y.
(d) Note that $\Sigma_{12}=\Sigma_{13}=\Sigma_{23}=\Sigma_{34}=0$. Therefore, $\left\{X_{1}, X_{2}, X_{3}\right\}$ (and subsets) are independent, and $\left\{X_{3}, X_{4}\right\}$ are independent.
(e)

$$
\binom{X_{1}+X_{2}}{a X_{1}+b X_{2}}=\left(\begin{array}{ll}
1 & 1 \\
a & b
\end{array}\right)\binom{X_{1}}{X_{2}}
$$

hence it is a Gaussian vector, as a linear transformation of the Gaussian vector $\binom{X_{1}}{X_{2}}$.

Thus, $X_{1}+X_{2}$ and $a X_{1}+b X_{2}$ are independent if and only if

$$
\begin{aligned}
& \operatorname{cov}\left(X_{1}+X_{2}, a X_{1}+b X_{2}\right)=0 \\
\Leftrightarrow & a \operatorname{var}\left(X_{1}\right)+b \operatorname{cov}\left(X_{1}, X_{2}\right)+a \operatorname{cov}\left(X_{1}, X_{2}\right)+b \operatorname{var}\left(X_{2}\right)=0 \\
\Leftrightarrow & a \sigma_{1}^{2}+b \sigma_{1} \sigma_{2} \rho+a \sigma_{1} \sigma_{2} \rho+b \sigma_{2}^{2}=0 \\
\Leftrightarrow & \sigma_{1}\left(\sigma_{1}+\sigma_{2} \rho\right) a=-\sigma_{2}\left(\sigma_{2}+\sigma_{1} \rho\right) b
\end{aligned}
$$

Therefore, $X_{1}+X_{2}$ and $a X_{1}+b X_{2}$ are independent if and only if a and b are in the above ratio.
We should look at the special case where the coefficients are both 0 . Since $\sigma_{1}>0, \sigma_{2}>0$, we must have $\sigma_{1}+\sigma_{2} \rho=\sigma_{2}+\sigma_{1} \rho=0$ and then

$$
-\rho=\frac{\sigma_{1}}{\sigma_{2}}=-\frac{1}{\rho}
$$

Since $\sigma_{1}>0, \sigma_{2}>0$ and $\rho \in[-1,1]$, this is only possible if and only if $\sigma_{1}=\sigma_{2}$ and $\rho=-1$. In that special case (and only then), indeed, $X_{1}+X_{2}=0$ and for any $(a, b) \in \mathbb{R}^{2}, X_{1}+X_{2}$ is independent from $a X_{1}+b X_{2}$.

Exercise 11.4 (I hope you're arriving soon)
Alice and Viera plan to meet at a café, and each will arrive at a random time between 15:00 and $15: 30$, independently of each other. Find the probability that the first to arrive has to wait between 5 and 10 minutes for the other to arrive.

Solution 11.4

Remark: Similarly to question 2(c), we use both notations

$$
x \wedge y:=\min (x, y), \quad x \vee y:=\max (x, y)
$$

Let Alice arrive X minutes after 15 h , and similarly let Viera arrive Y minutes after 15 h . It is assumed that $X, Y \stackrel{\text { iid }}{\sim} \mathrm{U}([0,30])$.

We have

$$
p=P(X \vee Y-X \wedge Y \in[5,10])=\iint_{D} f(x, y) d x d y
$$

where $D=\left\{(x, y) \in \mathbb{R}^{2}: x \vee y-x \wedge y \in[5,10]\right\}$ and $f(x, y)=\frac{1}{30} \mathbb{1}_{x \in[0,30]} \frac{1}{30} \mathbb{1}_{y \in[0,30]}$ is the joint density.

We can decompose $D=D_{1} \cup D_{2}$ where $D_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x \geq y, x-y \in[5,10]\right\}$ and $D_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x<y, y-x \in[5,10]\right\}$, and by symmetry it is clear that the integral on each is the same. Therefore,

$$
\begin{aligned}
p & =2 \iint_{D_{1}} f(x, y) d x d y \\
& =\frac{2}{900}\left(\int_{0}^{20}\left(\int_{y+5}^{y+10} d x\right) d y+\int_{20}^{25}\left(\int_{y+5}^{30} d x\right) d y\right) \\
& =\frac{2}{900}\left(\int_{0}^{20} 5 d y+\int_{20}^{25}(25-y) d y\right) \\
& =\frac{2}{9}+\frac{1}{36} \\
& =\frac{1}{4}
\end{aligned}
$$

Exercise 11.5 (Cauchy-Schwarz) (optional)
The goal of this exercise is to show the Cauchy-Schwarz inequality, which is stated as follows.
Let X and Y be two random variables defined on the same probability space, such that $E\left(X^{2}\right)<\infty$ and $E\left(Y^{2}\right)<\infty$. Then,

$$
\begin{equation*}
|E(X Y)| \leq \sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)} \tag{1}
\end{equation*}
$$

with equality if and only if $P(X=0)=1$ or $P(Y=a X)=1$ for some $a \in \mathbb{R}$.

1. For $t \in \mathbb{R}$, write $E\left[(Y-t X)^{2}\right]$ as a function of t.
2. Using the fact that $E\left[(Y-t X)^{2}\right] \geq 0$ for any $t \in \mathbb{R}$, conclude that either $P(X=0)=1$ or

$$
E\left(X^{2}\right)\left(t-\frac{E(X Y)}{E\left(X^{2}\right)}\right)^{2}-\frac{E(X Y)^{2}}{E\left(X^{2}\right)}+E\left(Y^{2}\right) \geq 0
$$

for $t \in \mathbb{R}$.
3. Prove the inequality (1).
4. If $P(X=0)<1$, show that equality case in (1) holds if and only if $P\left(Y=t^{*} X\right)=1$, and give the expression for t^{*}.
Hint: Remember that for Z a non-negative random variable, $E(Z)=0$ if and only if $P(Z=0)=1$.
5. Conclude on the condition for the equality case to hold.

Solution 11.5

1.

$$
E\left((Y-t X)^{2}\right)=E\left(Y^{2}-2 t X Y+t^{2} X^{2}\right)=t^{2} E\left(X^{2}\right)-2 t E(X Y)+E\left(Y^{2}\right)
$$

2. If $E\left(X^{2}\right)=0$, then $P(X=0)=1$. Otherwise, if $E\left(X^{2}\right)>0$,

$$
\begin{aligned}
E\left((Y-t X)^{2}\right) & =E\left(X^{2}\right)\left(t^{2}-2 t \frac{E(X Y)}{E\left(X^{2}\right)}+\frac{E(X Y)^{2}}{E\left(X^{2}\right)^{2}}\right)-\frac{E(X Y)^{2}}{E\left(X^{2}\right)}+E\left(Y^{2}\right) \\
& =E\left(X^{2}\right)\left(t-\frac{E(X Y)}{E\left(X^{2}\right)}\right)^{2}+E\left(Y^{2}\right)-\frac{E(X Y)^{2}}{E\left(X^{2}\right)} \geq 0
\end{aligned}
$$

since the original expression $E\left((Y-t X)^{2}\right) \geq 0$ for any $t \in \mathbb{R}$.
3. In the case that $P(X=0)=1, E(X Y)=0$ and the inequality (1) holds. Otherwise, we have the inequality above for any $t \in \mathbb{R}$. That applies in particular to the choice

$$
t^{*}=\frac{E(X Y)}{E\left(X^{2}\right)}
$$

and therefore

$$
E\left(Y^{2}\right) \geq \frac{E(X Y)^{2}}{E\left(X^{2}\right)}
$$

or equivalently,

$$
|E(X Y)| \leq \sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)}
$$

as we wanted.
4. Suppose that equality holds and $P(X=0)<1$. As above, we must then have $E\left(Y^{2}\right)=\frac{E(X Y)^{2}}{E\left(X^{2}\right)}$. Then, with the same t^{*} as before, we get that

$$
E\left[\left(Y-t^{*} X\right)^{2}\right]=E\left(X^{2}\right)\left(t^{*}-\frac{E(X Y)}{E\left(X^{2}\right)}\right)^{2}=0
$$

Following the hint, this means that $1=P\left(\left(Y-t^{*} X\right)^{2}=0\right)=P\left(Y=t^{*} X\right)$.
The converse is obvious: if $P\left(Y=t^{*} X\right)=1$, then

$$
E(X Y)=E\left(X t^{*} X\right)=t^{*} E\left(X^{2}\right)=\sqrt{E\left(X^{2}\right)} \sqrt{E\left(\left(t^{*} X\right)^{2}\right)}=\sqrt{E\left(X^{2}\right)} \sqrt{E\left(Y^{2}\right)}
$$

5. From the previous part, if equality holds then either $P(X=0)=1$ or $P\left(Y=t^{*} X\right)=1$ for some $t^{*} \in \mathbb{R}$. Conversely, we already saw that $P\left(Y=t^{*} X\right)=1$ implies that equality holds, and similarly if $P(X=0)=1$ then

$$
0=E(X Y)=\sqrt{0} \sqrt{E\left(Y^{2}\right)}
$$

Therefore equality holds if and only if either $P(X=0)=1$ or $P\left(Y=t^{*} X\right)=1$ for some $t^{*} \in \mathbb{R}$.

