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Probability and Statistics

Exercise sheet 12

Exercise 12.1 The goal of this exercise is to show that if X = (X1,..., X,,)T ~ N (u, ) with 2
invertible, then X admits a density with respect to the Lebesgue measure on (R™, Bg»), given by

1 1
(v2m) \/det(Z)

e s@—m s @—p) (1)

fl@) = fx(x) =

for any x = (z1,...,2,)7 € R™.

Before showing this, we first settle some questions around the covariance matrix ¥ (this is
done in the first two parts). In (a) and (b), the random vector X can have any distribution (not
necessarily normal).

(a) Recall that the covariance matrix of X, 3, has entries X;; = cov(X;, X;) for 1 < 4,5 < n.
Show that

Y= E[(X - p)(X - p)T].
Remark: Expectations are evaluated componentwise, i.e. if M is a random matrix,

My ... My, E(My) ... E(Mi,)

(b) Let A € RP*"™ be a fixed (deterministic) matrix. Show that the covariance matrix of AX is
AR AT,
If A=a” € R1" what is the covariance of a” X? Conclude that X is semi-positive definite.
(c) Now take X ~ N (u,X). By definition, X 4 p+ AZ with AAT =% (ie., A is a square root
of ¥), and Z is standard normal, i.e. Z = (2, ..., Z,)" for Z1,..., Z, 11~d./\f(0, 1).
e Check that ¥ is indeed the covariance matrix of X.
e Assuming that ¥ is invertible, show that A is also invertible. Using the Jacobian formula,

show that X has density given by (1) almost everywhere.

(d) Suppose you are given a density in the form (1). Can you find the marginal density of
X; (i € {1,...,n}) without additional calculations?

(e) (optional).

For d = 2, if 0 = var(X;) > 0, 03 = var(Xz) > 0 and cov(Xy, X) = o102p with p the
correlation between X; and X5.What is the condition on p for ¥ to be invertible? What is
the expression of the density in this case?

Solution 12.1
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(a)

()

Put M := (X — p)(X — p)T. Then, by definition

Mij = (Xi — i) (X — pj) = (Xi — E(Xi))(X; — E(X;))

and
E(M;;) = E[(X; — E(X3))(X; — E(X;))] = cov(Xi, X;)

for (i,7) € {1,...,n}>.
Thus, ¥ = E[(X — u)(X — u)7T].

The covariance of AX, ¥, is given by
Y= E[(AX — Ap)(AX — Ap)T]

since F(AX) = AE(X) = Ap.
Thus,

S = BIA(X — p)(X — )" A7)

For A = a”, AX = aT X € R and the covariance boils down to var(a? X). Since this covariance
is also equal to a”Xa, we conclude that a”Ya = var(a’ X). Now, var(a’X) > 0 Va € R®

implying that X is positive semidefinite.
e We have shown that the covariance is given by

E[(X =X = pw)T].

Since X = 1+ AZ and p is a deterministic vector, this implies that

X-p2az
and hence X — p and AZ have the same moments (when these exist).
Therefore,
E[(X — w)(X - )"] = E[(AZ)(AZ)"] = AT, A"
where
1 0 ... 0
ZZ:E(ZZ )Z . = Inxn
0 0 1
is the identity matrix.
Hence, the covariance of X is AAT = ¥.
o We have
Ao O
s=pP"| : . |P
0 ... A\

Exercise sheet 12

where P is orthogonal (PTP = PPT = I,,,,). Since ¥ is invertible (so that det(X) =
[T, A\i #0), and since X is semi-positive definite, so that A; > 0 for each 4, putting
these together we get that A\; > 0 for each i = 1,...,n.
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We have seen that we can take

VAo, 0
A=Pr o
0 ... V\,
as a square root for X. A is clearly invertible since
1
N 0
B = : . : P
0o ... L

Vn

satisfies AB = I, xn.
Letting g(z) = p + Az for z = (21,...,2,)T € R". Then g € C*(R") with Vg(z) = A
(Vg is an equivalent notation for grad g), and

Ty(z) = det(Vg(2)) = det(4) # 0

for any z € R". Also, g~ !(z) = A~ (z — p).
By the Jacobian theorem, we have

It follows that

1 exp(—3(@— A HTA & —p))
(2n)? det(A)

(note det(A) =TT, vA; > 0).
Now, (A™1)TA7t = (AAT)"! = 7! and det(4AT) = (det(A))? = det(X), so that
det(A) = /det(X), yielding the formula in (1).

(d) If we are given a density in the form (1), this means that X ~ A (u,X). By the general
characterisation of Gaussian vectors, this also mean that any linear combination of the
components of X is normally distributed, and in particular so are the components themselves.

Thus, for any i € {1,...,n}, X; ~ N(E(X;),var(X;)). But E(X;) = p; and var(X;) = Zy.
Hence, X; ~ N (pi,2) for i € {1,...,n}.

fx(x) =

(e) In this case,
2
Y g7 pPo102
pO109 O’% )
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3} being invertible is equivalent to
det(X) #0 < olos(1—p*) #0 = |p| < 1

(note that we must always have |p| < 1).

To find ¥, recall that
a b\ 1 d —b
c d S ad—ch\ —¢ a )’

Let 1= (p1,p2)” be the mean. For x = (z1,22)7 € R?, we compute

(0= 0TS 0 = 1) = sy e =) (72 T ) ()
~ s e (T et )
= m(ag@l - M1)2 —2po102(x1 — pr) (w2 — po) + of(xg — u2)2)
= T —1p2 ((331 ;%MI)Q - 0_?52 (x1 - Ml)(!EQ - M2) + (332 ;§u2)2>
Finally,
fx(@) = 217”71(72\}@ xp (2(1 i p?) <(x1 U%'ul)z - 0?52 (1 — pa)(z2 — p2) + W)) .

Exercise 12.2 (some training) Let X7, ..., X, be i.i.d with density f(- | 6y), where the true value
of #y is unknown.

(a) For the following models, find the moment estimator and MLE for 6y € © as well as the
Fisher information I(6p) (you may assume that all regularity conditions are fulfilled).

1. (Geometric)

fla]®)=@1-0)""0
for x € N>q,where § € © = (0, 1).
2. (Bernoulli)

fl@lo)=0"1-06)""
for x € {0,1}, where € © = (0, 1).
3. (Beta(1,90))

fla]6)=0(1—2)" "Loco,),
where § € © = (0, +00).
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4. (Laplace)

fle16)= 5o

for z € R, where 6 € © = (0, +00).

Hint: Note that for X ~ Laplace(f), E(X) = 0 and therefore one needs to use the next
order moment.

(b) For the first model Geo(#), construct an asymptotic confidence interval of level 1 — « for 6y,
based on the asymptotic normality of the MLE 6, and approximating (6y) by I(6).

(¢) In a study of feeding behaviors of birds, the number of hops between flights was counted for
n = 130 birds. The data are given in the following table.

#Hops | 1 | 2|3 |4|5|6|7[8|9|10 |11 12
Frequency | 48 | 31 |20 9|6 |54 |2|1]| 1 2 1

For example: in 48 occasions, a bird had just 1 hop before flying again, in 20 occasions they
had 3 hops, etc. Assume that the number of hops can be modelled as a geometric random
variable with unknown success probability 6y € (0,1). Compute the MLE based on the data
in the table, and find an asymptotic confidence interval of level 95%.

Solution 12.2

(a) 1. Let X ~ Geo(fy), for some unknown 6y € (0, 1).

Approximating E(X) by X, (Whlch We can Justlfy by the strong law of large numbers),
we get the moment estimator 0, = =

For the MLE, we maximise as usual the log—hkelihood.

L) = ﬁ £ 0) =TT 01— 0)% " = 07(1 — 6)2ies i)

1(0) =log(L(#)) = nlog(d Z —1)log(1 —0)

Differentiating,

ol 4 n "X, -1
L) =0 — — 0
(0n) ;1_%

n(l—80,) =0, i(xi -1)

- Z?:l Xl - Xn

is the unique stationary point. We check maximality by taking the second derivative:
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002 02

<0

M)  n Z X;—1
(1-0)?

Since the second derivative is negative, [ is strictly concave on (0, 1) and so 6,

the MLE. In this case it coincides with the moment estimator 8,,.
For the Fisher information, note that

log f(x | 8) =log(0) + (x — 1) log(1 — 0)
dlog f(z|0) 1 =x-1

06 6 1-0
9?log f(x | 0) _ 1zl
06? 02 (1-0)2
0?log f(X, |6

< 1(90) =—-F % |9:90
1 E(X) -1
S 08 (1—00)?

1 1 _
— 972 + 0072
o (1=0o)
1,1
02 0(1—06y)
_ 1
62(1—6o)
2. If X ~ Bernoulli(6p), then E(X) = . Thus we get the moment estimator 8, = X, for
6o.
L) = 02i= X (1 — gy i
1(0) = <Z Xi> log(6) + log(1 — 0) (n — ZXi> .
i=1 i=1
So we get:

n ;=1 i=1
S 1-0,)) X =0, <n— ZXZ>
=1 i=1
&0, = i Xi X,
n

as the unique stationary point. We check that

0%l

1 n 1 n
520 = ‘ﬁ?(i‘m (n—ZXi> <0

for any Xi,..., X,, € {0,1}.
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Since [ is strictly concave, én(: én) is the MLE.
For the Fisher information,

log f(x | §) = xlog(d) + (1 — x) log(1 — 0)

8210gf(a:\9)__£_ l1—z
062 02 (1-0)2
9*log f(X1 | )
_ B(Xy) + 1 - E(Xy)
62 (1—09)2
o 1—6q
B RRCEE
_1,
T B 1-—106
- 1
Oo(1 —0o)
3. If X ~ Beta(1,6p), then
1 1
E(X)= —— -
(X) =354, © % B(X)
and therefore, 6,, = Yl — 1 is the moment estimator for 6.
n n 6—1
L) =Je—x)° "t =0 <H(1 - XD)
i=1 i=1

and

1) = nlog(6) + (6 — 1)) log(1 — X;),
=1

SO we maximise at

ol  ~ n ~

KLoy=2 log(1 — X;) =

20 (0n) i +; og( )=0
=0, i

[ is clearly concave (as the sum of a strictly concave and linear functions). Hence 0, is

the MLE.
For the Fisher information,

log f(z | 8) = log(#) + (0 — 1) log(1 — )
dlog f(z|0) 1

50 :§—|—log(1—aj)
Plogflw]o) 1
062 E
0?log f(X1 | 0) 1
& I(6) = —F a0z lo=0, | = 02
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b
2

X2
= b

_90 98

I'(3)

S

x2ePolzl gy

R
0
A

I'(3)

x2e %% gy

2 [

o I'(3)
2

7

3_16_00zd$

(noting that we integrate the density of a G(3,6p) distribution). Alternatively, we could

observe that

Gozle %de = E[Y?] = E(Y)? + var(Y) =

0%

. We can replace E(X?) by £ 3" | X? to obtain the moment

_ 2
TS X

L on —oS" |x
:279"3 Z'L:l

) =0 |Xi]
i=1

0
for Y ~ Exp(6y).
Therefore, 63 = ol X2
estimator
O
_ ﬁ 0 o]
L2
i=1
1(0) = c+nlog(d
for ¢ = —nlog(2) a constant. Therefore,

é)l
89

=40,

n n
:07 Z|

=1
1

%Zi:l |Xz|

Since the function [ is strictly concave, we conclude that 0,, is the MLE.

For the Fisher information,

log f(x | 0) =

dlog f(z | 0)
00

9?log f(x | 0) B

062 B

= 1(0o) =

—log(2) + log(8) — 0|x|

1

:§*|$|

1
02

L
63"

(b) Assume that the geometric model satisfies the regularity conditions of Theorem 2 from the

lecture.
asymptotically normal with

Then, the MLE for 6, based on Xj,...

X, Geo(bp), for some 6y € (0,1), is
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I(6)

ﬁ(én—eo)ixv(o, ! )
N(0,1)

V0, — 00)v/T(00) >

With \/I(QO) = 1/5(2)(117790).

Replacing 6, by 0,, results in
A0 — 80) | ——— % A(0,1),
O (1 —6)
For o € (0,1), let z1_a be the (1 — §)-quantile of Z ~ N(0,1). Then,

n— oo

- 11—«

A 1
P vn(b, —0g) —— € (—21,%,2’1,%]
< on 1- on
n—oo

< Plel,) = 1—a«

where
~ O./1-0, ~ O/1-0,
In= 0, — 22— 0. b, + Z1_a
Vn ? Vn ?
1 1 1 zioa 1 a
Aty txrs 1 1As
X, X, X, vn ' X, X, X, Vn

(¢) With n = 130,

ZX,;:I><48+2><31+3><20+...+12><1:363

i=1
and so X, = 2.792. Using a = 0.05, z1-g = 20.975 ~ 1.964 and we get the confidence interval
P(6y € [0.308,0.407]) ~ 0.95.

Exercise 12.3

(a) Find a sufficient statistic for the parameters generating the following models:

1.
X1, X0 2 U([0,6]), 6 € (0, +00).
2. y
X1, X N Exp()), A€ (0,400).
3. y
X1y X N N(p,0%), 0= (u,0)" €Rx (0,+00).
4.

X1, X X U(0,0+1]), 6€R.
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(b) Show that in general, if (X7, ..., X,,) is a sufficient statistic for § € © (where X1, ..., X, id

f(- 1)), then for any ¢ € R\ {0}, ¢T'(X3y, ..., X,,) is also sufficient for 6.

Hint: Use the factorisation theorem.

Solution 12.3

(a) We use the factorisation theorem.

L. f(z]0) = glacio,g, s0

n

H 1‘7|6 H"H]lwi €[0,6]

=1

= 97 H Iy,>0la,<6
=1
1

97,” ]lmin,i xizo]lmaxi z; <60

=g(T(x1,...s xn), ) h(x1, ..., Tp)

with T'(x1,...,2,) = maxi<i<n =i, 9(t,0) = 4w 1t<0 and h(z1,...,T,) = Lminy <;<, 2:20-
Hence, T'(X1, ..., X)) = maxj<;<p X; is sufficient for 6.

2.
[1r@i1x =]]re " 1050
i=1 i=1
= \"e A 2oy Ling ;>0
=g(T(x1, ey n), N(T1, oy Tp)
with g(t,A) = X", h(21, ..., 2n) = Lmin,c,c,, 2,20 and T(z1, ..., z) = Y1 | ;. There-
fore, T(X1, ... X») = >y X; is sufficient for .
3.

[T/ 1) = pme w2 2l
Pt (2m)zo

SR T i DI
T @mFon

=g(T(x1, ..., ), O)h(x1, ... )

with i
0

1 — Lttty

9(,0) = e WA

(2r) 303

n n n n T
hz1, .o, zn) =1, T(x1, ..., xpn) = (Zi:l Tiy D i T ) Thus T'( X4, ..., X,) = (Zi:l X, > iy Xf)
is sufficient for 6 = (u,0)7.
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n

[1 s 0) =]
L

19§$i§0+1

0<min; z; HGZmaxi x;—1

1
lmaxi z; —1<60<min; z;
g

(T(z1,es T0), O) W21, s )

with g(t, 9) = ]1t2—1§0§t17 h(xl, veey J,‘n) = land T(]}l, very xn) = (minlgign Tq, MaxX]<i<n JZi)T,
and therefore T'(X1, ..., Xp) = (minj<;<, X;, Maxi<i<n Xi)T is sufficient for 6.

(b) If T(Xy,...,X,) is sufficient then

Hf(xl |0) = g(T(z1,...,20),0)h(x1, ..., Zp)
i=1

for some measurable functions g and h. If we define g(t,6) = g(%,0), it will follow that

n

[ £ @il 0)=a(T(@,...;2n),0)h(z1, ... z0)

i=1
where T(z1,...,x,) = ¢T(x1, ..., ).

This shows that T'(X1, .., X,,) = ¢T'(X1, ..., X,,) is sufficient for . Replacing ¢ by % gives the
equivalence.

Remark: This implies, for example, that if E?:l X; is sufficient for 6, then so is X,,.

Exercise 12.4 Let (X,Y)T be a random vector. We want to show that var(X | Y) = 0 with
probability 1, if and only if there is a measurable function h such that P(X = h(Y)) = 1.

We consider only the case where the vector is discrete (takes either finitely many or countably
many different values).

(a) State the definition of var(X | Y = y).
(b) Show that var(X | Y) = 0 with probability 1 if and only if P(X = E(X |Y)) = 1.
(¢) Conclude.

Solution 12.4

(a)
var(X | Y =y) := Z(I —-EBEX|Y = y))Qp(x | y)

x

for any y such that py (y) > 0.

(b) Let Z = X — E(X | Y). First, assume that P(var(X | Y) = 0) = 1, or in other words,
P(E(Z?|Y)=0) = 1. For any y with py (y) > 0, we have that

0=P(E(Z*|Y) #0) > py (y)Lz2|y =y)+0
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and thus E(Z? | Y = y) = 0. Then we get:
E(Z%) = BE(E(Z*|Y))

= > EZ|Y=ypry)
y:py (y)>0
=0.

Since Z2 > 0, this implies that Z = 0 almost surely, or

P(Z=0)=1P(X=EX|Y)) =1

For the other direction, we start from P(Z = 0) = 1. It will be convenient to use the joint
probability of Z and Y:

gzy(2,y) = P(Z =2Y =y) = > pxy(my) =pxy(B(X |Y =y) +2,y).
zz—E(X|Y=y)=z2

Note that the resulting marginal pmf for Y is ¢y (y) = P(Y = y) = py (y).Then, for y with
py (y) > 0, and denoting by ¢(z | y) the conditional pmf of Z given Y = y:

~q(z,y) >y a(z,y) _pz(2)
CI= 0w =" nm  mw
unless z = 0 (since P(Z =0) =1).

Hence,

B[Z|Y =y| =) 2%q(z|y) =0

for any y with py (y) > 0, since 22¢g(z | y) = 0 for any 2.

Therefore,
P(var(X | Y)=0)=P(E[Z*| Y] =0)

= Z 1g1z2)y =yj=0Py (V)
ypy (y)>0

Z py(y)

y:py (y)>0
=1

as we wanted.
We have shown that

P(X=EX|Y)) =1« P(ar(X |Y)=0) = 1.

Thus,
Prvar(X | Y)=0)=1= P(X = pux(¥)) =1
where px(y) = E(X | Y =y).

If there is a measurable function ¥ such that P(X = ¥(Y)) = 1, then P(X = E(X |
Y)) > P(X = ¥(Y)) since we know that X = U(Y) E(X |Y) = 9(). Therefore,
P(X = E(X |Y)) =1 which implies that P(var(X |Y) =0) = 1.
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Exercise 12.5 (optional).
The goal here is to justify why the idea of maximising the likelihood is a good one.

(a) For X ~ f(-]6y) and 6 € O, assume that E[log f(X | 0)] exists.
Show that Eflog f(X | 0)] < Ellog f(X | 6p)].

Hint: Show that E [log (’;c(fxlﬁf))ﬂ > 0 by using Jensen’s inequality for the convex function

—logt,t € (0,400).

(b) Recall the weak law of large numbers: if Y7, ...,Y,, are i.i.d. such that E(|Y;|) < oo, then

<l

= IV E) o).

Using the WLLN, explain why the MLE would be a reasonable estimator.

Solution 12.5

(a) We have that

e o 1] = [ i )

aem)

by Jensen’s inequality applied to the convex function ¢t — —log(t), for t € (0, 4+00).
But since X ~ f(- | 6o),

E{ } f;|99 [z ] 0o)dp(z)

- / £ | 0)du(x)
=1

since we are integrating a density. Note that —log(1) = 0, and thus, for § € ©,

Ellog f(X | 60)] > Ellog f(X | 0)].
Therefore, the true parameter 6, maximises the function § — Ellog f(X | 0)].

(b) By the weak law of large numbers,

1 & P
=~ log f(X;|0) = Ellog f(X |0)].
n im1 n—o0

Hence, by maximising the log-likelihood

6) => log f(X; | 0)

i=1
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over O, we are also maximising

10y = - log f(X | 6).
=1

n

We “hope” (under some technical conditions) that as n — co, we will manage to get closer
to the maximal value of E[log f(X | 8)], which is E[log f(X | 6p)] by part (a). This gives a
heuristic argument for why the MLE should converge to 6y, as n — co.
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