Probability and Statistics

Exercise sheet 12

Exercise 12.1 The goal of this exercise is to show that if $X=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim \mathcal{N}(\mu, \Sigma)$ with Σ invertible, then X admits a density with respect to the Lebesgue measure on $\left(\mathbb{R}^{n}, \mathcal{B}_{\mathbb{R}^{n}}\right)$, given by

$$
\begin{equation*}
f(x)=f_{X}(x)=\frac{1}{(\sqrt{2 \pi})^{n}} \frac{1}{\sqrt{\operatorname{det}(\Sigma)}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} \tag{1}
\end{equation*}
$$

for any $x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$.
Before showing this, we first settle some questions around the covariance matrix Σ (this is done in the first two parts). In (a) and (b), the random vector X can have any distribution (not necessarily normal).
(a) Recall that the covariance matrix of X, Σ, has entries $\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$ for $1 \leq i, j \leq n$. Show that

$$
\Sigma=E\left[(X-\mu)(X-\mu)^{T}\right] .
$$

Remark: Expectations are evaluated componentwise, i.e. if M is a random matrix,

$$
E\left[\left(\begin{array}{ccc}
M_{11} & \ldots & M_{1 n} \\
\vdots & \ddots & \vdots \\
M_{n 1} & \ldots & M_{n n}
\end{array}\right)\right]=\left(\begin{array}{ccc}
E\left(M_{11}\right) & \ldots & E\left(M_{1 n}\right) \\
\vdots & \ddots & \vdots \\
E\left(M_{n 1}\right) & \ldots & E\left(M_{n n}\right)
\end{array}\right)
$$

(b) Let $A \in \mathbb{R}^{p \times n}$ be a fixed (deterministic) matrix. Show that the covariance matrix of $A X$ is $A \Sigma A^{T}$.
If $A=a^{T} \in \mathbb{R}^{1 \times n}$, what is the covariance of $a^{T} X$? Conclude that Σ is semi-positive definite.
(c) Now take $X \sim \mathcal{N}(\mu, \Sigma)$. By definition, $X \stackrel{\text { d }}{=} \mu+A Z$ with $A A^{T}=\Sigma$ (i.e., A is a square root of Σ), and Z is standard normal, i.e. $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{T}$ for $Z_{1}, \ldots, Z_{n} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}(0,1)$.

- Check that Σ is indeed the covariance matrix of X.
- Assuming that Σ is invertible, show that A is also invertible. Using the Jacobian formula, show that X has density given by (1) almost everywhere.
(d) Suppose you are given a density in the form (1). Can you find the marginal density of $X_{i}(i \in\{1, \ldots, n\})$ without additional calculations?
(e) (optional).

For $d=2$, if $\sigma_{1}^{2}=\operatorname{var}\left(X_{1}\right)>0, \sigma_{2}^{2}=\operatorname{var}\left(X_{2}\right)>0$ and $\operatorname{cov}\left(X_{1}, X_{2}\right)=\sigma_{1} \sigma_{2} \rho$ with ρ the correlation between X_{1} and X_{2}. What is the condition on ρ for Σ to be invertible? What is the expression of the density in this case?

Solution 12.1

(a) Put $M:=(X-\mu)(X-\mu)^{T}$. Then, by definition

$$
M_{i j}=\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)=\left(X_{i}-E\left(X_{i}\right)\right)\left(X_{j}-E\left(X_{j}\right)\right)
$$

and

$$
E\left(M_{i j}\right)=E\left[\left(X_{i}-E\left(X_{i}\right)\right)\left(X_{j}-E\left(X_{j}\right)\right)\right]=\operatorname{cov}\left(X_{i}, X_{j}\right)
$$

for $(i, j) \in\{1, \ldots, n\}^{2}$.
Thus, $\Sigma=E\left[(X-\mu)(X-\mu)^{T}\right]$.
(b) The covariance of $A X, \tilde{\Sigma}$, is given by

$$
\tilde{\Sigma}:=E\left[(A X-A \mu)(A X-A \mu)^{T}\right]
$$

since $E(A X)=A E(X)=A \mu$.
Thus,

$$
\begin{aligned}
\tilde{\Sigma} & =E\left[A(X-\mu)(X-\mu)^{T} A^{T}\right] \\
& =A E\left[(X-\mu)(X-\mu)^{T}\right] A^{T} \\
& =A \Sigma A^{T} .
\end{aligned}
$$

For $A=a^{T}, A X=a^{T} X \in \mathbb{R}$ and the covariance boils down to $\operatorname{var}\left(a^{T} X\right)$. Since this covariance is also equal to $a^{T} \Sigma a$, we conclude that $a^{T} \Sigma a=\operatorname{var}\left(a^{T} X\right)$. Now, $\operatorname{var}\left(a^{T} X\right) \geq 0 \forall a \in \mathbb{R}^{n}$ implying that Σ is positive semidefinite.
(c) - We have shown that the covariance is given by

$$
E\left[(X-\mu)(X-\mu)^{T}\right]
$$

Since $X \stackrel{\mathrm{~d}}{=} \mu+A Z$ and μ is a deterministic vector, this implies that

$$
X-\mu \stackrel{\mathrm{d}}{=} A Z
$$

and hence $X-\mu$ and $A Z$ have the same moments (when these exist).
Therefore,

$$
E\left[(X-\mu)(X-\mu)^{T}\right]=E\left[(A Z)(A Z)^{T}\right]=A \Sigma_{Z} A^{T}
$$

where

$$
\Sigma_{Z}=E\left(Z Z^{T}\right)=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & 1
\end{array}\right)=I_{n \times n}
$$

is the identity matrix.
Hence, the covariance of X is $A A^{T}=\Sigma$.

- We have

$$
\Sigma=P^{T}\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right) P
$$

where P is orthogonal $\left(P^{T} P=P P^{T}=I_{n \times n}\right)$. Since Σ is invertible (so that $\operatorname{det}(\Sigma)=$ $\prod_{i=1}^{n} \lambda_{i} \neq 0$), and since Σ is semi-positive definite, so that $\lambda_{i} \geq 0$ for each i, putting these together we get that $\lambda_{i}>0$ for each $i=1, \ldots, n$.

We have seen that we can take

$$
A=P^{T}\left(\begin{array}{ccc}
\sqrt{\lambda}_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \sqrt{\lambda}_{n}
\end{array}\right)
$$

as a square root for Σ. A is clearly invertible since

$$
B=\left(\begin{array}{ccc}
\frac{1}{\sqrt{\lambda_{1}}} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \frac{1}{\sqrt{\lambda}_{n}}
\end{array}\right) P
$$

satisfies $A B=I_{n \times n}$.
Letting $g(z)=\mu+A z$ for $z=\left(z_{1}, \ldots, z_{n}\right)^{T} \in \mathbb{R}^{n}$. Then $g \in C^{1}\left(\mathbb{R}^{n}\right)$ with $\nabla g(z)=A$ (∇g is an equivalent notation for $\operatorname{grad} g$), and

$$
\mathcal{J}_{g}(z)=\operatorname{det}(\nabla g(z))=\operatorname{det}(A) \neq 0
$$

for any $z \in \mathbb{R}^{n}$. Also, $g^{-1}(x)=A^{-1}(x-\mu)$.
By the Jacobian theorem, we have

$$
f_{X}(x)=\frac{f_{Z} \circ g^{-1}(x)}{\left|\mathcal{J}_{g} \circ g^{-1}(x)\right|}
$$

(on the open set $\mathcal{O}=\mathbb{R}^{n}$) with

$$
\begin{aligned}
f_{Z}(z) & =\frac{1}{(2 \pi)^{\frac{n}{2}}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n} z_{i}^{2}\right) \\
& =\frac{1}{(2 \pi)^{\frac{n}{2}}} \exp \left(-\frac{1}{2} z^{T} z\right) .
\end{aligned}
$$

It follows that

$$
f_{X}(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \frac{\exp \left(-\frac{1}{2}(x-\mu)^{T}\left(A^{-1}\right)^{T} A^{-1}(x-\mu)\right)}{\operatorname{det}(A)}
$$

(note $\left.\operatorname{det}(A)=\prod_{i=1}^{n} \sqrt{\lambda_{i}}>0\right)$.
Now, $\left(A^{-1}\right)^{T} A^{-1}=\left(A A^{T}\right)^{-1}=\Sigma^{-1}$ and $\operatorname{det}\left(A A^{T}\right)=(\operatorname{det}(A))^{2}=\operatorname{det}(\Sigma)$, so that $\operatorname{det}(A)=\sqrt{\operatorname{det}(\Sigma)}$, yielding the formula in (1).
(d) If we are given a density in the form (1), this means that $X \sim \mathcal{N}(\mu, \Sigma)$. By the general characterisation of Gaussian vectors, this also mean that any linear combination of the components of X is normally distributed, and in particular so are the components themselves. Thus, for any $i \in\{1, \ldots, n\}, X_{i} \sim \mathcal{N}\left(E\left(X_{i}\right), \operatorname{var}\left(X_{i}\right)\right)$. But $E\left(X_{i}\right)=\mu_{i}$ and $\operatorname{var}\left(X_{i}\right)=\Sigma_{i i}$. Hence, $X_{i} \sim \mathcal{N}\left(\mu_{i}, \Sigma_{i i}\right)$ for $i \in\{1, \ldots, n\}$.
(e) In this case,

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

Σ being invertible is equivalent to

$$
\operatorname{det}(\Sigma) \neq 0 \Leftrightarrow \sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right) \neq 0 \Leftrightarrow|\rho|<1
$$

(note that we must always have $|\rho| \leq 1$).
To find Σ^{-1}, recall that

$$
\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-c b}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Let $\mu=\left(\mu_{1}, \mu_{2}\right)^{T}$ be the mean. For $x=\left(x_{1}, x_{2}\right)^{T} \in \mathbb{R}^{2}$, we compute

$$
\begin{aligned}
(x-\mu)^{T} \Sigma^{-1}(x-\mu) & =\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}\left(x_{1}-\mu_{1}, x_{2}-\mu_{2}\right)\left(\begin{array}{cc}
\sigma_{2}^{2} & -\rho \sigma_{1} \sigma_{2} \\
-\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\binom{x_{1}-\mu_{1}}{x_{2}-\mu_{2}} \\
& =\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}\left(x_{1}-\mu_{1}, x_{2}-\mu_{2}\right)\binom{\sigma_{2}^{2}\left(x_{1}-\mu_{1}\right)-\rho \sigma_{1} \sigma_{2}\left(x_{2}-\mu_{2}\right)}{\sigma_{2}^{2}\left(x_{2}-\mu_{2}\right)-\rho \sigma_{1} \sigma_{2}\left(x_{1}-\mu_{1}\right)} \\
& =\frac{1}{\sigma_{1}^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right)}\left(\sigma_{2}^{2}\left(x_{1}-\mu_{1}\right)^{2}-2 \rho \sigma_{1} \sigma_{2}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\sigma_{1}^{2}\left(x_{2}-\mu_{2}\right)^{2}\right) \\
& =\frac{1}{1-\rho^{2}}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho}{\sigma_{1} \sigma_{2}}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)
\end{aligned}
$$

Finally,

$$
f_{X}(x)=\frac{1}{2 \pi} \frac{1}{\sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho}{\sigma_{1} \sigma_{2}}\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)\right) .
$$

Exercise 12.2 (some training) Let X_{1}, \ldots, X_{n} be i.i.d with density $f\left(\cdot \mid \theta_{0}\right)$, where the true value of θ_{0} is unknown.
(a) For the following models, find the moment estimator and MLE for $\theta_{0} \in \Theta$ as well as the Fisher information $I\left(\theta_{0}\right)$ (you may assume that all regularity conditions are fulfilled).

1. (Geometric)

$$
f(x \mid \theta)=(1-\theta)^{x-1} \theta
$$

for $x \in \mathbb{N}_{\geq 1}$, where $\theta \in \Theta=(0,1)$.
2. (Bernoulli)

$$
f(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}
$$

for $x \in\{0,1\}$, where $\theta \in \Theta=(0,1)$.
3. $(\operatorname{Beta}(1, \theta))$

$$
f(x \mid \theta)=\theta(1-x)^{\theta-1} \mathbb{1}_{x \in(0,1)}
$$

where $\theta \in \Theta=(0,+\infty)$.
4. (Laplace)

$$
f(x \mid \theta)=\frac{\theta}{2} e^{-\theta|x|}
$$

for $x \in \mathbb{R}$, where $\theta \in \Theta=(0,+\infty)$.
Hint: Note that for $X \sim \operatorname{Laplace}(\theta), E(X)=0$ and therefore one needs to use the next order moment.
(b) For the first model $\operatorname{Geo}(\theta)$, construct an asymptotic confidence interval of level $1-\alpha$ for θ_{0}, based on the asymptotic normality of the MLE $\hat{\theta}$, and approximating $I\left(\theta_{0}\right)$ by $I(\hat{\theta})$.
(c) In a study of feeding behaviors of birds, the number of hops between flights was counted for $n=130$ birds. The data are given in the following table.

\# Hops	1	2	3	4	5	6	7	8	9	10	11	12
Frequency	48	31	20	9	6	5	4	2	1	1	2	1

For example: in 48 occasions, a bird had just 1 hop before flying again, in 20 occasions they had 3 hops, etc. Assume that the number of hops can be modelled as a geometric random variable with unknown success probability $\theta_{0} \in(0,1)$. Compute the MLE based on the data in the table, and find an asymptotic confidence interval of level 95%.

Solution 12.2

(a) 1. Let $X \sim \operatorname{Geo}\left(\theta_{0}\right)$, for some unknown $\theta_{0} \in(0,1)$.

$$
E(X)=\frac{1}{\theta_{0}} \Leftrightarrow \theta_{0}=\frac{1}{E(X)}
$$

Approximating $E(X)$ by \bar{X}_{n} ($\tilde{\sim}_{n}$ which we can justify by the strong law of large numbers), we get the moment estimator $\tilde{\theta}_{n}=\frac{1}{\bar{X}_{n}}$ for θ_{0}.
For the MLE, we maximise as usual the log-likelihood.

$$
\begin{aligned}
L(\theta) & =\prod_{i=1}^{n} f\left(X_{i} \mid \theta\right)=\prod_{i=1}^{n} \theta(1-\theta)^{X_{i}-1}=\theta^{n}(1-\theta)^{\sum_{i=1}^{n}\left(X_{i}-1\right)} \\
l(\theta) & =\log (L(\theta))=n \log (\theta)+\sum_{i=1}^{n}\left(X_{i}-1\right) \log (1-\theta)
\end{aligned}
$$

Differentiating,

$$
\begin{aligned}
\frac{\partial l}{\partial \theta}\left(\hat{\theta}_{n}\right)=0 & \Leftrightarrow \frac{n}{\hat{\theta}_{n}}-\sum_{i=1}^{n} \frac{X_{i}-1}{1-\hat{\theta}_{n}}=0 \\
& \Leftrightarrow n\left(1-\hat{\theta}_{n}\right)=\hat{\theta}_{n} \sum_{i=1}^{n}\left(X_{i}-1\right) \\
& \Leftrightarrow n=n \hat{\theta}_{n}+\hat{\theta}_{n} \sum_{i=1}^{n} X_{i}-n \hat{\theta}_{n} \\
& \Leftrightarrow \hat{\theta}_{n}=\frac{n}{\sum_{i=1}^{n} X_{i}}=\frac{1}{\bar{X}_{n}}
\end{aligned}
$$

is the unique stationary point. We check maximality by taking the second derivative:

$$
\frac{\partial^{2} l(\theta)}{\partial \theta^{2}}=-\frac{n}{\theta^{2}}-\sum_{i=1}^{n} \frac{X_{i}-1}{(1-\theta)^{2}}<0
$$

Since the second derivative is negative, l is strictly concave on $(0,1)$ and so $\hat{\theta}_{n}=\frac{1}{\bar{X}_{n}}$ is the MLE. In this case it coincides with the moment estimator $\tilde{\theta}_{n}$.
For the Fisher information, note that

$$
\begin{aligned}
\log f(x \mid \theta) & =\log (\theta)+(x-1) \log (1-\theta) \\
\frac{\partial \log f(x \mid \theta)}{\partial \theta} & =\frac{1}{\theta}-\frac{x-1}{1-\theta} \\
\frac{\partial^{2} \log f(x \mid \theta)}{\partial \theta^{2}} & =-\frac{1}{\theta^{2}}-\frac{x-1}{(1-\theta)^{2}} \\
\Leftrightarrow I\left(\theta_{0}\right) & =-E\left[\left.\frac{\partial^{2} \log f\left(X_{1} \mid \theta\right)}{\partial \theta^{2}}\right|_{\theta=\theta_{0}}\right] \\
& =\frac{1}{\theta_{0}^{2}}+\frac{E\left(X_{1}\right)-1}{\left(1-\theta_{0}\right)^{2}} \\
& =\frac{1}{\theta_{0}^{2}}+\frac{\frac{1}{\theta_{0}}-1}{\left(1-\theta_{0}\right)^{2}} \\
& =\frac{1}{\theta_{0}^{2}}+\frac{1}{\theta_{0}\left(1-\theta_{0}\right)} \\
& =\frac{1}{\theta_{0}^{2}\left(1-\theta_{0}\right)}
\end{aligned}
$$

2. If $X \sim \operatorname{Bernoulli}\left(\theta_{0}\right)$, then $E(X)=\theta_{0}$. Thus we get the moment estimator $\tilde{\theta}_{n}=\bar{X}_{n}$ for θ_{0}.

$$
\begin{aligned}
L(\theta) & =\theta^{\sum_{i=1}^{n} X_{i}}(1-\theta)^{n-\sum_{i=1}^{n} X_{i}} \\
l(\theta) & =\left(\sum_{i=1}^{n} X_{i}\right) \log (\theta)+\log (1-\theta)\left(n-\sum_{i=1}^{n} X_{i}\right)
\end{aligned}
$$

So we get:

$$
\begin{aligned}
\frac{\partial l}{\partial \theta}\left(\hat{\theta}_{n}\right)=0 & \Leftrightarrow \frac{1}{\hat{\theta}_{n}} \sum_{i=1}^{n} X_{i}-\frac{1}{1-\hat{\theta}_{n}}\left(n-\sum_{i=1}^{n} X_{i}\right)=0 \\
& \Leftrightarrow\left(1-\hat{\theta}_{n}\right) \sum_{i=1}^{n} X_{i}=\hat{\theta}_{n}\left(n-\sum_{i=1}^{n} X_{i}\right) \\
& \Leftrightarrow \hat{\theta}_{n}=\frac{\sum_{i=1}^{n} X_{i}}{n}=\bar{X}_{n}
\end{aligned}
$$

as the unique stationary point. We check that

$$
\frac{\partial^{2} l}{\partial \theta^{2}}(\theta)=-\frac{1}{\theta^{2}} \sum_{i=1}^{n} X_{i}-\frac{1}{(1-\theta)^{2}}\left(n-\sum_{i=1}^{n} X_{i}\right)<0
$$

for any $X_{1}, \ldots, X_{n} \in\{0,1\}$.

Since l is strictly concave, $\hat{\theta}_{n}\left(=\tilde{\theta}_{n}\right)$ is the MLE.
For the Fisher information,

$$
\begin{aligned}
\log f(x \mid \theta) & =x \log (\theta)+(1-x) \log (1-\theta) \\
\frac{\partial^{2} \log f(x \mid \theta)}{\partial \theta^{2}} & =-\frac{x}{\theta^{2}}-\frac{1-x}{(1-\theta)^{2}} \\
\Leftrightarrow I\left(\theta_{0}\right) & =-E\left[\left.\frac{\partial^{2} \log f\left(X_{1} \mid \theta\right)}{\partial \theta^{2}}\right|_{\theta=\theta_{0}}\right] \\
& =\frac{E\left(X_{1}\right)}{\theta_{0}^{2}}+\frac{1-E\left(X_{1}\right)}{\left(1-\theta_{0}\right)^{2}} \\
& =\frac{\theta_{0}}{\theta_{0}^{2}}+\frac{1-\theta_{0}}{\left(1-\theta_{0}\right)^{2}} \\
& =\frac{1}{\theta_{0}}+\frac{1}{1-\theta_{0}} \\
& =\frac{1}{\theta_{0}\left(1-\theta_{0}\right)}
\end{aligned}
$$

3. If $X \sim \operatorname{Beta}\left(1, \theta_{0}\right)$, then

$$
E(X)=\frac{1}{1+\theta_{0}} \Leftrightarrow \theta_{0}=\frac{1}{E(X)}-1
$$

and therefore, $\tilde{\theta}_{n}=\frac{1}{\bar{X}_{n}}-1$ is the moment estimator for θ_{0}.

$$
L(\theta)=\prod_{i=1}^{n} \theta\left(1-X_{i}\right)^{\theta-1}=\theta^{n}\left(\prod_{i=1}^{n}\left(1-X_{i}\right)\right)^{\theta-1}
$$

and

$$
l(\theta)=n \log (\theta)+(\theta-1) \sum_{i=1}^{n} \log \left(1-X_{i}\right)
$$

so we maximise at

$$
\begin{aligned}
& \frac{\partial l}{\partial \theta}\left(\hat{\theta}_{n}\right)=\frac{n}{\hat{\theta}_{n}}+\sum_{i=1}^{n} \log \left(1-X_{i}\right)=0 \\
& \quad \Rightarrow \hat{\theta}_{n}=-\frac{n}{\sum_{i=1}^{n} \log \left(1-X_{i}\right)}
\end{aligned}
$$

l is clearly concave (as the sum of a strictly concave and linear functions). Hence $\hat{\theta}_{n}$ is the MLE.
For the Fisher information,

$$
\begin{aligned}
\log f(x \mid \theta) & =\log (\theta)+(\theta-1) \log (1-x) \\
\frac{\partial \log f(x \mid \theta)}{\partial \theta} & =\frac{1}{\theta}+\log (1-x) \\
\frac{\partial^{2} \log f(x \mid \theta)}{\partial \theta^{2}} & =-\frac{1}{\theta^{2}} \\
\Leftrightarrow I\left(\theta_{0}\right) & =-E\left[\left.\frac{\partial^{2} \log f\left(X_{1} \mid \theta\right)}{\partial \theta^{2}}\right|_{\theta=\theta_{0}}\right]=\frac{1}{\theta_{0}^{2}}
\end{aligned}
$$

4.

$$
\begin{aligned}
E\left(X^{2}\right) & =\frac{\theta_{0}}{2} \int_{\mathbb{R}} x^{2} e^{-\theta_{0}|x|} d x \\
& =\theta_{0} \int_{0}^{\infty} x^{2} e^{-\theta_{0} x} d x \\
& =\theta_{0} \frac{\Gamma(3)}{\theta_{0}^{3}} \int_{0}^{\infty} \frac{\theta_{0}^{3}}{\Gamma(3)} x^{3-1} e^{-\theta_{0} x} d x \\
& =\frac{\Gamma(3)}{\theta_{0}^{2}}=\frac{2}{\theta_{0}^{2}}
\end{aligned}
$$

(noting that we integrate the density of a $\mathrm{G}\left(3, \theta_{0}\right)$ distribution). Alternatively, we could observe that

$$
\int_{0}^{\infty} \theta_{0} x^{2} e^{-\theta_{0} x} d x=E\left[Y^{2}\right]=E(Y)^{2}+\operatorname{var}(Y)=\frac{2}{\theta_{0}^{2}}
$$

for $Y \sim \operatorname{Exp}\left(\theta_{0}\right)$.
Therefore, $\theta_{0}^{2}=\sqrt{\frac{2}{E\left(X^{2}\right)}}$. We can replace $E\left(X^{2}\right)$ by $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$ to obtain the moment estimator

$$
\begin{gathered}
\tilde{\theta}_{n}=\sqrt{\frac{2}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}} \\
L(\theta)=\prod_{i=1}^{n} \frac{\theta}{2} e^{-\theta\left|X_{i}\right|}=\frac{1}{2^{n}} \theta^{n} e^{-\theta \sum_{i=1}^{n}\left|X_{i}\right|} \\
l(\theta)=c+n \log (\theta)-\theta \sum_{i=1}^{n}\left|X_{i}\right|
\end{gathered}
$$

for $c=-n \log (2)$ a constant. Therefore,

$$
\begin{aligned}
& \frac{\partial l}{\partial \theta}\left(\hat{\theta}_{n}\right)=\frac{n}{\hat{\theta}_{n}}-\sum_{i=1}^{n}\left|X_{i}\right|=0 \\
& \quad \Rightarrow \hat{\theta}_{n}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}\right|}
\end{aligned}
$$

Since the function l is strictly concave, we conclude that $\hat{\theta}_{n}$ is the MLE.
For the Fisher information,

$$
\begin{aligned}
\log f(x \mid \theta) & =-\log (2)+\log (\theta)-\theta|x| \\
\frac{\partial \log f(x \mid \theta)}{\partial \theta} & =\frac{1}{\theta}-|x| \\
\frac{\partial^{2} \log f(x \mid \theta)}{\partial \theta^{2}} & =-\frac{1}{\theta^{2}} \\
\Rightarrow I\left(\theta_{0}\right) & =\frac{1}{\theta_{0}^{2}}
\end{aligned}
$$

(b) Assume that the geometric model satisfies the regularity conditions of Theorem 2 from the lecture. Then, the MLE for θ_{0} based on $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Geo}\left(\theta_{0}\right)$, for some $\theta_{0} \in(0,1)$, is asymptotically normal with

$$
\begin{aligned}
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) & \xrightarrow{\mathrm{d}} \mathcal{N}\left(0, \frac{1}{I\left(\theta_{0}\right)}\right) \\
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \sqrt{I\left(\theta_{0}\right)} & \xrightarrow{\mathrm{d}} \mathcal{N}(0,1)
\end{aligned}
$$

with $\sqrt{I\left(\theta_{0}\right)}=\sqrt{\frac{1}{\theta_{0}^{2}\left(1-\theta_{0}\right)}}$.
Replacing θ_{0} by $\hat{\theta}_{n}$ results in

$$
\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \sqrt{\frac{1}{\hat{\theta}_{n}^{2}\left(1-\hat{\theta}_{n}\right)}} \stackrel{\mathrm{d}}{\rightarrow} \mathcal{N}(0,1) .
$$

For $\alpha \in(0,1)$, let $z_{1-\frac{\alpha}{2}}$ be the $\left(1-\frac{\alpha}{2}\right)$-quantile of $Z \sim \mathcal{N}(0,1)$. Then,

$$
\begin{array}{r}
P\left(\sqrt{n}\left(\hat{\theta}_{n}-\theta_{0}\right) \frac{1}{\hat{\theta}_{n} \sqrt{1-\hat{\theta}_{n}}} \in\left(-z_{1-\frac{\alpha}{2}}, z_{\left.1-\frac{\alpha}{2}\right]}\right) \xrightarrow{n \rightarrow \infty} 1-\alpha\right. \\
\Leftrightarrow P\left(\theta_{0} \in I_{\alpha}\right) \xrightarrow{n \rightarrow \infty} 1-\alpha
\end{array}
$$

where

$$
\begin{aligned}
I_{\alpha} & =\left[\hat{\theta}_{n}-\frac{\hat{\theta}_{n} \sqrt{1-\hat{\theta}_{n}}}{\sqrt{n}} z_{1-\frac{\alpha}{2}}, \hat{\theta}_{n}+\frac{\hat{\theta}_{n} \sqrt{1-\hat{\theta}_{n}}}{\sqrt{n}} z_{1-\frac{\alpha}{2}}\right) \\
& =\left[\frac{1}{\overline{X_{n}}}-\frac{1}{\overline{X_{n}}} \sqrt{1-\frac{1}{\overline{X_{n}}}} \frac{z_{1-\frac{\alpha}{2}}^{\sqrt{n}}}{\frac{1}{X_{n}}}+\frac{1}{\overline{X_{n}}} \sqrt{1-\frac{1}{\overline{X_{n}}}} \frac{z_{1-\frac{\alpha}{2}}^{\sqrt{n}}}{}\right) .
\end{aligned}
$$

(c) With $n=130$,

$$
\sum_{i=1}^{n} X_{i}=1 \times 48+2 \times 31+3 \times 20+\ldots+12 \times 1=363
$$

and so $\bar{X}_{n}=2.792$. Using $\alpha=0.05, z_{1-\frac{\alpha}{2}}=z_{0.975} \approx 1.964$ and we get the confidence interval

$$
P\left(\theta_{0} \in[0.308,0.407]\right) \approx 0.95 .
$$

Exercise 12.3

(a) Find a sufficient statistic for the parameters generating the following models:
1.

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{idid}}{\sim} \mathrm{U}([0, \theta]), \quad \theta \in(0,+\infty) .
$$

2.

$$
X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Exp}(\lambda), \quad \lambda \in(0,+\infty) .
$$

3.

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathcal{N}\left(\mu, \sigma^{2}\right), \quad \theta=(\mu, \sigma)^{T} \in \mathbb{R} \times(0,+\infty) .
$$

4.

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \mathrm{U}([\theta, \theta+1]), \quad \theta \in \mathbb{R} .
$$

(b) Show that in general, if $T\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic for $\theta \in \Theta$ (where $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ $f(\cdot \mid \theta))$, then for any $c \in \mathbb{R} \backslash\{0\}, c T\left(X_{1}, \ldots, X_{n}\right)$ is also sufficient for θ.
Hint: Use the factorisation theorem.

Solution 12.3

(a) We use the factorisation theorem.

1. $f(x \mid \theta)=\frac{1}{\theta} \mathbb{1}_{x \in[0, \theta]}$, so

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) & =\frac{1}{\theta^{n}} \prod_{i=1}^{n} \mathbb{1}_{x_{i} \in[0, \theta]} \\
& =\frac{1}{\theta^{n}} \prod_{i=1}^{n} \mathbb{1}_{x_{i} \geq 0} \mathbb{1}_{x_{i} \leq \theta} \\
& =\frac{1}{\theta^{n}} \mathbb{1}_{\min _{i} x_{i} \geq 0} \mathbb{1}_{\max _{i} x_{i} \leq \theta} \\
& =g\left(T\left(x_{1}, \ldots, x_{n}\right), \theta\right) h\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

with $T\left(x_{1}, \ldots, x_{n}\right)=\max _{1 \leq i \leq n} x_{i}, g(t, \theta)=\frac{1}{\theta^{n}} \mathbb{1}_{t \leq \theta}$ and $h\left(x_{1}, \ldots, x_{n}\right)=\mathbb{1}_{\min _{1 \leq i \leq n} x_{i} \geq 0}$. Hence, $T\left(X_{1}, \ldots, X_{n}\right)=\max _{1 \leq i \leq n} X_{i}$ is sufficient for θ.
2.

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} \mid \lambda\right) & =\prod_{i=1}^{n} \lambda e^{-\lambda x_{i}} \mathbb{1}_{x_{i}>0} \\
& =\lambda^{n} e^{-\lambda \sum_{i=1}^{n} x_{i}} \mathbb{1}_{\min _{i} x_{i} \geq 0} \\
& =g\left(T\left(x_{1}, \ldots, x_{n}\right), \lambda\right) h\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

with $g(t, \lambda)=\lambda^{n} e^{-\lambda t}, h\left(x_{1}, \ldots, x_{n}\right)=\mathbb{1}_{\min _{1 \leq i \leq n} x_{i} \geq 0}$ and $T\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}$. Therefore, $T\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} X_{i}$ is sufficient for λ.
3.

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) & =\frac{1}{(2 \pi)^{\frac{n}{2}} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}} \\
& =\frac{1}{(2 \pi)^{\frac{n}{2}} \sigma^{n}} e^{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}+\frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} x_{i}-\frac{n \mu^{2}}{2 \sigma^{2}}} \\
& =g\left(T\left(x_{1}, \ldots, x_{n}\right), \theta\right) h\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

with

$$
g(t, \theta)=\frac{1}{(2 \pi)^{\frac{n}{2}} \theta_{2}^{n}} e^{-\frac{1}{2 \theta_{2}^{2}} t_{2}+\frac{\theta_{1}}{\theta_{2}^{2}} t_{1}-n \frac{\theta_{1}^{2}}{2 \theta_{2}^{2}}}
$$

$h\left(x_{1}, \ldots, x_{n}\right)=1, T\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} x_{i}^{2}\right)^{T}$. Thus $T\left(X_{1}, \ldots, X_{n}\right)=\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)^{T}$ is sufficient for $\theta=(\mu, \sigma)^{T}$.
4.

$$
\begin{aligned}
\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) & =\prod_{i=1}^{n} \mathbb{1}_{\theta \leq x_{i} \leq \theta+1} \\
& =\prod_{i=1}^{n} \mathbb{1}_{\theta \leq x_{i}} \mathbb{1}_{\theta \geq x_{i}-1} \\
& =\mathbb{1}_{\theta \leq \min _{i} x_{i}} \mathbb{1}_{\theta \geq \max _{i} x_{i}-1} \\
& =\mathbb{1}_{\max _{i} x_{i}-1 \leq \theta \leq \min _{i} x_{i}} \\
& =g\left(T\left(x_{1}, \ldots, x_{n}\right), \theta\right) h\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

with $g(t, \theta)=\mathbb{1}_{t_{2}-1 \leq \theta \leq t_{1}}, h\left(x_{1}, \ldots, x_{n}\right)=1$ and $T\left(x_{1}, \ldots, x_{n}\right)=\left(\min _{1 \leq i \leq n} x_{i}, \max _{1 \leq i \leq n} x_{i}\right)^{T}$, and therefore $T\left(X_{1}, \ldots, X_{n}\right)=\left(\min _{1 \leq i \leq n} X_{i}, \max _{1 \leq i \leq n} X_{i}\right)^{T}$ is sufficient for θ.
(b) If $T\left(X_{1}, \ldots, X_{n}\right)$ is sufficient then

$$
\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=g\left(T\left(x_{1}, \ldots, x_{n}\right), \theta\right) h\left(x_{1}, \ldots, x_{n}\right)
$$

for some measurable functions g and h. If we define $\tilde{g}(t, \theta)=g\left(\frac{t}{c}, \theta\right)$, it will follow that

$$
\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\tilde{g}\left(\tilde{T}\left(x_{1}, \ldots, x_{n}\right), \theta\right) h\left(x_{1}, \ldots, x_{n}\right)
$$

where $\tilde{T}\left(x_{1}, \ldots, x_{n}\right)=c T\left(x_{1}, \ldots, x_{n}\right)$.
This shows that $\tilde{T}\left(X_{1}, . ., X_{n}\right)=c T\left(X_{1}, \ldots, X_{n}\right)$ is sufficient for θ. Replacing c by $\frac{1}{c}$ gives the equivalence.
Remark: This implies, for example, that if $\sum_{i=1}^{n} X_{i}$ is sufficient for θ, then so is \bar{X}_{n}.
Exercise 12.4 Let $(X, Y)^{T}$ be a random vector. We want to show that $\operatorname{var}(X \mid Y)=0$ with probability 1, if and only if there is a measurable function h such that $P(X=h(Y))=1$.

We consider only the case where the vector is discrete (takes either finitely many or countably many different values).
(a) State the definition of $\operatorname{var}(X \mid Y=y)$.
(b) Show that $\operatorname{var}(X \mid Y)=0$ with probability 1 if and only if $P(X=E(X \mid Y))=1$.
(c) Conclude.

Solution 12.4

(a)

$$
\operatorname{var}(X \mid Y=y):=\sum_{x}(x-E(X \mid Y=y))^{2} p(x \mid y)
$$

for any y such that $p_{Y}(y)>0$.
(b) Let $Z=X-E(X \mid Y)$. First, assume that $P(\operatorname{var}(X \mid Y)=0)=1$, or in other words, $P\left(E\left(Z^{2} \mid Y\right)=0\right)=1$. For any y with $p_{Y}(y)>0$, we have that

$$
0=P\left(E\left(Z^{2} \mid Y\right) \neq 0\right) \geq p_{Y}(y) \mathbb{1}_{E\left(Z^{2} \mid Y=y\right) \neq 0}
$$

and thus $E\left(Z^{2} \mid Y=y\right)=0$. Then we get:

$$
\begin{aligned}
E\left(Z^{2}\right) & =E\left(E\left(Z^{2} \mid Y\right)\right) \\
& =\sum_{y: p_{Y}(y)>0} E\left(Z^{2} \mid Y=y\right) p_{Y}(y) \\
& =0
\end{aligned}
$$

Since $Z^{2} \geq 0$, this implies that $Z=0$ almost surely, or

$$
P(Z=0)=1 \Leftrightarrow P(X=E(X \mid Y))=1
$$

For the other direction, we start from $P(Z=0)=1$. It will be convenient to use the joint probability of Z and Y :

$$
q_{Z, Y}(z, y)=P(Z=z, Y=y)=\sum_{x: x-E(X \mid Y=y)=z} p_{X, Y}(x, y)=p_{X, Y}(E(X \mid Y=y)+z, y)
$$

Note that the resulting marginal pmf for Y is $q_{Y}(y)=P(Y=y)=p_{Y}(y)$.Then, for y with $p_{Y}(y)>0$, and denoting by $q(z \mid y)$ the conditional pmf of Z given $Y=y$:

$$
q(z \mid y)=\frac{q(z, y)}{p_{Y}(y)} \leq \frac{\sum_{y^{\prime}} q\left(z, y^{\prime}\right)}{p_{Y}(y)}=\frac{p_{Z}(z)}{p_{Y}(y)}=0
$$

unless $z=0($ since $P(Z=0)=1)$.
Hence,

$$
E\left[Z^{2} \mid Y=y\right]=\sum_{z} z^{2} q(z \mid y)=0
$$

for any y with $p_{Y}(y)>0$, since $z^{2} q(z \mid y)=0$ for any z.
Therefore,

$$
\begin{aligned}
P(\operatorname{var}(X \mid Y)=0) & =P\left(E\left[Z^{2} \mid Y\right]=0\right) \\
& =\sum_{y: p_{Y}(y)>0} \mathbb{1}_{E\left[Z^{2} \mid Y=y\right]=0} p_{Y}(y) \\
& =\sum_{y: p_{Y}(y)>0} p_{Y}(y) \\
& =1
\end{aligned}
$$

as we wanted.
(c) We have shown that

$$
P(X=E(X \mid Y))=1 \Leftrightarrow P(\operatorname{var}(X \mid Y)=0)=1
$$

Thus,

$$
P(\operatorname{var}(X \mid Y)=0)=1 \Rightarrow P\left(X=\mu_{X}(Y)\right)=1
$$

where $\mu_{X}(y)=E(X \mid Y=y)$.
If there is a measurable function Ψ such that $P(X=\Psi(Y))=1$, then $P(X=E(X \mid$ $Y)) \geq P(X=\Psi(Y))$ since we know that $X=\Psi(Y) \Rightarrow E(X \mid Y)=\Psi(Y)$. Therefore, $P(X=E(X \mid Y))=1$ which implies that $P(\operatorname{var}(X \mid Y)=0)=1$.

Exercise 12.5 (optional).
The goal here is to justify why the idea of maximising the likelihood is a good one.
(a) For $X \sim f\left(\cdot \mid \theta_{0}\right)$ and $\theta \in \Theta$, assume that $E[\log f(X \mid \theta)]$ exists.

Show that $E[\log f(X \mid \theta)] \leq E\left[\log f\left(X \mid \theta_{0}\right)\right]$.
Hint: Show that $E\left[\log \left(\frac{f\left(X \mid \theta_{0}\right)}{f(X \mid \theta)}\right)\right] \geq 0$ by using Jensen's inequality for the convex function $t \mapsto-\log t, t \in(0,+\infty)$.
(b) Recall the weak law of large numbers: if Y_{1}, \ldots, Y_{n} are i.i.d. such that $E\left(\left|Y_{1}\right|\right)<\infty$, then

$$
\bar{Y}_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{\mathbb{P}} E\left(Y_{1}\right) \quad(n \rightarrow \infty)
$$

Using the WLLN, explain why the MLE would be a reasonable estimator.

Solution 12.5

(a) We have that

$$
\begin{aligned}
E\left[\log \frac{f\left(X \mid \theta_{0}\right)}{f(X \mid \theta)}\right] & =E\left[-\log \frac{f(X \mid \theta)}{f\left(X \mid \theta_{0}\right)}\right] \\
& \geq-\log \left(E\left[\frac{f(X \mid \theta)}{f\left(X \mid \theta_{0}\right)}\right]\right)
\end{aligned}
$$

by Jensen's inequality applied to the convex function $t \mapsto-\log (t)$, for $t \in(0,+\infty)$.
But since $X \sim f\left(\cdot \mid \theta_{0}\right)$,

$$
\begin{aligned}
E\left[\frac{f(X \mid \theta)}{f\left(X \mid \theta_{0}\right.}\right] & =\int \frac{f(x \mid \theta)}{f\left(x \mid \theta_{0}\right)} f\left(x \mid \theta_{0}\right) d \mu(x) \\
& =\int f(x \mid \theta) d \mu(x) \\
& =1
\end{aligned}
$$

since we are integrating a density. Note that $-\log (1)=0$, and thus, for $\theta \in \Theta$,

$$
E\left[\log f\left(X \mid \theta_{0}\right)\right] \geq E[\log f(X \mid \theta)]
$$

Therefore, the true parameter θ_{0} maximises the function $\theta \mapsto E[\log f(X \mid \theta)]$.
(b) By the weak law of large numbers,

$$
\frac{1}{n} \sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right) \underset{n \rightarrow \infty}{\stackrel{\mathbb{P}}{\rightarrow}} E[\log f(X \mid \theta)]
$$

Hence, by maximising the log-likelihood

$$
l(\theta)=\sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)
$$

over Θ, we are also maximising

$$
\frac{1}{n} l(\theta)=\frac{1}{n} \sum_{i=1}^{n} \log f\left(X_{i} \mid \theta\right)
$$

We "hope" (under some technical conditions) that as $n \rightarrow \infty$, we will manage to get closer to the maximal value of $E[\log f(X \mid \theta)]$, which is $E\left[\log f\left(X \mid \theta_{0}\right)\right]$ by part (a). This gives a heuristic argument for why the MLE should converge to θ_{0}, as $n \rightarrow \infty$.

