
ETH Zürich, Spring 2019
Lecturer: Fadoua Balabdaoui Coordinator: David Martins

Probability and Statistics

Exercise sheet 12

Exercise 12.1 The goal of this exercise is to show that if X = (X1, ..., Xn)T ∼ N (µ,Σ) with Σ
invertible, then X admits a density with respect to the Lebesgue measure on (Rn,BRn), given by

f(x) = fX(x) = 1
(
√

2π)n
1√

det(Σ)
e−

1
2 (x−µ)TΣ−1(x−µ) (1)

for any x = (x1, ..., xn)T ∈ Rn.
Before showing this, we first settle some questions around the covariance matrix Σ (this is

done in the first two parts). In (a) and (b), the random vector X can have any distribution (not
necessarily normal).

(a) Recall that the covariance matrix of X, Σ, has entries Σij = cov(Xi, Xj) for 1 ≤ i, j ≤ n.
Show that

Σ = E[(X − µ)(X − µ)T ].

Remark: Expectations are evaluated componentwise, i.e. if M is a random matrix,

E


 M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn


 =

 E(M11) . . . E(M1n)
...

. . .
...

E(Mn1) . . . E(Mnn)

 .

(b) Let A ∈ Rp×n be a fixed (deterministic) matrix. Show that the covariance matrix of AX is
AΣAT .
If A = aT ∈ R1×n, what is the covariance of aTX? Conclude that Σ is semi-positive definite.

(c) Now take X ∼ N (µ,Σ). By definition, X d= µ+AZ with AAT = Σ (i.e., A is a square root
of Σ), and Z is standard normal, i.e. Z = (Z1, ..., Zn)T for Z1, ..., Zn

iid∼ N (0, 1).

• Check that Σ is indeed the covariance matrix of X.
• Assuming that Σ is invertible, show that A is also invertible. Using the Jacobian formula,

show that X has density given by (1) almost everywhere.

(d) Suppose you are given a density in the form (1). Can you find the marginal density of
Xi (i ∈ {1, ..., n}) without additional calculations?

(e) (optional).
For d = 2, if σ2

1 = var(X1) > 0, σ2
2 = var(X2) > 0 and cov(X1, X2) = σ1σ2ρ with ρ the

correlation between X1 and X2.What is the condition on ρ for Σ to be invertible? What is
the expression of the density in this case?

Solution 12.1
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(a) Put M := (X − µ)(X − µ)T . Then, by definition

Mij = (Xi − µi)(Xj − µj) = (Xi − E(Xi))(Xj − E(Xj))
and

E(Mij) = E[(Xi − E(Xi))(Xj − E(Xj))] = cov(Xi, Xj)
for (i, j) ∈ {1, ..., n}2.
Thus, Σ = E[(X − µ)(X − µ)T ].

(b) The covariance of AX, Σ̃, is given by

Σ̃ := E[(AX −Aµ)(AX −Aµ)T ]

since E(AX) = AE(X) = Aµ.
Thus,

Σ̃ = E[A(X − µ)(X − µ)TAT ]
= AE[(X − µ)(X − µ)T ]AT

= AΣAT .

For A = aT , AX = aTX ∈ R and the covariance boils down to var(aTX). Since this covariance
is also equal to aTΣa, we conclude that aTΣa = var(aTX). Now, var(aTX) ≥ 0 ∀a ∈ Rn
implying that Σ is positive semidefinite.

(c) • We have shown that the covariance is given by

E[(X − µ)(X − µ)T ].

Since X d= µ+AZ and µ is a deterministic vector, this implies that

X − µ d= AZ

and hence X − µ and AZ have the same moments (when these exist).
Therefore,

E[(X − µ)(X − µ)T ] = E[(AZ)(AZ)T ] = AΣZAT

where

ΣZ = E(ZZT ) =


1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 1

 = In×n

is the identity matrix.
Hence, the covariance of X is AAT = Σ.

• We have

Σ = PT

 λ1 . . . 0
...

. . .
...

0 . . . λn

P

where P is orthogonal (PTP = PPT = In×n). Since Σ is invertible (so that det(Σ) =∏n
i=1 λi 6= 0), and since Σ is semi-positive definite, so that λi ≥ 0 for each i, putting

these together we get that λi > 0 for each i = 1, ..., n.

2 / 14



Probability and Statistics, Spring 2019 Exercise sheet 12

We have seen that we can take

A = PT


√
λ1 . . . 0
...

. . .
...

0 . . .
√
λn


as a square root for Σ. A is clearly invertible since

B =


1√
λ1

. . . 0
...

. . .
...

0 . . . 1√
λn

P

satisfies AB = In×n.
Letting g(z) = µ + Az for z = (z1, ..., zn)T ∈ Rn. Then g ∈ C1(Rn) with ∇g(z) = A
(∇g is an equivalent notation for grad g), and

Jg(z) = det(∇g(z)) = det(A) 6= 0

for any z ∈ Rn. Also, g−1(x) = A−1(x− µ).
By the Jacobian theorem, we have

fX(x) = fZ ◦ g−1(x)
|Jg ◦ g−1(x)|

(on the open set O = Rn) with

fZ(z) = 1
(2π)n2

exp
(
−1

2

n∑
i=1

z2
i

)

= 1
(2π)n2

exp
(
−1

2z
T z

)
.

It follows that

fX(x) = 1
(2π)n2

exp
(
− 1

2 (x− µ)T (A−1)TA−1(x− µ)
)

det(A)

(note det(A) =
∏n
i=1
√
λi > 0).

Now, (A−1)TA−1 = (AAT )−1 = Σ−1 and det(AAT ) = (det(A))2 = det(Σ), so that
det(A) =

√
det(Σ), yielding the formula in (1).

(d) If we are given a density in the form (1), this means that X ∼ N (µ,Σ). By the general
characterisation of Gaussian vectors, this also mean that any linear combination of the
components of X is normally distributed, and in particular so are the components themselves.
Thus, for any i ∈ {1, ..., n}, Xi ∼ N (E(Xi), var(Xi)). But E(Xi) = µi and var(Xi) = Σii.
Hence, Xi ∼ N (µi,Σii) for i ∈ {1, ..., n}.

(e) In this case,

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.
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Σ being invertible is equivalent to

det(Σ) 6= 0⇔ σ2
1σ

2
2(1− ρ2) 6= 0⇔ |ρ| < 1

(note that we must always have |ρ| ≤ 1).
To find Σ−1, recall that

(
a b
c d

)−1
= 1
ad− cb

(
d −b
−c a

)
.

Let µ = (µ1, µ2)T be the mean. For x = (x1, x2)T ∈ R2, we compute

(x− µ)TΣ−1(x− µ) = 1
σ2

1σ
2
2(1− ρ2) (x1 − µ1, x2 − µ2)

(
σ2

2 −ρσ1σ2
−ρσ1σ2 σ2

2

)(
x1 − µ1
x2 − µ2

)
= 1
σ2

1σ
2
2(1− ρ2) (x1 − µ1, x2 − µ2)

(
σ2

2(x1 − µ1)− ρσ1σ2(x2 − µ2)
σ2

2(x2 − µ2)− ρσ1σ2(x1 − µ1)

)
= 1
σ2

1σ
2
2(1− ρ2) (σ2

2(x1 − µ1)2 − 2ρσ1σ2(x1 − µ1)(x2 − µ2) + σ2
1(x2 − µ2)2)

= 1
1− ρ2

(
(x1 − µ1)2

σ2
1

− 2ρ
σ1σ2

(x1 − µ1)(x2 − µ2) + (x2 − µ2)2

σ2
2

)
Finally,

fX(x) = 1
2π

1
σ1σ2

√
1− ρ2

exp
(
− 1

2(1− ρ2)

(
(x1 − µ1)2

σ2
1

− 2ρ
σ1σ2

(x1 − µ1)(x2 − µ2) + (x2 − µ2)2

σ2
2

))
.

Exercise 12.2 (some training) Let X1, ..., Xn be i.i.d with density f(· | θ0), where the true value
of θ0 is unknown.

(a) For the following models, find the moment estimator and MLE for θ0 ∈ Θ as well as the
Fisher information I(θ0) (you may assume that all regularity conditions are fulfilled).

1. (Geometric)

f(x | θ) = (1− θ)x−1θ

for x ∈ N≥1,where θ ∈ Θ = (0, 1).
2. (Bernoulli)

f(x | θ) = θx(1− θ)1−x

for x ∈ {0, 1}, where θ ∈ Θ = (0, 1).
3. (Beta(1, θ))

f(x | θ) = θ(1− x)θ−1
1x∈(0,1),

where θ ∈ Θ = (0,+∞).
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4. (Laplace)

f(x | θ) = θ

2e
−θ|x|

for x ∈ R, where θ ∈ Θ = (0,+∞).
Hint: Note that for X ∼ Laplace(θ), E(X) = 0 and therefore one needs to use the next
order moment.

(b) For the first model Geo(θ), construct an asymptotic confidence interval of level 1− α for θ0,
based on the asymptotic normality of the MLE θ̂, and approximating I(θ0) by I(θ̂).

(c) In a study of feeding behaviors of birds, the number of hops between flights was counted for
n = 130 birds. The data are given in the following table.

# Hops 1 2 3 4 5 6 7 8 9 10 11 12
Frequency 48 31 20 9 6 5 4 2 1 1 2 1

For example: in 48 occasions, a bird had just 1 hop before flying again, in 20 occasions they
had 3 hops, etc. Assume that the number of hops can be modelled as a geometric random
variable with unknown success probability θ0 ∈ (0, 1). Compute the MLE based on the data
in the table, and find an asymptotic confidence interval of level 95%.

Solution 12.2

(a) 1. Let X ∼ Geo(θ0), for some unknown θ0 ∈ (0, 1).

E(X) = 1
θ0
⇔ θ0 = 1

E(X) .

Approximating E(X) by Xn (which we can justify by the strong law of large numbers),
we get the moment estimator θ̃n = 1

Xn
for θ0.

For the MLE, we maximise as usual the log-likelihood.

L(θ) =
n∏
i=1

f(Xi | θ) =
n∏
i=1

θ(1− θ)Xi−1 = θn(1− θ)
∑n

i=1
(Xi−1)

l(θ) = log(L(θ)) = n log(θ) +
n∑
i=1

(Xi − 1) log(1− θ)

Differentiating,

∂l

∂θ
(θ̂n) = 0⇔ n

θ̂n
−

n∑
i=1

Xi − 1
1− θ̂n

= 0

⇔ n(1− θ̂n) = θ̂n

n∑
i=1

(Xi − 1)

⇔ n = nθ̂n + θ̂n

n∑
i=1

Xi − nθ̂n

⇔ θ̂n = n∑n
i=1Xi

= 1
Xn

is the unique stationary point. We check maximality by taking the second derivative:
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∂2l(θ)
∂θ2 = − n

θ2 −
n∑
i=1

Xi − 1
(1− θ)2 < 0

Since the second derivative is negative, l is strictly concave on (0, 1) and so θ̂n = 1
Xn

is
the MLE. In this case it coincides with the moment estimator θ̃n.
For the Fisher information, note that

log f(x | θ) = log(θ) + (x− 1) log(1− θ)
∂ log f(x | θ)

∂θ
= 1
θ
− x− 1

1− θ
∂2 log f(x | θ)

∂θ2 = − 1
θ2 −

x− 1
(1− θ)2

⇔ I(θ0) = −E
[
∂2 log f(X1 | θ)

∂θ2 |θ=θ0

]
= 1
θ2

0
+ E(X1)− 1

(1− θ0)2

= 1
θ2

0
+

1
θ0
− 1

(1− θ0)2

= 1
θ2

0
+ 1
θ0(1− θ0)

= 1
θ2

0(1− θ0) .

2. If X ∼ Bernoulli(θ0), then E(X) = θ0. Thus we get the moment estimator θ̃n = Xn for
θ0.

L(θ) = θ
∑n

i=1
Xi(1− θ)n−

∑n

i=1
Xi

l(θ) =
(

n∑
i=1

Xi

)
log(θ) + log(1− θ)

(
n−

n∑
i=1

Xi

)
.

So we get:

∂l

∂θ
(θ̂n) = 0⇔ 1

θ̂n

n∑
i=1

Xi −
1

1− θ̂n

(
n−

n∑
i=1

Xi

)
= 0

⇔ (1− θ̂n)
n∑
i=1

Xi = θ̂n

(
n−

n∑
i=1

Xi

)

⇔ θ̂n =
∑n
i=1Xi

n
= Xn

as the unique stationary point. We check that

∂2l

∂θ2 (θ) = − 1
θ2

n∑
i=1

Xi −
1

(1− θ)2

(
n−

n∑
i=1

Xi

)
< 0

for any X1, ..., Xn ∈ {0, 1}.
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Since l is strictly concave, θ̂n(= θ̃n) is the MLE.
For the Fisher information,

log f(x | θ) = x log(θ) + (1− x) log(1− θ)
∂2 log f(x | θ)

∂θ2 = − x

θ2 −
1− x

(1− θ)2

⇔ I(θ0) = −E
[
∂2 log f(X1 | θ)

∂θ2 |θ=θ0

]
= E(X1)

θ2
0

+ 1− E(X1)
(1− θ0)2

= θ0

θ2
0

+ 1− θ0

(1− θ0)2

= 1
θ0

+ 1
1− θ0

= 1
θ0(1− θ0) .

3. If X ∼ Beta(1, θ0), then

E(X) = 1
1 + θ0

⇔ θ0 = 1
E(X) − 1

and therefore, θ̃n = 1
Xn
− 1 is the moment estimator for θ0.

L(θ) =
n∏
i=1

θ(1−Xi)θ−1 = θn

(
n∏
i=1

(1−Xi)
)θ−1

and

l(θ) = n log(θ) + (θ − 1)
n∑
i=1

log(1−Xi),

so we maximise at

∂l

∂θ
(θ̂n) = n

θ̂n
+

n∑
i=1

log(1−Xi) = 0

⇒ θ̂n = − n∑n
i=1 log(1−Xi)

.

l is clearly concave (as the sum of a strictly concave and linear functions). Hence θ̂n is
the MLE.
For the Fisher information,

log f(x | θ) = log(θ) + (θ − 1) log(1− x)
∂ log f(x | θ)

∂θ
= 1
θ

+ log(1− x)

∂2 log f(x | θ)
∂θ2 = − 1

θ2

⇔ I(θ0) = −E
[
∂2 log f(X1 | θ)

∂θ2 |θ=θ0

]
= 1
θ2

0
.

7 / 14



Probability and Statistics, Spring 2019 Exercise sheet 12

4.

E(X2) = θ0

2

∫
R
x2e−θ0|x|dx

= θ0

∫ ∞
0

x2e−θ0xdx

= θ0
Γ(3)
θ3

0

∫ ∞
0

θ3
0

Γ(3)x
3−1e−θ0xdx

= Γ(3)
θ2

0
= 2
θ2

0
.

(noting that we integrate the density of a G(3, θ0) distribution). Alternatively, we could
observe that ∫ ∞

0
θ0x

2e−θ0xdx = E[Y 2] = E(Y )2 + var(Y ) = 2
θ2

0

for Y ∼ Exp(θ0).
Therefore, θ2

0 =
√

2
E(X2) . We can replace E(X2) by 1

n

∑n
i=1X

2
i to obtain the moment

estimator

θ̃n =
√

2
1
n

∑n
i=1X

2
i

.

L(θ) =
n∏
i=1

θ

2e
−θ|Xi| = 1

2n θ
ne−θ

∑n

i=1
|Xi|

l(θ) = c+ n log(θ)− θ
n∑
i=1
|Xi|

for c = −n log(2) a constant. Therefore,

∂l

∂θ
(θ̂n) = n

θ̂n
−

n∑
i=1
|Xi| = 0

⇒ θ̂n = 1
1
n

∑n
i=1 |Xi|

.

Since the function l is strictly concave, we conclude that θ̂n is the MLE.
For the Fisher information,

log f(x | θ) = − log(2) + log(θ)− θ|x|
∂ log f(x | θ)

∂θ
= 1
θ
− |x|

∂2 log f(x | θ)
∂θ2 = − 1

θ2

⇒ I(θ0) = 1
θ2

0
.

(b) Assume that the geometric model satisfies the regularity conditions of Theorem 2 from the
lecture. Then, the MLE for θ0 based on X1, ..., Xn

iid∼ Geo(θ0), for some θ0 ∈ (0, 1), is
asymptotically normal with
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√
n(θ̂n − θ0) d→ N

(
0, 1
I(θ0)

)
√
n(θ̂n − θ0)

√
I(θ0) d→ N (0, 1)

with
√
I(θ0) =

√
1

θ2
0(1−θ0) .

Replacing θ0 by θ̂n results in

√
n(θ̂n − θ0)

√
1

θ̂2
n(1− θ̂n)

d→ N (0, 1).

For α ∈ (0, 1), let z1−α2 be the
(
1− α

2
)
-quantile of Z ∼ N (0, 1). Then,

P

(
√
n(θ̂n − θ0) 1

θ̂n
√

1− θ̂n
∈ (−z1−α2 , z1−α2 ]

)
n→∞→ 1− α

⇔ P (θ0 ∈ Iα) n→∞→ 1− α

where

Iα =
[
θ̂n −

θ̂n
√

1− θ̂n√
n

z1−α2 , θ̂n + θ̂n
√

1− θ̂n√
n

z1−α2

)

=
[

1
Xn

− 1
Xn

√
1− 1

Xn

z1−α2√
n
,

1
Xn

+ 1
Xn

√
1− 1

Xn

z1−α2√
n

)
.

(c) With n = 130,

n∑
i=1

Xi = 1× 48 + 2× 31 + 3× 20 + ...+ 12× 1 = 363

and so Xn = 2.792. Using α = 0.05, z1−α2 = z0.975 ≈ 1.964 and we get the confidence interval

P (θ0 ∈ [0.308, 0.407]) ≈ 0.95.

Exercise 12.3

(a) Find a sufficient statistic for the parameters generating the following models:

1.
X1, ..., Xn

iid∼ U([0, θ]), θ ∈ (0,+∞).

2.
X1, ..., Xn

iid∼ Exp(λ), λ ∈ (0,+∞).

3.
X1, ..., Xn

iid∼ N (µ, σ2), θ = (µ, σ)T ∈ R× (0,+∞).

4.
X1, ..., Xn

iid∼ U([θ, θ + 1]), θ ∈ R.
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(b) Show that in general, if T (X1, ..., Xn) is a sufficient statistic for θ ∈ Θ (where X1, ..., Xn
iid∼

f(· | θ)), then for any c ∈ R \ {0}, cT (X1, ..., Xn) is also sufficient for θ.
Hint: Use the factorisation theorem.

Solution 12.3

(a) We use the factorisation theorem.

1. f(x | θ) = 1
θ1x∈[0,θ], so

n∏
i=1

f(xi | θ) = 1
θn

n∏
i=1

1xi∈[0,θ]

= 1
θn

n∏
i=1

1xi≥01xi≤θ

= 1
θn
1mini xi≥01maxi xi≤θ

= g(T (x1, ..., xn), θ)h(x1, ..., xn)

with T (x1, ..., xn) = max1≤i≤n xi, g(t, θ) = 1
θn1t≤θ and h(x1, ..., xn) = 1min1≤i≤n xi≥0.

Hence, T (X1, ..., Xn) = max1≤i≤nXi is sufficient for θ.
2.

n∏
i=1

f(xi | λ) =
n∏
i=1

λe−λxi1xi>0

= λne−λ
∑n

i=1
xi
1mini xi≥0

= g(T (x1, ..., xn), λ)h(x1, ..., xn)

with g(t, λ) = λne−λt, h(x1, ..., xn) = 1min1≤i≤n xi≥0 and T (x1, ..., xn) =
∑n
i=1 xi. There-

fore, T (X1, ..., Xn) =
∑n
i=1Xi is sufficient for λ.

3.
n∏
i=1

f(xi | θ) = 1
(2π)n2 σn

e−
1

2σ2

∑n

i=1
(xi−µ)2

= 1
(2π)n2 σn

e−
1

2σ2

∑n

i=1
x2
i+

µ

σ2

∑n

i=1
xi−nµ

2

2σ2

= g(T (x1, ..., xn), θ)h(x1, ..., xn)

with

g(t, θ) = 1
(2π)n2 θn2

e
− 1

2θ2
2
t2+ θ1

θ2
2
t1−n

θ2
1

2θ2
2 ,

h(x1, ..., xn) = 1, T (x1, ..., xn) =
(∑n

i=1 xi,
∑n
i=1 x

2
i

)T . Thus T (X1, ..., Xn) =
(∑n

i=1Xi,
∑n
i=1X

2
i

)T
is sufficient for θ = (µ, σ)T .

10 / 14



Probability and Statistics, Spring 2019 Exercise sheet 12

4.
n∏
i=1

f(xi | θ) =
n∏
i=1

1θ≤xi≤θ+1

=
n∏
i=1

1θ≤xi1θ≥xi−1

= 1θ≤mini xi1θ≥maxi xi−1

= 1maxi xi−1≤θ≤mini xi

= g(T (x1, ..., xn), θ)h(x1, ..., xn)

with g(t, θ) = 1t2−1≤θ≤t1 , h(x1, ..., xn) = 1 and T (x1, ..., xn) = (min1≤i≤n xi,max1≤i≤n xi)T ,
and therefore T (X1, ..., Xn) = (min1≤i≤nXi,max1≤i≤nXi)T is sufficient for θ.

(b) If T (X1, ..., Xn) is sufficient then

n∏
i=1

f(xi | θ) = g(T (x1, ..., xn), θ)h(x1, ..., xn)

for some measurable functions g and h. If we define g̃(t, θ) = g( tc , θ), it will follow that

n∏
i=1

f(xi | θ) = g̃(T̃ (x1, ..., xn), θ)h(x1, ..., xn)

where T̃ (x1, ..., xn) = cT (x1, ..., xn).
This shows that T̃ (X1, .., Xn) = cT (X1, ..., Xn) is sufficient for θ. Replacing c by 1

c gives the
equivalence.
Remark: This implies, for example, that if

∑n
i=1Xi is sufficient for θ, then so is Xn.

Exercise 12.4 Let (X,Y )T be a random vector. We want to show that var(X | Y ) = 0 with
probability 1, if and only if there is a measurable function h such that P (X = h(Y )) = 1.

We consider only the case where the vector is discrete (takes either finitely many or countably
many different values).

(a) State the definition of var(X | Y = y).

(b) Show that var(X | Y ) = 0 with probability 1 if and only if P (X = E(X | Y )) = 1.

(c) Conclude.

Solution 12.4

(a)
var(X | Y = y) :=

∑
x

(x− E(X | Y = y))2p(x | y)

for any y such that pY (y) > 0.

(b) Let Z = X − E(X | Y ). First, assume that P (var(X | Y ) = 0) = 1, or in other words,
P (E(Z2 | Y ) = 0) = 1. For any y with pY (y) > 0, we have that

0 = P (E(Z2 | Y ) 6= 0) ≥ pY (y)1E(Z2|Y=y)6=0
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and thus E(Z2 | Y = y) = 0. Then we get:

E(Z2) = E(E(Z2 | Y ))

=
∑

y:pY (y)>0

E(Z2 | Y = y)pY (y)

= 0.

Since Z2 ≥ 0, this implies that Z = 0 almost surely, or

P (Z = 0) = 1⇔ P (X = E(X | Y )) = 1.

For the other direction, we start from P (Z = 0) = 1. It will be convenient to use the joint
probability of Z and Y :

qZ,Y (z, y) = P (Z = z, Y = y) =
∑

x:x−E(X|Y=y)=z

pX,Y (x, y) = pX,Y (E(X | Y = y) + z, y).

Note that the resulting marginal pmf for Y is qY (y) = P (Y = y) = pY (y).Then, for y with
pY (y) > 0, and denoting by q(z | y) the conditional pmf of Z given Y = y:

q(z | y) = q(z, y)
pY (y) ≤

∑
y′ q(z, y′)
pY (y) = pZ(z)

pY (y) = 0

unless z = 0 (since P (Z = 0) = 1).
Hence,

E[Z2 | Y = y] =
∑
z

z2q(z | y) = 0

for any y with pY (y) > 0, since z2q(z | y) = 0 for any z.
Therefore,

P (var(X | Y ) = 0) = P (E[Z2 | Y ] = 0)

=
∑

y:pY (y)>0

1E[Z2|Y=y]=0pY (y)

=
∑

y:pY (y)>0

pY (y)

= 1

as we wanted.

(c) We have shown that

P (X = E(X | Y )) = 1⇔ P (var(X | Y ) = 0) = 1.

Thus,
P (var(X | Y ) = 0) = 1⇒ P (X = µX(Y )) = 1

where µX(y) = E(X | Y = y).
If there is a measurable function Ψ such that P (X = Ψ(Y )) = 1, then P (X = E(X |
Y )) ≥ P (X = Ψ(Y )) since we know that X = Ψ(Y ) ⇒ E(X | Y ) = Ψ(Y ). Therefore,
P (X = E(X | Y )) = 1 which implies that P (var(X | Y ) = 0) = 1.
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Exercise 12.5 (optional).
The goal here is to justify why the idea of maximising the likelihood is a good one.

(a) For X ∼ f(· | θ0) and θ ∈ Θ, assume that E[log f(X | θ)] exists.
Show that E[log f(X | θ)] ≤ E[log f(X | θ0)].

Hint: Show that E
[
log
(
f(X|θ0)
f(X|θ)

)]
≥ 0 by using Jensen’s inequality for the convex function

t 7→ − log t, t ∈ (0,+∞).

(b) Recall the weak law of large numbers: if Y1, ..., Yn are i.i.d. such that E(|Y1|) <∞, then

Y n = 1
n

n∑
i=1

Yi
P→ E(Y1) (n→∞).

Using the WLLN, explain why the MLE would be a reasonable estimator.

Solution 12.5

(a) We have that

E

[
log f(X | θ0)

f(X | θ)

]
= E

[
− log f(X | θ)

f(X | θ0)

]
≥ − log

(
E

[
f(X | θ)
f(X | θ0)

])
by Jensen’s inequality applied to the convex function t 7→ − log(t), for t ∈ (0,+∞).
But since X ∼ f(· | θ0),

E

[
f(X | θ)
f(X | θ0

]
=
∫

f(x | θ)
f(x | θ0)f(x | θ0)dµ(x)

=
∫
f(x | θ)dµ(x)

= 1

since we are integrating a density. Note that − log(1) = 0, and thus, for θ ∈ Θ,

E[log f(X | θ0)] ≥ E[log f(X | θ)].

Therefore, the true parameter θ0 maximises the function θ 7→ E[log f(X | θ)].

(b) By the weak law of large numbers,

1
n

n∑
i=1

log f(Xi | θ)
P→

n→∞
E[log f(X | θ)].

Hence, by maximising the log-likelihood

l(θ) =
n∑
i=1

log f(Xi | θ)
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over Θ, we are also maximising

1
n
l(θ) = 1

n

n∑
i=1

log f(Xi | θ).

We “hope” (under some technical conditions) that as n→∞, we will manage to get closer
to the maximal value of E[log f(X | θ)], which is E[log f(X | θ0)] by part (a). This gives a
heuristic argument for why the MLE should converge to θ0, as n→∞.
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