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Probability and Statistics

Exercise sheet 13

Exercise 13.1

(a) Let X1, ..., Xn be i.i.d. ∼ Bernoulli(θ0), for some unknown θ0 ∈ Θ = (0, 1). Take θ̂n = X1 as
an estimator of θ0. We know that T = T (X1, ..., Xn) =

∑n
i=1 Xi is sufficient for this model.

Let θ̃n = E[θ̂n | T ] = E[X1 |
∑n
i=1 Xi]. Show that θ̃n = Xn and compute

eff(θ̃n, θ̂n) = MSE(θ̂n)
MSE(θ̃n)

.

(b) Let X1, ..., Xn be i.i.d. ∼ U([0, θ0]), for some θ0 ∈ Θ = (0,+∞). Consider θ̂n = 2X1 as an
estimator of θ0. Let T = T (X1, ..., Xn) = max1≤i≤nX1. We have shown before that T is
sufficient for this model. Let θ̃n = E[θ̂n | T ] = 2E[X1 | max1≤i≤nXi].
Remark: The random vector (X1,maxiXi)T does not admit a density with respect to the
Lebesgue measure on R2 since P (X1 = maxXi) 6= 0. Therefore, we will instead compute θ̃n
explicitly in the following indirect way.

• You are given the following result: Let X1, ..., Xn be i.i.d random variables with joint
density

∏n
i=1 f(xi) with respect to Lebesgue measure on (Rn,BRn). If one orders

X1, ..., Xn in increasing order, we obtain the new random variables X(1) < ... < X(n), the
so-called order statistics. For example, X(1) = min1≤i≤nXi and X(n) = max1≤i≤nXi =
T . The result says that for any 1 ≤ i < j ≤ n, the random vector (X(i), X(j))T is
absolutely continuous with respect to Lebesgue measure on (R2,BR2) with density

gi,j(s, t) = n!
(i− 1)!(j − 1− i)!(n− j)!f(s)f(t)[F (s)]i−1[F (t)−F (s)]j−1−i(1−F (t))n−j1s<t

where F is the cdf corresponding to f .
If j = n, i ∈ {1, ..., n−1} and the Xi are once again i.i.d. ∼ U([0, θ0]), compute explicitly
the joint density gi,n for (X(i), X(n)).

• Find the conditional density of X(i) given X(n), and use it to compute the conditional
expectation E[X(i) | X(n)].
Hint: Can you relate this conditional density to a well-known distribution, for which we
know the expectation?

• Use a symmetry argument, and the fact that
∑n
i=1 Xi =

∑n
i=1 X(i), to show that

θ̃n = 2E[X1 | X(n)] = n+1
n X(n).

• To conclude, show that θ̂n and θ̃n are both unbiased and compute eff(θ̃n, θ̂n).

Solution 13.1

(a) By symmetry of the distribution, one can see that the conditional expectation must satisfy

E

[
X1 |

n∑
i=1

Xi

]
= E

[
X2 |

n∑
i=1

Xi

]
= ... = E

[
Xn |

n∑
i=1

Xi

]
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and so

E

[
X1 |

n∑
i=1

Xi

]
= 1
n
E

[
n∑
i=1

Xi |
n∑
i=1

Xi

]
= 1
n

n∑
i=1

Xi.

Alternatively, we also show how to compute this directly. If n = 1, clearly E[X1 | X1] = X1 =
X1, so we may assume n ≥ 2.
First we find the joint pmf of (X1,

∑n
i=1 Xi). If p is the joint pmf,

p(x, t) = P

(
X1 = x,

n∑
i=1

Xi = t

)

= P

(
X1 = x,

n∑
i=2

Xi = t− x

)

= P (X1 = x)P
(

n∑
i=2

Xi = t− x

)

by independence. (More specifically, independence ofX1, ..., Xn implies thatX1 and f(X2, ..., Xn)
are independent, for f(x2, ..., xn) =

∑n
i=2 xi.)

Now, since X2, ..., Xn are i.i.d ∼ Bernoulli(θ0), it follows that
∑n
i=2 Xi ∼ Bin(n − 1, θ0).

Hence,

p(x, t) =
{
θx0 (1− θ0)1−x(n−1

t−x
)
θt−x0 (1− θ0)n−1−t+x, if x ∈ {0, 1}, t− x ∈ {0, ..., n− 1}
0, otherwise

=
{ (

n−1
t−x
)
θt0(1− θ0)n−t, if x ∈ {0, 1}, t ∈ {x, ..., x+ n− 1}

0, otherwise.

The conditional pmf of X1 given
∑n
i=1 Xi = t is given by

p(x | t) = p(x, t)
pT (t)

wherever pT (t) > 0. Note that T =
∑n
i=1 Xi takes values in {0, 1, ..., n}, so we can consider

only t in that set. Moreover, T has a Bin(n, θ0) distribution, so that

pT (t) =
(
n

t

)
θt0(1− θ0)n−t, t ∈ {0, ..., n}.

Hence

p(x | t) =


(n−1

t−x)
(n

t)
, if x ∈ {0, 1}, t ∈ {x, ..., x+ n− 1}

0, otherwise.

(note that {x, ..., x+ n− 1} ⊂ {0, ..., n} for x ∈ {0, 1}).
We can now compute for t ∈ {0, ..., n}:
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g(t) = E

[
X1 |

n∑
i=1

Xi = t

]
=

∑
x∈{0,1}

xp(x | t)

= p(1 | t)

=
(
n−1
t−1
)(

n
t

) 1t∈{1,...,n}

= t

n
1t∈{1,...,n}.

Noticing that t
n = 0 in the case that t = 0, we can write more simply that

g(t) = E

[
X1 |

n∑
i=1

Xi = t

]
= t

n

for t ∈ {0, 1, ..., n}.
Thus,

E

[
X1 |

n∑
i=1

Xi

]
= 1
n

n∑
i=1

Xi = Xn

with probability 1, since
∑n
i=1 Xi ∈ {0, 1, ..., n} with probability 1.

Therefore, by either method, we conclude that θ̃n = Xn (with probability 1).
Now note that

E[θ̂n] = E[X1] = θ0,

E[θ̃n] = 1
n

n∑
i=1

θ0 = θ0

so that θ̂n, θ̃n are both unbiased. Therefore,

MSE(θ̂n) = var(θ̂n) + bias(θ̂n)2 = var(X1) = θ0(1− θ0)

and
MSE(θ̃n) = var(θ̃n) + bias(θ̃n)2 = var(Xn) = 1

n
θ0(1− θ0).

Finally,

eff(θ̃n, θ̂n) = var(θ̂n)
var(θ̃n)

= θ0(1− θ0)
θ0(1−θ0)

n

= n.

(b) • Using the result, we find the joint density of (X(i), X(n)) to be:

gi,n(s, t) = n!
(i− 1)!(n− 1− i)!(n− n)!

10≤s≤θ010≤t≤θ0

θ2
0

(
s

θ0

)i−1(
t− s
θ0

)n−1−i(1− t
θ0

)n−n
1s<t

= n!
(i− 1)!(n− 1− i)!

1
θn0
si−1(t− s)n−1−i

10≤s<t≤θ0 .
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• First we find the marginal density of X(n). We have, for t ∈ [0, θ0]:

fX(n)(t) =
∫
gi,n(s, t)ds

=
∫

n!
(i− 1)!(n− 1− i)!

1
θn0
si−1(t− s)n−1−i

10≤s<t≤θ0ds

=
∫ t

0

n!
(i− 1)!(n− 1− i)!

1
θn0
si−1(t− s)n−1−ids

ts′=s= n!
(i− 1)!(n− 1− i)!

1
θn0

∫ 1

0
(ts′)i−1(t− ts′)n−1−i ds

′

t

= n!
(i− 1)!(n− 1− i)!

tn−1

θn0

∫ 1

0
(s′)i−1(1− s′)n−1−ids′

= n!
(i− 1)!(n− 1− i)!

tn−1

θn0

Γ(i)Γ(n− i)
Γ(n)

= n!(i− 1)!(n− i− 1)!
(n− 1)!(i− 1)!(n− 1− i)!

tn−1

θn0

= n
tn−1

θn0
.

Clearly, fX(n)(t) = 0 outside of [0, θ0]. We can note thatX(n) has a Beta(n, 1) distribution,
rescaled to the interval [0, θ0] rather than [0, 1]. In other words, X(n)

θ0
∼ Beta(n, 1), as

we can check using the Jacobian formula.
Alternatively, one could find the marginal cdf of X(n) by

FX(n)(t) = P ( max
1≤i≤n

Xi ≤ t)

= P (X1 ≤ t, ...,Xn ≤ t)
= P (X1 ≤ t)...P (Xn ≤ t)

=


0, t < 0
tn

θn
0
, 0 ≤ t < θ0

1, θ0 ≤ t.

Since this is piecewise C1, we can differentiate to find the same marginal density as
above.
Now we have what we want for finding the conditional distribution. Assume that
t ∈ (0, θ0), since otherwise the marginal density of X(n) vanishes. Then:

fi(s | t) = gi,n(s, t)
fX(n)(t)

=
n!

(i−1)!(n−1−i)!
1
θn

0
si−1(t− s)n−1−i

10≤s<t

n t
n−1

θn
0

= (n− 1)!
(i− 1)!(n− 1− i)!

1
tn−1 s

i−1(t− s)n−1−i
10≤s<t

Then for any fixed t ∈ [0, θ0], we can see that we get a rescaled Beta distribution as the
conditional distribution for Xi. We can write it as follows: for Y ∼ Beta(i, n− i),

X(i) | (X(n) = t) d= tY.
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This can again be checked by the Jacobian formula, using h(u) = ut.
With this representation it is now easy to find the conditional expectation:

E[X(i) | X(n) = t] = E[tY ] = t
i

n
,

or in other words,
E[X(i) | X(n)] = i

n
X(n).

• Note that, since X(n) = max(X1, ..., Xn) is symmetric with respect to X1, ..., Xn, and
since the joint distribution of the Xi is symmetric (since they are i.i.d), we obtain that

E[X1 | X(n)] = E[X2 | X(n)] = ...E[Xn | X(n)].

Therefore, we also get

E[X1 | X(n)] = 1
n
E

[
n∑
i=1

Xi | X(n)

]
.

Now,
∑n
i=1 Xi =

∑n
i=1 X(i) since both sums contain the same terms, just in potentially

different orders. Therefore,

E[X1 | X(n)] = 1
n
E

[
n∑
i=1

X(i) | X(n)

]
.

We can compute this term on the right hand side, which gives us our answer:

E[X1 | X(n)] = 1
n
E

[
n∑
i=1

X(i) | X(n)

]

= 1
n

n∑
i=1

i

n
X(n)

= 1
n2X(n)

n∑
i=1

i

= 1
n2X(n)

n(n+ 1)
2

= n+ 1
2n X(n).

as we wanted, i.e. 2E[X1 | X(n)] = n+1
n X(n).

•
E[θ̂n] = E[2X1] = 2θ0

2 = θ0

and
E[θ̃n] = E

[
n+ 1
n

X(n)

]
= n+ 1

n
θ0

n

n+ 1 = θ0,

since, as we noted above, X(n) has a rescaled Beta distribution (X(n)
d= θ0Z for Z ∼

Beta(n, 1)). Alternatively, we could obtain the same result by using the law of iterated
expectation. Either way, we see that θ̂n and θ̃n are unbiased.
We can then compute the variances, using the variance of the uniform and Beta distribu-
tions, respectively:
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var(θ̂n) = var(2X1) = 4 θ
2

12 = θ2

3
and

var(θ̃n) = var
(
n+ 1
n

X(n)

)
= (n+ 1)2θ2

0
n2

n

(n+ 1)2(n+ 2) = θ2
0

n(n+ 2) .

Finally,

eff(θ̃n, θ̂n) = MSE(θ̂n)
MSE(θ̃n)

= var(θ̂n)
var(θ̃n)

(as θ̂n, θ̃n are unbiased)

= θ2
0
3
n(n+ 2)

θ2
0

= n(n+ 2)
3 .

In this case we get that θ̃n is a much more efficient estimator.

Exercise 13.2 Consider X1, ..., Xn i.i.d. ∼ Exp(λ), λ ∈ Θ = (0,+∞). Recall that the pdf of
Xi ∼ Exp(λ) is given by f(x | λ) = λe−λx1x∈(0,+∞). We want to test H0 : λ = 1 versus H1 : λ = 2.

(a) Apply the Neyman-Pearson Lemma to find a uniformly most powerful test of level α, based
on X = (X1, ..., Xn)T .

Hint: We recall that if Y1, ..., Yn are iid∼ Exp(λ0), then
∑n
i=1 Yi ∼ G(n, λ0).

(b) What is the power of the Neyman-Pearson test you found?
Hint: You can express your answer in terms of Fn and F−1

n , the cdf and inverse cdf of a
G(n, 1) distribution.

(c) For n = 10, we observe the following sample:
1.009 0.132 0.384 0.360 0.206 0.588 0.872 0.398 0.339 1.079

What decision do you take, if you want the level of the test to be equal to α = 0.05? What
about α = 0.01?
Hint: The quantiles of the G(10, 1) distribution of order 5% and 1% are 5.425 and 4.130,
respectively.

Solution 13.2

(a) The NP-test is given in the form

dNP (x) =


1, fx(x|λ1)

fx(x|λ0) > kα

γα,
fx(x|λ1)
fx(x|λ0) = kα

0, fx(x|λ1)
fx(x|λ0) < kα,

for some suitable kα > 0 and γα ∈ [0, 1], such that Eλ0 [dNP (X)] = α. A value of 1 corresponds
to rejecting the null hypothesis, and a value of 0 corresponds to not rejecting the null hypothesis.
Here we only consider x = (x1, ..., xn)T such that xi > 0 for each i ∈ {1, ..., n}, since the Xi

are positive almost surely.
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The likelihood ratio is given by

fx(x | λ1)
fx(x | λ0) =

∏n
i=1 λ1e

−λ1xi∏n
i=1 λ0e−λ0xi

=
(
λ1

λ0

)n
e−λ1

∑n

i=1
xi+λ0

∑n

i=1
xi

= 2ne−
∑n

i=1
xi .

Note that we can simplify the inequalities involving the likelihood ratio:

fx(x | λ1)
fx(x | λ0) > k

⇔ 2n e
−2
∑n

i=1
xi

e−
∑n

i=1
xi

> k

⇔ g(T (x1, ..., xn)) > k

⇔ T (x1, ..., xn) < t = g−1(k)

where T (x1, ..., xn) =
∑n
i=1 xi, g(s) = 2n exp(−s) and so t = − log(k) + n log(2). The

equivalence holds since g is strictly decreasing.
Under H0 : λ = λ0 = 1,

∑n
i=1 Xi ∼ G(n, 1) (by independence) has a continuous distribution,

therefore the case fx(x|λ1)
fx(x|λ0) = kα (which is equivalent to

∑n
i=1 xi = tα) has probability 0, and

in particular the middle branch of the NP test does not affect whether Eλ0 [dNP (X)] = α.
Therefore, we can arbitrarily choose γα = 0.
The NP test can then be equivalently given by:

dNP (x) =
{

1,
∑n
i=1 xi < tα

0,
∑n
i=1 xi ≥ tα.

We still need to enforce the condition Eλ0 [dNP (X)] = α by choosing a suitable value of α.
This is equivalent to:

Pλ0

(
n∑
i=1

Xi < tα

)
= α

⇔Pλ0

(
n∑
i=1

Xi ≤ tα

)
= α.

Since
∑n
i=1 Xi ∼ G(n, 1) under H0, this means that tα = F−1

n (α), for Fn the cdf of the
G(n, 1) distribution.

(b) By definition of the power, we have

β = Eλ1 [dNP (X)] = Pλ1

(
n∑
i=1

Xi ≤ F−1
n (α)

)
.

Recall that if Y ∼ Exp(λ), then λY ∼ Exp(1). Thus, under H1 : λ = λ1 = 2, 2X1, ..., 2Xn

are i.i.d ∼ Exp(1), and therefore, by independence,
∑n
i=1 2Xi ∼ G(n, 1). It follows that
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β = Pλ1

(
2

n∑
i=1

Xi ≤ 2F−1
n (α)

)
= Fn(2F−1

n (α)).

(c) We compute
∑10
i=1 xi = 5.367.

• For α = 0.05, F−1
10 (α) = F−1

10 (0.05) ≈ 5.425 >
∑10
i=1 xi. Therefore, we reject H0 with a

level of 5%.
• For α = 0.01, F−1

10 (0.01) ≈ 4.130. Therefore, we cannot reject H0 with a level of 1% -
these data do not present a compelling enough evidence against the null hypothesis.

Exercise 13.3 Again in the setup of exercise 2, it turns out that the Neyman-Pearson test you
found in (a) is actually UMP of level α for testing H0 : λ = 1 versus H ′1 : λ > 1. More concretely,
the same NP test is the most powerful among all tests of level α, for any λ ∈ Θ′1 = (1,+∞), and
not only for λ ∈ Θ1 = {2}.

Do you see why this is true?

Solution 13.3 Return to the explicit form of the NP-test for this problem:

dNP (x) =
{

1,
∑n
i=1 xi < F−1

n (α)
0,

∑n
i=1 xi ≥ F−1

n (α).

We know (as shown in the lectures) that dNP is a UMP test of level α for testing H0 : λ = 1
versus H1 : λ = 2. In other words, for any other test d∗ such that Eλ0 [d∗(X)] ≤ α, we would have
a lower power:

Eλ1 [d∗(X)] ≤ Eλ1 [dNP (X)].

However, dNP does not depend on the particular value of λ1 = 2. More specifically, if we had
to test H0 : λ = 1 versus H ′1 : λ = λ′1 for some λ′1 > 1, we would obtain exactly the same test as
above. Since this same test is again UMP of level α, this implies that it is actually UMP of level
alpha for the testing problem H0 : λ = 1 versus H ′1 : λ > 1.
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