Probability and Statistics

Exercise sheet 13

Exercise 13.1

(a) Let $X_1, ..., X_n$ be i.i.d. ~ Bernoulli (θ_0) , for some unknown $\theta_0 \in \Theta = (0, 1)$. Take $\hat{\theta}_n = X_1$ as an estimator of θ_0 . We know that $T = T(X_1, ..., X_n) = \sum_{i=1}^n X_i$ is sufficient for this model. Let $\tilde{\theta}_n = E[\hat{\theta}_n \mid T] = E[X_1 \mid \sum_{i=1}^n X_i]$. Show that $\tilde{\theta}_n = \overline{X}_n$ and compute

$$\operatorname{eff}(\tilde{\theta}_n, \hat{\theta}_n) = \frac{\operatorname{MSE}(\hat{\theta}_n)}{\operatorname{MSE}(\tilde{\theta}_n)}.$$

(b) Let $X_1, ..., X_n$ be i.i.d. ~ U([0, θ_0]), for some $\theta_0 \in \Theta = (0, +\infty)$. Consider $\hat{\theta}_n = 2X_1$ as an estimator of θ_0 . Let $T = T(X_1, ..., X_n) = \max_{1 \le i \le n} X_1$. We have shown before that T is sufficient for this model. Let $\tilde{\theta}_n = E[\hat{\theta}_n \mid T] = 2E[X_1 \mid \max_{1 \le i \le n} X_i]$.

Remark: The random vector $(X_1, \max_i X_i)^T$ does not admit a density with respect to the Lebesgue measure on \mathbb{R}^2 since $P(X_1 = \max X_i) \neq 0$. Therefore, we will instead compute $\tilde{\theta}_n$ explicitly in the following indirect way.

• You are given the following result: Let $X_1, ..., X_n$ be i.i.d random variables with joint density $\prod_{i=1}^n f(x_i)$ with respect to Lebesgue measure on $(\mathbb{R}^n, \mathcal{B}_{\mathbb{R}^n})$. If one orders $X_1, ..., X_n$ in increasing order, we obtain the new random variables $X_{(1)} < ... < X_{(n)}$, the so-called order statistics. For example, $X_{(1)} = \min_{1 \le i \le n} X_i$ and $X_{(n)} = \max_{1 \le i \le n} X_i = T$. The result says that for any $1 \le i < j \le n$, the random vector $(X_{(i)}, X_{(j)})^T$ is absolutely continuous with respect to Lebesgue measure on $(\mathbb{R}^2, \mathcal{B}_{\mathbb{R}^2})$ with density

$$g_{i,j}(s,t) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f(s)f(t)[F(s)]^{i-1}[F(t)-F(s)]^{j-1-i}(1-F(t))^{n-j} \mathbb{1}_{s < t} f(s)f(t)[F(s)]^{i-1}[F(t)-F(s)]^{i-1-i}(1-F(t))^{n-j} \mathbb{1}_{s < t} f(s)f(t)[F(s)]^{i-1}[F(t)-F(s)]^{i-1-i}(1-F(t))^{n-j} \mathbb{1}_{s < t} f(s)f(t)[F(s)]^{i-1}[F(t)-F(s)]^{i-1-i}(1-F(t))^{i-j} \mathbb{1}_{s < t} f(s)f(t)[F(s)]^{i-1}[F(t)-F(s)]^{i-1-i}(1-F(t))^{i-j} \mathbb{1}_{s < t} f(s)f(t)[F(s)]^{i-1}[F(t)-F(s)]^{i-1-i}(1-F(t))^{i-j} \mathbb{1}_{s < t} f(s)f(t)[F(s)]^{i-1-i}(1-F(t))^{i-j} \mathbb{1}_{s < t} f(s)f(t)[F(s)]^{i-1-i}(1-F(t))^{i-j} \mathbb{1}_{s < t} f(s)f(t)[F(s)]^{i-1-i}(1-F(t))^{i-i}(1-F(t$$

where F is the cdf corresponding to f.

If $j = n, i \in \{1, ..., n-1\}$ and the X_i are once again i.i.d. $\sim U([0, \theta_0])$, compute explicitly the joint density $g_{i,n}$ for $(X_{(i)}, X_{(n)})$.

- Find the conditional density of X_(i) given X_(n), and use it to compute the conditional expectation E[X_(i) | X_(n)].
 Hint: Can you relate this conditional density to a well-known distribution, for which we know the expectation?
- Use a symmetry argument, and the fact that $\sum_{i=1}^{n} X_i = \sum_{i=1}^{n} X_{(i)}$, to show that $\tilde{\theta}_n = 2E[X_1 \mid X_{(n)}] = \frac{n+1}{n} X_{(n)}$.
- To conclude, show that $\hat{\theta}_n$ and $\tilde{\theta}_n$ are both unbiased and compute $\text{eff}(\tilde{\theta}_n, \hat{\theta}_n)$.

Solution 13.1

(a) By symmetry of the distribution, one can see that the conditional expectation must satisfy

$$E\left[X_1 \mid \sum_{i=1}^n X_i\right] = E\left[X_2 \mid \sum_{i=1}^n X_i\right] = \dots = E\left[X_n \mid \sum_{i=1}^n X_i\right]$$

1 / 8

and so

$$E\left[X_{1} \mid \sum_{i=1}^{n} X_{i}\right] = \frac{1}{n} E\left[\sum_{i=1}^{n} X_{i} \mid \sum_{i=1}^{n} X_{i}\right] = \frac{1}{n} \sum_{i=1}^{n} X_{i}.$$

Alternatively, we also show how to compute this directly. If n = 1, clearly $E[X_1 | X_1] = X_1 = \overline{X}_1$, so we may assume $n \ge 2$.

First we find the joint pmf of $(X_1, \sum_{i=1}^n X_i)$. If p is the joint pmf,

$$p(x,t) = P\left(X_1 = x, \sum_{i=1}^n X_i = t\right)$$
$$= P\left(X_1 = x, \sum_{i=2}^n X_i = t - x\right)$$
$$= P(X_1 = x)P\left(\sum_{i=2}^n X_i = t - x\right)$$

by independence. (More specifically, independence of $X_1, ..., X_n$ implies that X_1 and $f(X_2, ..., X_n)$ are independent, for $f(x_2, ..., x_n) = \sum_{i=2}^n x_i$.)

Now, since $X_2, ..., X_n$ are i.i.d ~ Bernoulli (θ_0) , it follows that $\sum_{i=2}^n X_i \sim Bin(n-1, \theta_0)$. Hence,

$$p(x,t) = \begin{cases} \theta_0^x (1-\theta_0)^{1-x} {\binom{n-1}{t-x}} \theta_0^{t-x} (1-\theta_0)^{n-1-t+x}, & \text{if } x \in \{0,1\}, t-x \in \{0,...,n-1\} \\ 0, & \text{otherwise} \end{cases}$$
$$= \begin{cases} {\binom{n-1}{t-x}} \theta_0^t (1-\theta_0)^{n-t}, & \text{if } x \in \{0,1\}, t \in \{x,...,x+n-1\} \\ 0, & \text{otherwise.} \end{cases}$$

The conditional pmf of X_1 given $\sum_{i=1}^n X_i = t$ is given by

$$p(x \mid t) = \frac{p(x,t)}{p_T(t)}$$

wherever $p_T(t) > 0$. Note that $T = \sum_{i=1}^n X_i$ takes values in $\{0, 1, ..., n\}$, so we can consider only t in that set. Moreover, T has a Bin (n, θ_0) distribution, so that

$$p_T(t) = \binom{n}{t} \theta_0^t (1 - \theta_0)^{n-t}, \quad t \in \{0, ..., n\}.$$

Hence

$$p(x \mid t) = \begin{cases} \frac{\binom{n-1}{t-x}}{\binom{n}{t}}, & \text{if } x \in \{0,1\}, t \in \{x, ..., x+n-1\}\\ 0, & \text{otherwise.} \end{cases}$$

(note that $\{x, ..., x + n - 1\} \subset \{0, ..., n\}$ for $x \in \{0, 1\}$). We can now compute for $t \in \{0, ..., n\}$:

$$g(t) = E\left[X_1 \mid \sum_{i=1}^n X_i = t\right] = \sum_{x \in \{0,1\}} xp(x \mid t)$$

= $p(1 \mid t)$
= $\frac{\binom{n-1}{t-1}}{\binom{n}{t}} \mathbb{1}_{t \in \{1,...,n\}}$
= $\frac{t}{n} \mathbb{1}_{t \in \{1,...,n\}}$.

Noticing that $\frac{t}{n} = 0$ in the case that t = 0, we can write more simply that

$$g(t) = E\left[X_1 \mid \sum_{i=1}^n X_i = t\right] = \frac{t}{n}$$

for $t \in \{0, 1, ..., n\}$.

Thus,

$$E\left[X_1 \mid \sum_{i=1}^n X_i\right] = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X}_n$$

with probability 1, since $\sum_{i=1}^{n} X_i \in \{0, 1, ..., n\}$ with probability 1. Therefore, by either method, we conclude that $\tilde{\theta}_n = \overline{X}_n$ (with probability 1). Now note that

$$E[\hat{\theta}_n] = E[X_1] = \theta_0,$$
$$E[\tilde{\theta}_n] = \frac{1}{n} \sum_{i=1}^n \theta_0 = \theta_0$$

so that $\hat{\theta}_n,\,\tilde{\theta}_n$ are both unbiased. Therefore,

$$MSE(\hat{\theta}_n) = var(\hat{\theta}_n) + bias(\hat{\theta}_n)^2 = var(X_1) = \theta_0(1 - \theta_0)$$

and

$$MSE(\tilde{\theta}_n) = var(\tilde{\theta}_n) + bias(\tilde{\theta}_n)^2 = var(\overline{X}_n) = \frac{1}{n}\theta_0(1-\theta_0).$$

Finally,

$$\operatorname{eff}(\tilde{\theta}_n, \hat{\theta}_n) = \frac{\operatorname{var}(\hat{\theta}_n)}{\operatorname{var}(\tilde{\theta}_n)} = \frac{\theta_0(1-\theta_0)}{\frac{\theta_0(1-\theta_0)}{n}} = n.$$

(b) • Using the result, we find the joint density of $(X_{(i)}, X_{(n)})$ to be:

$$g_{i,n}(s,t) = \frac{n!}{(i-1)!(n-1-i)!(n-n)!} \frac{\mathbb{1}_{0 \le s \le \theta_0} \mathbb{1}_{0 \le t \le \theta_0}}{\theta_0^2} \left(\frac{s}{\theta_0}\right)^{i-1} \left(\frac{t-s}{\theta_0}\right)^{n-1-i} \left(\frac{1-t}{\theta_0}\right)^{n-n} \mathbb{1}_{s < t}$$
$$= \frac{n!}{(i-1)!(n-1-i)!} \frac{1}{\theta_0^n} s^{i-1} (t-s)^{n-1-i} \mathbb{1}_{0 \le s < t \le \theta_0}.$$

3 / 8

• First we find the marginal density of $X_{(n)}$. We have, for $t \in [0, \theta_0]$:

$$\begin{split} f_{X_{(n)}}(t) &= \int g_{i,n}(s,t) ds \\ &= \int \frac{n!}{(i-1)!(n-1-i)!} \frac{1}{\theta_0^n} s^{i-1} (t-s)^{n-1-i} \mathbb{1}_{0 \leq s < t \leq \theta_0} ds \\ &= \int_0^t \frac{n!}{(i-1)!(n-1-i)!} \frac{1}{\theta_0^n} s^{i-1} (t-s)^{n-1-i} ds \\ & \overset{ts'=s}{=} \frac{n!}{(i-1)!(n-1-i)!} \frac{1}{\theta_0^n} \int_0^1 (ts')^{i-1} (t-ts')^{n-1-i} \frac{ds'}{t} \\ &= \frac{n!}{(i-1)!(n-1-i)!} \frac{t^{n-1}}{\theta_0^n} \int_0^1 (s')^{i-1} (1-s')^{n-1-i} ds' \\ &= \frac{n!}{(i-1)!(n-1-i)!} \frac{t^{n-1}}{\theta_0^n} \frac{\Gamma(i)\Gamma(n-i)}{\Gamma(n)} \\ &= \frac{n!(i-1)!(n-i-1)!}{(n-1)!(n-1-i)!} \frac{t^{n-1}}{\theta_0^n} \\ &= n \frac{t^{n-1}}{\theta_0^n}. \end{split}$$

Clearly, $f_{X_{(n)}}(t) = 0$ outside of $[0, \theta_0]$. We can note that $X_{(n)}$ has a Beta(n, 1) distribution, rescaled to the interval $[0, \theta_0]$ rather than [0, 1]. In other words, $\frac{X_{(n)}}{\theta_0} \sim \text{Beta}(n, 1)$, as we can check using the Jacobian formula.

Alternatively, one could find the marginal cdf of $X_{(n)}$ by

$$F_{X_{(n)}}(t) = P(\max_{1 \le i \le n} X_i \le t)$$

= $P(X_1 \le t, ..., X_n \le t)$
= $P(X_1 \le t) ... P(X_n \le t)$
= $\begin{cases} 0, & t < 0 \\ \frac{t^n}{\theta_0^n}, & 0 \le t < \theta_0 \\ 1, & \theta_0 \le t. \end{cases}$

Since this is piecewise C^1 , we can differentiate to find the same marginal density as above.

Now we have what we want for finding the conditional distribution. Assume that $t \in (0, \theta_0)$, since otherwise the marginal density of $X_{(n)}$ vanishes. Then:

$$\begin{aligned} f_i(s \mid t) &= \frac{g_{i,n}(s,t)}{f_{X_{(n)}}(t)} \\ &= \frac{\frac{n!}{(i-1)!(n-1-i)!} \frac{1}{\theta_0^n} s^{i-1} (t-s)^{n-1-i} \mathbb{1}_{0 \le s < t}}{n \frac{t^{n-1}}{\theta_0^n}} \\ &= \frac{(n-1)!}{(i-1)!(n-1-i)!} \frac{1}{t^{n-1}} s^{i-1} (t-s)^{n-1-i} \mathbb{1}_{0 \le s < t} \end{aligned}$$

Then for any fixed $t \in [0, \theta_0]$, we can see that we get a rescaled Beta distribution as the conditional distribution for X_i . We can write it as follows: for $Y \sim \text{Beta}(i, n - i)$,

$$X_{(i)} \mid (X_{(n)} = t) \stackrel{\mathrm{d}}{=} tY.$$

This can again be checked by the Jacobian formula, using h(u) = ut. With this representation it is now easy to find the conditional expectation:

$$E[X_{(i)} \mid X_{(n)} = t] = E[tY] = t\frac{i}{n},$$

or in other words,

$$E[X_{(i)} \mid X_{(n)}] = \frac{i}{n} X_{(n)}.$$

• Note that, since $X_{(n)} = \max(X_1, ..., X_n)$ is symmetric with respect to $X_1, ..., X_n$, and since the joint distribution of the X_i is symmetric (since they are i.i.d), we obtain that

$$E[X_1 \mid X_{(n)}] = E[X_2 \mid X_{(n)}] = \dots E[X_n \mid X_{(n)}]$$

Therefore, we also get

$$E[X_1 \mid X_{(n)}] = \frac{1}{n}E\left[\sum_{i=1}^n X_i \mid X_{(n)}\right].$$

Now, $\sum_{i=1}^{n} X_i = \sum_{i=1}^{n} X_{(i)}$ since both sums contain the same terms, just in potentially different orders. Therefore,

$$E[X_1 \mid X_{(n)}] = \frac{1}{n} E\left[\sum_{i=1}^n X_{(i)} \mid X_{(n)}\right].$$

We can compute this term on the right hand side, which gives us our answer:

$$E[X_1 \mid X_{(n)}] = \frac{1}{n} E\left[\sum_{i=1}^n X_{(i)} \mid X_{(n)}\right]$$
$$= \frac{1}{n} \sum_{i=1}^n \frac{i}{n} X_{(n)}$$
$$= \frac{1}{n^2} X_{(n)} \sum_{i=1}^n i$$
$$= \frac{1}{n^2} X_{(n)} \frac{n(n+1)}{2}$$
$$= \frac{n+1}{2n} X_{(n)}.$$

as we wanted, i.e. $2E[X_1 | X_{(n)}] = \frac{n+1}{n}X_{(n)}$.

•

$$E[\hat{\theta}_n] = E[2X_1] = 2\frac{\theta_0}{2} = \theta_0$$

and

$$E[\tilde{\theta}_n] = E\left[\frac{n+1}{n}X_{(n)}\right] = \frac{n+1}{n}\theta_0\frac{n}{n+1} = \theta_0,$$

since, as we noted above, $X_{(n)}$ has a rescaled Beta distribution $(X_{(n)} \stackrel{d}{=} \theta_0 Z$ for $Z \sim \text{Beta}(n,1)$). Alternatively, we could obtain the same result by using the law of iterated expectation. Either way, we see that $\hat{\theta}_n$ and $\tilde{\theta}_n$ are unbiased.

We can then compute the variances, using the variance of the uniform and Beta distributions, respectively:

$$\operatorname{var}(\hat{\theta}_n) = \operatorname{var}(2X_1) = 4\frac{\theta^2}{12} = \frac{\theta^2}{3}$$

and

$$\operatorname{var}(\tilde{\theta}_n) = \operatorname{var}\left(\frac{n+1}{n}X_{(n)}\right) = \frac{(n+1)^2\theta_0^2}{n^2}\frac{n}{(n+1)^2(n+2)} = \frac{\theta_0^2}{n(n+2)}.$$

Finally,

$$\operatorname{eff}(\tilde{\theta}_n, \hat{\theta}_n) = \frac{\operatorname{MSE}(\hat{\theta}_n)}{\operatorname{MSE}(\tilde{\theta}_n)}$$
$$= \frac{\operatorname{var}(\hat{\theta}_n)}{\operatorname{var}(\tilde{\theta}_n)} \quad (\text{as } \hat{\theta}_n, \tilde{\theta}_n \text{ are unbiased})$$
$$= \frac{\theta_0^2}{3} \frac{n(n+2)}{\theta_0^2}$$
$$= \frac{n(n+2)}{3}.$$

In this case we get that θ_n is a much more efficient estimator.

Exercise 13.2 Consider $X_1, ..., X_n$ i.i.d. $\sim \text{Exp}(\lambda), \lambda \in \Theta = (0, +\infty)$. Recall that the pdf of $X_i \sim \text{Exp}(\lambda)$ is given by $f(x \mid \lambda) = \lambda e^{-\lambda x} \mathbb{1}_{x \in (0, +\infty)}$. We want to test $H_0: \lambda = 1$ versus $H_1: \lambda = 2$.

(a) Apply the Neyman-Pearson Lemma to find a uniformly most powerful test of level α , based on $X = (X_1, ..., X_n)^T$.

Hint: We recall that if $Y_1, ..., Y_n$ are $\stackrel{\text{iid}}{\sim} \text{Exp}(\lambda_0)$, then $\sum_{i=1}^n Y_i \sim G(n, \lambda_0)$.

(b) What is the power of the Neyman-Pearson test you found?

Hint: You can express your answer in terms of F_n and F_n^{-1} , the cdf and inverse cdf of a G(n, 1) distribution.

(c) For n = 10, we observe the following sample:

1.009	0.132	0.384	0.360	0.206	0.588	0.872	0.398	0.339	1.079

What decision do you take, if you want the level of the test to be equal to $\alpha = 0.05$? What about $\alpha = 0.01$?

Hint: The quantiles of the G(10, 1) distribution of order 5% and 1% are 5.425 and 4.130, respectively.

Solution 13.2

(a) The NP-test is given in the form

$$d_{NP}(\mathbf{x}) = \begin{cases} 1, & \frac{f_{\mathbf{x}}(\mathbf{x}|\lambda_1)}{f_{\mathbf{x}}(\mathbf{x}|\lambda_0)} > k_{\alpha} \\ \gamma_{\alpha}, & \frac{f_{\mathbf{x}}(\mathbf{x}|\lambda_1)}{f_{\mathbf{x}}(\mathbf{x}|\lambda_0)} = k_{\alpha} \\ 0, & \frac{f_{\mathbf{x}}(\mathbf{x}|\lambda_0)}{f_{\mathbf{x}}(\mathbf{x}|\lambda_0)} < k_{\alpha}, \end{cases}$$

for some suitable $k_{\alpha} > 0$ and $\gamma_{\alpha} \in [0, 1]$, such that $E_{\lambda_0}[d_{NP}(\mathbf{X})] = \alpha$. A value of 1 corresponds to rejecting the null hypothesis, and a value of 0 corresponds to not rejecting the null hypothesis. Here we only consider $\mathbf{x} = (x_1, ..., x_n)^T$ such that $x_i > 0$ for each $i \in \{1, ..., n\}$, since the X_i are positive almost surely.

The likelihood ratio is given by

$$\begin{aligned} f_{\mathbf{x}}(\mathbf{x} \mid \lambda_1) &= \frac{\prod_{i=1}^n \lambda_1 e^{-\lambda_1 x_i}}{\prod_{i=1}^n \lambda_0 e^{-\lambda_0 x_i}} \\ &= \left(\frac{\lambda_1}{\lambda_0}\right)^n e^{-\lambda_1 \sum_{i=1}^n x_i + \lambda_0 \sum_{i=1}^n x_i} \\ &= 2^n e^{-\sum_{i=1}^n x_i}. \end{aligned}$$

Note that we can simplify the inequalities involving the likelihood ratio:

$$\frac{f_{\mathbf{x}}(\mathbf{x} \mid \lambda_{1})}{f_{\mathbf{x}}(\mathbf{x} \mid \lambda_{0})} > k$$

$$\Leftrightarrow 2^{n} \frac{e^{-2\sum_{i=1}^{n} x_{i}}}{e^{-\sum_{i=1}^{n} x_{i}}} > k$$

$$\Leftrightarrow g(T(x_{1}, ..., x_{n})) > k$$

$$\Leftrightarrow T(x_{1}, ..., x_{n}) < t = g^{-1}(k)$$

where $T(x_1, ..., x_n) = \sum_{i=1}^n x_i$, $g(s) = 2^n \exp(-s)$ and so $t = -\log(k) + n\log(2)$. The equivalence holds since g is strictly decreasing.

Under $H_0: \lambda = \lambda_0 = 1$, $\sum_{i=1}^n X_i \sim G(n, 1)$ (by independence) has a continuous distribution, therefore the case $\frac{f_{\mathbf{x}}(\mathbf{x}|\lambda_1)}{f_{\mathbf{x}}(\mathbf{x}|\lambda_0)} = k_{\alpha}$ (which is equivalent to $\sum_{i=1}^n x_i = t_{\alpha}$) has probability 0, and in particular the middle branch of the NP test does not affect whether $E_{\lambda_0}[d_{NP}(\mathbf{X})] = \alpha$. Therefore, we can arbitrarily choose $\gamma_{\alpha} = 0$.

The NP test can then be equivalently given by:

$$d_{NP}(\mathbf{x}) = \begin{cases} 1, & \sum_{i=1}^{n} x_i < t_{\alpha} \\ 0, & \sum_{i=1}^{n} x_i \ge t_{\alpha}. \end{cases}$$

We still need to enforce the condition $E_{\lambda_0}[d_{NP}(\mathbf{X})] = \alpha$ by choosing a suitable value of α . This is equivalent to:

$$P_{\lambda_0}\left(\sum_{i=1}^n X_i < t_\alpha\right) = \alpha$$
$$\Leftrightarrow P_{\lambda_0}\left(\sum_{i=1}^n X_i \le t_\alpha\right) = \alpha.$$

Since $\sum_{i=1}^{n} X_i \sim G(n,1)$ under H_0 , this means that $t_{\alpha} = F_n^{-1}(\alpha)$, for F_n the cdf of the G(n,1) distribution.

(b) By definition of the power, we have

$$\beta = E_{\lambda_1}[d_{NP}(\mathbf{X})] = P_{\lambda_1}\left(\sum_{i=1}^n X_i \le F_n^{-1}(\alpha)\right).$$

Recall that if $Y \sim \text{Exp}(\lambda)$, then $\lambda Y \sim \text{Exp}(1)$. Thus, under $H_1 : \lambda = \lambda_1 = 2, 2X_1, ..., 2X_n$ are i.i.d ~ Exp(1), and therefore, by independence, $\sum_{i=1}^n 2X_i \sim G(n, 1)$. It follows that

$$\beta = P_{\lambda_1} \left(2\sum_{i=1}^n X_i \le 2F_n^{-1}(\alpha) \right) = F_n(2F_n^{-1}(\alpha)).$$

- (c) We compute $\sum_{i=1}^{10} x_i = 5.367$.
 - For $\alpha = 0.05$, $F_{10}^{-1}(\alpha) = F_{10}^{-1}(0.05) \approx 5.425 > \sum_{i=1}^{10} x_i$. Therefore, we reject H_0 with a level of 5%.
 - For $\alpha = 0.01$, $F_{10}^{-1}(0.01) \approx 4.130$. Therefore, we cannot reject H_0 with a level of 1% these data do not present a compelling enough evidence against the null hypothesis.

Exercise 13.3 Again in the setup of exercise 2, it turns out that the Neyman-Pearson test you found in (a) is actually UMP of level α for testing $H_0: \lambda = 1$ versus $H'_1: \lambda > 1$. More concretely, the same NP test is the most powerful among all tests of level α , for any $\lambda \in \Theta'_1 = (1, +\infty)$, and not only for $\lambda \in \Theta_1 = \{2\}$.

Do you see why this is true?

Solution 13.3 Return to the explicit form of the NP-test for this problem:

$$d_{NP}(\mathbf{x}) = \begin{cases} 1, & \sum_{i=1}^{n} x_i < F_n^{-1}(\alpha) \\ 0, & \sum_{i=1}^{n} x_i \ge F_n^{-1}(\alpha) \end{cases}$$

We know (as shown in the lectures) that d_{NP} is a UMP test of level α for testing $H_0: \lambda = 1$ versus $H_1: \lambda = 2$. In other words, for any other test d^* such that $E_{\lambda_0}[d^*(\mathbf{X})] \leq \alpha$, we would have a lower power:

$$E_{\lambda_1}[d^*(\mathbf{X})] \leq E_{\lambda_1}[d_{NP}(\mathbf{X})].$$

However, d_{NP} does not depend on the particular value of $\lambda_1 = 2$. More specifically, if we had to test $H_0: \lambda = 1$ versus $H'_1: \lambda = \lambda'_1$ for some $\lambda'_1 > 1$, we would obtain exactly the same test as above. Since this same test is again UMP of level α , this implies that it is actually UMP of level alpha for the testing problem $H_0: \lambda = 1$ versus $H'_1: \lambda > 1$.