Probability and Statistics

Exercise sheet 2

Exercise 2.1 Birthday problem (without Stirling's approximation).
Consider again n people assumed to have the same probability of being born on any day of the year calendar. Assume also that this calendar consists of 365 days. Write

$$
A_{n}=\{\text { at least } 2 \text { people in the group have the same birthday }\} .
$$

The aim of this exercise is to find bounds for $P\left(A_{n}^{c}\right)$ for any fixed $2 \leq n \leq 365=N$.
(a) Show that for any two given people i and $j(1 \leq i \neq j \leq n)$ from the group,

$$
P(i \text { and } j \text { have the same birthday })=\frac{1}{N} .
$$

(b) Using (a), and the known inequality

$$
\log (1+x) \leq x, \quad x \in(-1, \infty)
$$

show that

$$
1-\frac{n(n-1)}{2 N} \leq P\left(A_{n}^{c}\right) \leq \exp \left(-\frac{n(n-1)}{2 N}\right)
$$

(c) Find that $n_{m}=23$ is the smallest n so that $P\left(A_{n}\right) \geq \frac{1}{2}$.

Solution 2.1

(a) $\operatorname{Fix}(i, j) \in\{1, \ldots, n\}^{2}: i \neq j$ and consider

$$
B_{i j}:=\{i \text { and } j \text { are born on the same day }\}
$$

It is not difficult to see that counting the sample points in $B_{i j}$ corresponds exactly to counting the number of $(n-1)$-tuplets $\left(w_{1}, \ldots, w_{n-1}\right)$ with each $w_{k} \in\{1, \ldots, N\}$. Thus $\operatorname{card}\left(B_{i j}\right)=N^{n-1}$ so that

$$
P\left(B_{i j}\right)=\frac{N^{n-1}}{N^{n}}=\frac{1}{N} .
$$

(b) We have that

$$
P\left(A_{n}^{c}\right)=\frac{N(N-1) \ldots(N-n+1)}{N^{n}}=\prod_{j=0}^{n-1}\left(1-\frac{j}{N}\right) .
$$

Hence,

$$
\begin{aligned}
\log \left(P\left(A_{n}^{c}\right)\right) & =\sum_{j=0}^{n-1} \log \left(1-\frac{j}{N}\right) \\
& \leq-\frac{1}{N} \sum_{j=0}^{n-1} j \\
& =-\frac{1}{N} \frac{(n-1) n}{2}
\end{aligned}
$$

This shows the upper bound

$$
P\left(A_{n}^{c}\right) \leq \exp \left(-\frac{n(n-1)}{2 N}\right)
$$

To show the lower bound, note that

$$
A_{n}=\bigcup_{1 \leq i<j \leq n} B_{i j}
$$

where $B_{i j}$ is the same event defined before in (a).
Hence,

$$
\begin{aligned}
P\left(A_{n}\right) & =P\left(\bigcup_{1 \leq i<j \leq n} B_{i j}\right) \\
& \leq \sum_{1 \leq i<j \leq n} P\left(B_{i j}\right) \\
& =\frac{1}{N}\left(\sum_{1 \leq i<j \leq n} 1\right) \\
& =\binom{n}{2} \times \frac{1}{N} \\
& =\frac{n(n-1)}{2 N} .
\end{aligned}
$$

The latter is also equivalent to

$$
1-\frac{n(n-1)}{2 N} \leq P\left(A_{n}^{c}\right)
$$

(c)

$$
P\left(A_{n}\right) \geq \frac{1}{2} \Leftrightarrow P\left(A^{c}\right) \leq \frac{1}{2}
$$

Now, if $\exp \left(-\frac{n(n-1)}{2 N}\right) \leq \frac{1}{2}$, then $P\left(A_{n}^{c}\right) \leq \frac{1}{2}$.

$$
\begin{aligned}
\exp \left(-\frac{n(n-1)}{2 N}\right) \leq \frac{1}{2} & \Leftrightarrow \frac{n(n-1)}{2 N} \geq \log (2) \\
& \Leftrightarrow n^{2}-n-2 N \log (2) \geq 0 \\
& \Leftrightarrow n \geq \frac{1+\sqrt{1+8 N \log (2)}}{2}=: n_{1}
\end{aligned}
$$

With $N=365$, we find that $n_{1} \approx 22.99$ and hence $n \geq 23 \Rightarrow P\left(A_{n}\right) \geq \frac{1}{2}$.
On the other hand, if $P\left(A_{n}\right) \geq \frac{1}{2}$ then $P\left(A_{n}^{c}\right) \leq \frac{1}{2}$ and we should have

$$
\begin{aligned}
1-\frac{n(n-1)}{2 N} \leq \frac{1}{2} & \Leftrightarrow \frac{n(n-1)}{2 N} \geq \frac{1}{2} \\
& \Leftrightarrow n^{2}-n-N \geq 0 \\
& \Leftrightarrow n \geq \frac{1+\sqrt{1+4 N}}{2}=: n_{2}
\end{aligned}
$$

with $n_{2}=19.61$.
Hence $P\left(A_{n}\right) \geq \frac{1}{2} \Rightarrow n \geq 20$.
Now

$$
\begin{aligned}
& P\left(A_{20}\right)=0.411 \\
& P\left(A_{21}\right)=0.443 \\
& P\left(A_{22}\right)=0.475 \\
& P\left(A_{23}\right)=0.507
\end{aligned}
$$

and $n_{m}=23$.
Exercise 2.2 We have a box which contains 3 different coins. Each of these coins has a different probability to show heads after it is tossed. Call these probabilities $p_{j}, j=1,2,3$. We know that

$$
p_{1}=\frac{1}{4}, \quad p_{2}=\frac{1}{2}, \quad p_{3}=\frac{3}{4}
$$

(a) We select a coin from the box completely at random. When this coin is tossed, it shows heads. What is the conditional probability that coin j was selected?
(b) The same coin is tossed again. What is the conditional probability of obtaining heads again?
(c) ${ }^{1}$ Prove the following result:

Let A_{1}, \ldots, A_{k} be a partition of Ω, and B, C events in Ω with $P(B \cap C)>0$ and $P\left(A_{i} \cap B\right)>$ 0 for $i=1, \ldots, k$. Then,

$$
P\left(A_{j} \mid B \cap C\right)=\frac{P\left(A_{j} \mid B\right) P\left(C \mid A_{j} \cap B\right)}{\sum_{i=1}^{k} P\left(A_{i} \mid B\right) P\left(C \mid A_{i} \cap B\right)}
$$

(This result is called the conditional Bayes' theorem.)
(d) If the same coin shows again heads at the second toss, what is the conditional probability that coin j was selected?

Solution 2.2

(a) Define the events

$$
A_{j}:=\{\operatorname{coin} j \text { is selected }\},(j=1,2,3)
$$

[^0]\[

$$
\begin{aligned}
H_{1} & :=\{\text { we obtain heads at the first toss }\} \\
H_{2} & :=\{\text { we obtain heads at the second toss }\} .
\end{aligned}
$$
\]

Then

$$
\begin{aligned}
P\left(A_{j} \mid H_{1}\right) & =\frac{P\left(A_{j} \cap H_{1}\right)}{P\left(H_{1}\right)} \\
& =\frac{P\left(H_{1} \mid A_{j}\right) P\left(A_{j}\right)}{\sum_{i=1}^{3} P\left(H_{1} \mid A_{i}\right) P\left(A_{i}\right)}
\end{aligned}
$$

Now,

$$
\begin{gathered}
P\left(A_{1}\right)=P\left(A_{2}\right)=P\left(A_{3}\right)=\frac{1}{3} \\
P\left(H_{1} \mid A_{j}\right)=p_{j}= \begin{cases}\frac{1}{4}, & j=1 \\
\frac{1}{2}, & j=2 \\
\frac{3}{4}, & j=3\end{cases}
\end{gathered}
$$

Thus

$$
\begin{aligned}
P\left(A_{j} \mid H_{1}\right) & =\frac{p_{j} / 3}{\sum_{i=1}^{3} p_{i} / 3} \\
& =\frac{p_{j}}{\frac{1}{4}+\frac{1}{2}+\frac{3}{4}} \\
& =\frac{2 p_{j}}{3} \\
& = \begin{cases}\frac{1}{6}, & j=1 \\
\frac{1}{3}, & j=2 \\
\frac{1}{2} & j=3\end{cases}
\end{aligned}
$$

(b) We want to calculate $P\left(H_{2} \mid H_{1}\right)$:

$$
P\left(H_{2} \mid H_{1}\right)=\frac{P\left(H_{1} \cap H_{2}\right)}{P\left(H_{1}\right)}
$$

with

$$
\begin{aligned}
P\left(H_{1} \cap H_{2}\right) & =\sum_{i=1}^{3} P\left(A_{i} \cap H_{1} \cap H_{2}\right) \\
& =\sum_{i=1}^{3} P\left(H_{1} \cap H_{2} \mid A_{i}\right) P\left(A_{i}\right) \\
& =\frac{1}{3} \sum_{i=1}^{3} P\left(H_{1} \mid A_{i}\right) P\left(H_{2} \mid A_{i}\right)
\end{aligned}
$$

because given that we know that we are tossing a particular coin (j, say), the event of obtaining heads in the first toss and heads in the second toss are independent. Also, they have the same (conditional) probability p_{j}. Hence

$$
\begin{aligned}
P\left(H_{2} \mid H_{1}\right) & =\frac{\frac{1}{3} \sum_{i=1}^{3} p_{i}^{2}}{\frac{1}{3} \sum_{i=1}^{3} p_{i}} \\
& =\frac{\frac{1}{16}+\frac{1}{4}+\frac{9}{16}}{\frac{3}{2}} \\
& =\frac{7}{12}
\end{aligned}
$$

(using $\left.P\left(H_{1}\right)=\sum_{i=1}^{3} P\left(H_{1} \mid A_{i}\right) \frac{1}{3}=\frac{1}{3} \sum_{i=1}^{3} p_{i}\right)$.
(c) We have that

$$
P\left(A_{j} \mid B \cap C\right)=\frac{P\left(A_{j} \cap B \cap C\right)}{P(B \cap C)}
$$

with

$$
P\left(A_{j} \cap B \cap C\right)=P\left(C \mid A_{j} \cap B\right) P\left(A_{j} \cap B\right)=P\left(C \mid A_{j} \cap B\right) P\left(A_{j} \mid B\right) P(B)
$$

and

$$
P(B \cap C)=\sum_{i=1}^{k} P\left(A_{i} \cap B \cap C\right)=\sum_{i=1}^{k} P\left(C \mid A_{i} \cap B\right) P\left(A_{i} \mid B\right) P(B)
$$

therefore

$$
P\left(A_{j} \mid B \cap C\right)=\frac{P\left(A_{j} \mid B\right) P\left(C \mid A_{j} \cap B\right)}{\sum_{i=1}^{k} P\left(A_{i} \mid B\right) P\left(C \mid A_{i} \cap B\right)}
$$

(d) We want to compute $P\left(A_{j} \mid H_{1} \cap H_{2}\right)$. Using (c) we can write

$$
P\left(A_{j} \mid H_{1} \cap H_{2}\right)=\frac{P\left(A_{j} \mid H_{1}\right) P\left(H_{2} \mid A_{j} \cap H_{1}\right)}{\sum_{i=1}^{3} P\left(A_{i} \mid H_{1}\right) P\left(H_{2} \mid A_{i} \cap H_{1}\right)}
$$

where $P\left(A_{j} \mid H_{1}\right)$ was calculated in (a), and $P\left(H_{2} \mid A_{j} \cap H_{1}\right)=p_{j}$ (knowing that the first toss of A_{j} resulted in heads does not affect the probability of obtaining heads in any other toss).
To be more convinced,

$$
\begin{aligned}
P\left(H_{2} \mid A_{j} \cap H_{1}\right) & =\frac{P\left(H_{2} \cap H_{1} \cap A_{j}\right)}{P\left(A_{j} \cap H_{1}\right)} \\
& =\frac{P\left(H_{2} \mid A_{j}\right) P\left(H_{1} \mid A_{j}\right)}{P\left(H_{1} \mid A_{j}\right)} \\
& =P\left(H_{2} \mid A_{j}\right) \\
& =p_{j} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P\left(A_{j} \mid H_{1} \cap H_{2}\right) & =\frac{P\left(A_{j} \mid H_{1}\right) p_{j}}{\sum_{i=1}^{3} P\left(A_{i} \mid H_{1}\right) p_{i}} \\
& =\left\{\begin{array}{ll}
\frac{\frac{1}{6} \times \frac{1}{6} \times \frac{1}{4}}{\frac{1}{3} \times \frac{1}{3}+\frac{1}{2} \times \frac{3}{4}}, & j=1 \\
\frac{\frac{1}{3} \times \frac{1}{6}}{\frac{1}{6} \times \frac{1}{4}+\frac{1}{3} \times \frac{1}{2}+\frac{1}{2} \times \frac{3}{4}}, & j=2 \\
\frac{1}{2} \times \frac{3}{4} \\
\frac{1}{6} \times \frac{1}{4}+\frac{1}{3} \times \frac{1}{2}+\frac{1}{2} \times \frac{3}{4}
\end{array},\right. \\
& = \begin{cases}\frac{1}{14}, & j=1 \\
\frac{2}{7}, & j=2 \\
\frac{9}{14}, & j=3\end{cases}
\end{aligned}
$$

Exercise 2.3 (Simpson's paradox).

We are interested in studying the probability of success of a student at an entrance exam for two departments of a university. Consider the following events:

$$
\begin{gathered}
A:=\{\text { The student is a man }\} \\
A^{c}=\{\text { The student is a woman }\} \\
B:=\{\text { The student applied for department I }\} \\
B^{c}=\{\text { The student applied for department II }\} \\
C:=\{\text { The student was accepted }\} \\
C^{c}=\{\text { The student was not accepted }\}
\end{gathered}
$$

We assume the following probabilities:

$$
\begin{gathered}
P(A)=0.73 \\
P(B \mid A)=0.69, P\left(B \mid A^{c}\right)=0.24 \\
P(C \mid A \cap B)=0.62, P\left(C \mid A^{c} \cap B\right)=0.82 \\
P\left(C \mid A \cap B^{c}\right)=0.06, P\left(C \mid A^{c} \cap B^{c}\right)=0.07
\end{gathered}
$$

(a) Draw a tree describing the situation with the probabilities associated.
(b) From examining the probabilities in the tree, do you think that in the selection process the women are disadvantaged?
(c) Calculate $P(C \mid A)$ and $P\left(C \mid A^{c}\right)$. Do you agree with your answer in 3.2? What is going on?

Solution 2.3

(a) A tree can be drawn as follows:

(b) We can see that

$$
P\left(C \mid B \cap A^{c}\right) \geq P(C \mid B \cap A)
$$

and

$$
P\left(C \mid B^{c} \cap A^{c}\right) \geq P\left(C \mid B^{c} \cap A\right)
$$

and therefore we can't really say that women are disadvantaged.
(c) We have that

$$
\begin{aligned}
P(C \mid A) & =\frac{P(C \cap A)}{P(A)} \\
& =\frac{P(C \cap A \cap B)+P\left(C \cap A \cap B^{c}\right)}{P(A)} \\
& =\frac{P(C \mid A \cap B) P(A \cap B)+P\left(C \mid A \cap B^{c}\right) P\left(A \cap B^{c}\right)}{P(A)} \\
& =\frac{P(C \mid A \cap B) P(B \mid A) P(A)+P\left(C \mid A \cap B^{c}\right) P\left(B^{c} \mid A\right) P(A)}{P(A)} \\
& =0.62 \times 0.69+0.06 \times 0.31 \\
& =0.4464
\end{aligned}
$$

$$
P\left(C \mid A^{c}\right)=P\left(C \mid A^{c} \cap B\right) P\left(B \mid A^{c}\right)+P\left(C \mid A^{c} \cap B^{c}\right) P\left(B^{c} \mid A^{c}\right)
$$

$$
=0.82 \times 0.24+0.07 \times 0.76
$$

$$
=0.25
$$

These figures suggest now a totally different conclusion, and women seem now to be really disadvantaged.
The higher rejection rate is not due to the gender but to the fact that a large proportion of women apply to the department with a large rejection rate.
Indeed,

$$
\begin{aligned}
P(C \mid B) & =\frac{P(C \cap B)}{P(B)} \\
& =\frac{P(C \cap B \cap A)+P\left(C \cap B \cap A^{c}\right)}{P(B \cap A)+P\left(B \cap A^{c}\right)} \\
& =\frac{P(C \mid B \cap A) P(B \cap A)+P\left(C \mid B \cap A^{c}\right) P\left(B \cap A^{c}\right)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)} \\
& =\frac{0.62 \times 0.69 \times 0.73+0.82 \times 0.24 \times 0.27}{0.69 \times 0.73+0.24 \times 0.27} \\
& =0.648
\end{aligned}
$$

Similar calculations yield $P\left(C \mid B^{c}\right) \approx 0.065$, so now this makes sense considering that 76% of women apply to department II vs. 69% of men who apply to department I.

[^0]: ${ }^{1}$ This part was updated a posteriori.

