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Probability and Statistics

Exercise sheet 4

Exercise 4.1 (On measurability)

(a) Consider X1, ..., Xm (m ≥ 1) random variables defined on some (Ω,A, P ) and taking values
in (R,B), where A is a σ-algebra on Ω, P is a probability measure on A and B is the Borel
σ-field.
Show that

−X1, max
1≤i≤m

Xi, min
1≤i≤m

Xi

are random variables.

(b) Consider now a sequence (Xn)n≥1 of random variables X1, X2, ... defined on (Ω,A, P ) and
taking values in (R,B) as in (a).
Show that:

sup
n≥1

Xn, inf
n≥1

Xn, lim sup
n→∞

Xn, lim inf
n→∞

Xn, lim
n→∞

Xn

are all random variables, in the case of the limit assuming that it exists.
Here, recall the definition of

lim sup
n→∞

:= inf
n≥1

(sup
k≥n

Xk)

and
lim inf
n→∞

:= sup
n≥1

( inf
k≥n

Xk).

Solution 4.1

(a) Recall that to show that

X : (Ω,A, P ) 7→ (R,B)

is a random variable, we need to prove that it is measurable, that is ∀B ∈ B, {X ∈ B} ∈ A.
This is also equivalent to

∀x ∈ R {X ≤ x} ∈ A
⇔ ∀x ∈ R {X < x} ∈ A
⇔ ∀x ∈ R {X ≥ x} ∈ A
⇔ ∀x ∈ R {X > x} ∈ A

since
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B = σ(O) = σ({(−∞, x] : x ∈ R})
= σ({(−∞, x) : x ∈ R})
= σ({[x,+∞) : x ∈ R})
= σ({(x,+∞) : x ∈ R})

with O the collection of all open sets and σ(C) the minimal σ-algebra generated by a non-empty
collection of sets C.
• {−X1 ≤ x} = {X1 ≥ −x} ∈ A ∀x ∈ R because X1 is measurable.
• {

max
1≤i≤m

Xi ≤ x
}

=
m⋂
i=1
{Xi ≤ x} ∈ A

since X1, ..., Xm are measurable and A is closed under finite intersections.
• {

inf
1≤i≤m

Xi ≤ x
}

=
m⋃
i=1
{Xi ≤ x} ∈ A

for the same reason as above.
Alternatively, we can use the first part to say that −X1, ...,−Xm are random variables, and
so we can argue that

min
1≤i≤m

Xi = − max
1≤i≤m

(−Xi)

is a random variable as well by the first and second parts.

(b) • For a sequence (Xn)n≥1 of random variables, the reasoning is similar:

{sup
n≥1

Xn ≤ x} =
⋂
n≥1
{Xn ≤ x} ∈ A

since A is closed under countable intersections, and

inf
n≥1

Xn = − sup
n≥1

(−Xn)

is measurable by the same argument as before: −Xn is measurable, then so is supn≥1(−Xn)
and therefore so is the infimum (or one can argue directly).
•

lim sup
n→∞

Xn = inf
n≥1

(sup
k≥n

Xk)

Note that each Yn := supk≥nXk is measurable as proved above, and so

lim sup
n→∞

Xn = inf
n≥1

Yn

is measurable as well.
•

lim inf
n→∞

= − lim sup
n→∞

(−Xn)

so it must be measurable.
• If limn→∞Xn exists, then

lim
n→∞

Xn = lim sup
n→∞

Xn

and so must be measurable in that case.
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Exercise 4.2 (On the cdf of min and max of i.i.d random variables)
Let X1, ..., Xn be iid∼ F .

(a) Let Sn := max1≤i≤nXi. Find the cdf of Sn as a function of F .

(b) Do the same but for In := min1≤i≤nXi.

(c) Fix x ∈ R such that F (x) ∈ (0, 1). What is the limit of the cdf of Sn at x as n → ∞?
What about the cdf of In? How would you interpret these results? What does this mean if
X1, ..., Xn take values in a finite set {ξ1, ..., ξk}?

Solution 4.2

(a) Sn is a random variable by the previous question.
For x ∈ R,

P (Sn ≤ x) = P

(
max

1≤u≤n
Xi ≤ x

)
= P (X1 ≤ x, ...,Xn ≤ x)

=
n∏
i=1

P (Xi ≤ x)

= [F (x)]n.

(b) For x ∈ R,

P (In ≤ x) = 1− P (In > x)
= 1− P (X1 > x, ...,Xn > x)

= 1−
n∏
i=1

P (Xi > x)

= 1− [1− F (x)]n.

(c) Let x ∈ R be such that F (x) ∈ (0, 1).
Then

lim
n→∞

P (Sn ≤ x) = lim
n→∞

[F (x)]n = 0

and
lim
n→∞

P (In ≤ x) = lim
n→∞

(1− [1− F (x)]n) = 1− 0 = 1.

This can be interpreted by saying that as n grows, the maximum and minimum are dragged
to an extreme value (if they stayed somewhere inside the support of X1, ..., Xn we would have
obtained values of the cdf of Sn or In away from 0 and 1, respectively).
In the example where Xi ∈ {ξ1, ..., ξk} with ξ1 < ... < ξk, Sn and In will converge to ξk and
ξ1 respectively, in probability (a concept to be defined later).

Exercise 4.3 (On expectation)
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(a) For any cdf F show that

P (X ∈ (a, b] ) = F (b)− F (a)

for any a < b and where X is a random variable with cdf F .

(b) Let X be a nonnegative discrete random variable taking its values in the set {x1, x2, ...}
(possibly countably infinite), where we assume that the values are ordered by x1 < x2 < ....
Suppose E(X) exists. Show that

E(X) =
∞∑
j=0

(xj+1 − xj)P (X > xj)

with x0 := 0.
Does this match with the tail sum seen in the lecture?

(c) Show that if F is the cdf of X (the same X as in (b)), then E(X) can also be given by the
formula

E(X) =
∫ ∞

0
(1− F (x))dx. (1)

(d) Show that for a general discrete random variable (possibly taking values in (−∞, 0)),

E(X) = −
∫ 0

−∞
P (X < x)dx+

∫ ∞
0

(1− F (x))dx (2)

provided that E(X) exists.

Remark: Actually, the formulas in 1 and 2 are true in general for any type of nonnegative and
general random variables. Also,

∫ 0
−∞ P (X < x)dx can be replaced by

∫ 0
−∞ F (x)dx.

Solution 4.3

(a) We have

P (X ∈ (a, b]) + P (X ≤ a) = P (X ∈ (a, b] ∪ (−∞, a]) = P (X ∈ (−∞, b]).

Since P (X ≤ a) = F (a) and P (X ≤ b) = F (b), the result follows.

(b) We have
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∞∑
j=0

(xj+1 − xj)P (X > xj)

=
∞∑
j=0

(xj+1 − xj)P (X ≥ xj+1)

=
∞∑
j=0

(xj+1 − xj)
∞∑

k=j+1
P (X = xk)

=
∞∑
j=0

(xj+1 − xj)
∞∑
k=1

P (X = xk)1k≥j+1

=
∞∑
k=1

∞∑
j=0

(xj+1 − xj)P (X = xk)1j≤k−1

=
∞∑
k=1

k−1∑
j=0

(xj+1 − xj)P (X = xk)

=
∞∑
k=1

(xk − x0)P (X = xk)

=E(X).

One must be careful to justify exchanging the summations, but this is correct in this case
since all the summands are positive; in particular this can be seen as a discrete version of
Fubini’s theorem, which in this case gives that

∞∑
m,n=0

am,n =
∑
m≥0

∑
n≥0

am,n =
∑
n≥0

∑
m≥0

am,n

if all the am,n ≥ 0.
This matches the tail sum for integer-valued random variables, where {x1, x2, ...} = {0, 1, ...},
so that xj+1 − xj = 1 and xj = j.

(c) Now we check that E(X) =
∫∞

0 (1− F (x))dx: We have:

F (x) =


0 if x < x1

P (X = x1) if x1 ≤ x < x2
... ...∑k

j=1 P (X = xj) if xk ≤ x < xk+1

Therefore,
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∫ ∞
0

(1− F (x))dx =
∞∑
j=0

∫ xj+1

xj

(1− F (x))dx

=
∞∑
j=0

∫ xj+1

xj

(1− P (X ≤ xj))dx

=
∞∑
j=0

(xj+1 − xj)(1− P (X ≤ xj))

=
∞∑
j=0

(xj+1 − xj)P (X > xj)

= E(X).

The integrals are interpreted as being over [xj , xj+1), though it does not matter whether the
intervals are open or closed.

(d) We start by noting that we can always write

X = max(X, 0) + min(X, 0) = X+ −X−

where X+ := max(X, 0) ≥ 0, X− := −min(X, 0) ≥ 0.
By linearity of expectation, we have

E(X) = E(X+)− E(X−)

=
∫ ∞

0
(1− F+(x))dx−

∫ ∞
0

(1− F−(x))dx

where F− and F+ denote the cdf of X− and X+ respectively. Now:

F+(x) = P (X+ ≤ x) =
{

0, x < 0
P (X ≤ x,X > 0) + P (X ≤ 0), x ≥ 0

=
{

0, x < 0
P (X ∈ (0, x]) + F (0), x ≥ 0

=
{

0, x < 0
F (x), x ≥ 0.

Hence, ∫ ∞
0

(1− F+(x))dx =
∫ ∞

0
(1− F (x))dx.

Similarly,

F−(x) = P (X− ≤ x) =
{

0, x < 0
P (min(X, 0) ≥ −x,X > 0) + P (X ≤ 0), x ≥ 0

=
{

0, x < 0
P (X ≥ −x), x ≥ 0.
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Thus,

∫ ∞
0

(1− F−(x))dx =
∫ ∞

0
(1− P (X ≥ −x))dx

=
∫ ∞

0
P (X < −x)dx

=
∫ 0

−∞
P (X < x)dx.

It follows that

E(X) =
∫ ∞

0
(1− F (x))dx−

∫ 0

−∞
P (X < x)dx

as claimed.

Exercise 4.4 (Quantiles)
For a given 0 < α < 1, we call the α-quantile of F the quantity

qα = inf{x ∈ R : F (x) ≥ α},

where F is a given cdf.
Remark: The function α 7→ qα is also called the generalised inverse of the cdf F . If α = 1

2 , q 1
2
is

called the median.

(a) Show that α 7→ qα is non-decreasing on (0, 1).

(b) Toss a fair coin n times and record

Xi =
{

1 if heads at the ith toss
0 otherwise.

Let

Yn =
n∑
i=1

Xi

be the number of heads obtained in the n tosses.
Find the cdf of Yn. Call it Fn.

(c) What is the median of Fn when n is even and when it is odd?

Solution 4.4

(a) For α′ ≥ α in (0, 1) it is clear that

Sα′ := {x ∈ R : F (x) ≥ α′} ⊆ {x ∈ R : F (x) ≥ α} =: Sα.

This trivially implies that

inf Sα′ ≥ inf Sα
⇔ qα′ ≥ qα.
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(b) Here we have

Yn =
n∑
i=1

Xi = “number of 1’s among n possible occurrences”

Since the n coins are fair and independent, the pmf of Yn is

P (Yn = j) =
(
n
j

)
2n , j = 0, ..., n.

Hence, the cdf Fn is given by

Fn(x) =



0, x < 0
1

2n , 0 ≤ x < 1
1+(n

1)
2n , 1 ≤ x < 2
...

1
2n

∑j
k=0

(
n
k

)
, j ≤ x < j + 1

...
1, x ≥ n.

Yn is called a Binomial random variable.

(c) By definition of q 1
2
(the median),

q 1
2

= inf
{
x : Fn(x) ≥ 1

2

}
.

• Consider the case where n is even, n = 2m. We have:

1
2n

 m∑
j=0

(
n

j

)
+

n∑
j=m+1

(
n

j

) = 1

where
n∑

j=m+1

(
n

j

)
=
m−1∑
j=0

(
n

n− j

)
=
m−1∑
j=0

(
n

j

)
.

Thus,

1
2n

 m∑
j=0

(
n

j

)
+
m−1∑
j=0

(
n

j

) = 1

⇔ 1
2n

2
m−1∑
j=0

(
n

j

)
+
(
n

m

) = 1

⇔ 2F (m− 1) = 1−
(
n
m

)
2n

⇒ F (m− 1) < 1
2 .

On the other hand,
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1
2n

m−1∑
j=0

(
n

j

)
+

n∑
j=m

(
n

j

) = 1

⇔ 1
2n

m−1∑
j=0

(
n

j

)
+

m∑
j=0

(
n

j

) = 1

⇔ 2F (m) = 1 +
(

n
m−1

)
2n

⇒ F (m) > 1
2 .

This implies that q 1
2

= m = n
2 .

• If n is odd, n = 2m+ 1 then:

1
2n

 m∑
j=0

(
n

j

)
+

n∑
j=m+1

(
n

j

) = 1

⇔ 1
2n

 m∑
j=0

(
n

j

)
+

m∑
j=0

(
n

n− j

) = 1

⇔ 2F (m) = 1

⇔ F (m) = 1
2 .

Since F is a step function, this implies that q 1
2

= m = n−1
2 .

Exercise 4.5 (an interesting property of expectations)

(a) Suppose that X is a random variable. Show that E(X2) <∞ if and only if var(X) <∞.

(b) Suppose var(X) <∞. Show that E(X) minimises the function

a 7→ E[(X − a)2] (a ∈ R).

Solution 4.5

(a) If var(X) <∞, then by definition we must have E(X) well-defined. Using the formula

var(X) = E(X2)− E(X)2

we get that
E(X2) = var(X) + E(X)2 <∞.

Suppose now E(X2) <∞. By the Cauchy-Schwarz inequality (or Jensen’s inequality)

E(X)2 ≤ E(X2)

⇒ |E(X)| ≤
√
E(X2) <∞

Thus, by definition of existence of E(X), the expectation is well-defined.
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Now, this implies that E(X2) and E(X) are well-defined, and therefore

E(X2)− E(X)2 = E
[
(X − E(X))2] = var(X) <∞.

(b) Let µ = E[X]:

E[(X − a)2] = E[(X − µ+ µ− a)2]
= E[(X − µ)2 + 2(X − µ)(µ− a) + (µ− a)2]
= var(X) + (µ− a)2.

Thus

E[(X − a)2] ≥ var(X)

with equality if and only if a = µ.

Exercise 4.6 (Optional, for the more courageous)
Consider again the birthday problem from another perspective. Suppose that people are coming

to a party and you are assigned the mission of writing down the birth date of each guest as they
show up.

Let X be the number of people that showed up until you see for the first time a person born on
the same day as somebody who showed up earlier.

(a) Find an expression for E(X) (this can be done in two different ways).

(b) Find an expression for σ =
√
var(X).

(c) The numerical values are given as

E(X) ≈ 24.62,

σ ≈ 12.19.

Find an interval [a, b] which satisfies

P (a ≤ X ≤ b) ≥ 0.5.

Hint: Use Chebyshev’s inequality.

Solution 4.6 For n = 2, ..., N + 1 with N = 365, we have

{X = n} = {first n− 1 people have distinct birthdays, nth person has the same birthday as one of the previous ones}

Therefore:

P (N = n) = N(N − 1)...(N − (n− 1) + 1)
Nn−1 × n− 1

N
,

and if n ≤ 1 or n ≥ N + 2 then P (X = n) = 0. Then:
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E(X) =
N+1∑
n=2

nP (X = n)

=
N+1∑
n=2

n
N(N − 1)...(N − (n− 1) + 1)

Nn
(n− 1)

=
N∑
n=1

n(n+ 1)N(N − 1)...(N − n+ 1)
Nn+1 .

We can also use the tail sum formula

E(X) =
∞∑
n=0

P (X > n)

= 2 +
N∑
n=2

P (X > n)

= 2 +
N∑
n=2

N(N − 1)...(N − n+ 1)
Nn

.

(a)
σ2 = E(X2)− E(X)2

where

E(X2) =
N+1∑
n=2

n(n+ 1)2N(N − 1)...(N − n+ 1)
NN+1 .

Thus,

σ =

N+1∑
n=2

n(n+ 1)2N(N − 1)...(N − n+ 1)
Nn+1 −

(
N∑
n=2

n(n+ 1)N(N − 1)...(N − n+ 1)
Nn+1

)2 1
2

.

(b) Using Chebyshev’s inequality, we have that

P

(
|X − µ|

σ
> k

)
≤ 1
k2

⇔ P

(
|X − µ|

σ
≤ k

)
≥ 1− 1

k2 .

If we choose k such that 1− 1
k2 = 1

2 , that is k =
√

2, then

P

(
|X − µ|

σ
≤
√

2
)
≥ 1

2

⇔ P (µ− σ
√

2 ≤ X ≤ µ+
√

2σ) ≥ 1
2

⇔ P (X ∈ [7.37, 41.86]) ≥ 1
2 .

Therefore we can choose the interval [a, b] = [7.37, 41.86].
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