Probability and Statistics

Exercise sheet 4

Exercise 4.1 (On measurability)

(a) Consider $X_{1}, \ldots, X_{m}(m \geq 1)$ random variables defined on some (Ω, \mathcal{A}, P) and taking values in $(\mathbb{R}, \mathcal{B})$, where \mathcal{A} is a σ-algebra on Ω, P is a probability measure on \mathcal{A} and \mathcal{B} is the Borel σ-field.

Show that

$$
-X_{1}, \max _{1 \leq i \leq m} X_{i}, \min _{1 \leq i \leq m} X_{i}
$$

are random variables
(b) Consider now a sequence $\left(X_{n}\right)_{n \geq 1}$ of random variables X_{1}, X_{2}, \ldots defined on (Ω, \mathcal{A}, P) and taking values in $(\mathbb{R}, \mathcal{B})$ as in (a).

Show that:

$$
\sup _{n \geq 1} X_{n}, \inf _{n \geq 1} X_{n}, \limsup _{n \rightarrow \infty} X_{n}, \liminf _{n \rightarrow \infty} X_{n}, \lim _{n \rightarrow \infty} X_{n}
$$

are all random variables, in the case of the limit assuming that it exists.
Here, recall the definition of

$$
\limsup _{n \rightarrow \infty}:=\inf _{n \geq 1}\left(\sup _{k \geq n} X_{k}\right)
$$

and

$$
\liminf _{n \rightarrow \infty}:=\sup _{n \geq 1}\left(\inf _{k \geq n} X_{k}\right) .
$$

Solution 4.1

(a) Recall that to show that

$$
X:(\Omega, \mathcal{A}, P) \mapsto(\mathbb{R}, \mathcal{B})
$$

is a random variable, we need to prove that it is measurable, that is $\forall B \in \mathcal{B},\{X \in B\} \in \mathcal{A}$. This is also equivalent to

$$
\begin{aligned}
& \forall x \in \mathbb{R}\{X \leq x\} \in \mathcal{A} \\
\Leftrightarrow & \forall x \in \mathbb{R}\{X<x\} \in \mathcal{A} \\
\Leftrightarrow & \forall x \in \mathbb{R}\{X \geq x\} \in \mathcal{A} \\
\Leftrightarrow & \forall x \in \mathbb{R}\{X>x\} \in \mathcal{A}
\end{aligned}
$$

since

$$
\begin{aligned}
\mathcal{B}=\sigma(\mathcal{O}) & =\sigma(\{(-\infty, x]: x \in \mathbb{R}\}) \\
& =\sigma(\{(-\infty, x): x \in \mathbb{R}\}) \\
& =\sigma(\{[x,+\infty): x \in \mathbb{R}\}) \\
& =\sigma(\{(x,+\infty): x \in \mathbb{R}\})
\end{aligned}
$$

with \mathcal{O} the collection of all open sets and $\sigma(\mathcal{C})$ the minimal σ-algebra generated by a non-empty collection of sets \mathcal{C}.

- $\left\{-X_{1} \leq x\right\}=\left\{X_{1} \geq-x\right\} \in \mathcal{A} \forall x \in \mathbb{R}$ because X_{1} is measurable.
-

$$
\left\{\max _{1 \leq i \leq m} X_{i} \leq x\right\}=\bigcap_{i=1}^{m}\left\{X_{i} \leq x\right\} \in \mathcal{A}
$$

since X_{1}, \ldots, X_{m} are measurable and \mathcal{A} is closed under finite intersections.
\bullet

$$
\left\{\inf _{1 \leq i \leq m} X_{i} \leq x\right\}=\bigcup_{i=1}^{m}\left\{X_{i} \leq x\right\} \in \mathcal{A}
$$

for the same reason as above.
Alternatively, we can use the first part to say that $-X_{1}, \ldots,-X_{m}$ are random variables, and so we can argue that

$$
\min _{1 \leq i \leq m} X_{i}=-\max _{1 \leq i \leq m}\left(-X_{i}\right)
$$

is a random variable as well by the first and second parts.
(b) • For a sequence $\left(X_{n}\right)_{n \geq 1}$ of random variables, the reasoning is similar:

$$
\left\{\sup _{n \geq 1} X_{n} \leq x\right\}=\bigcap_{n \geq 1}\left\{X_{n} \leq x\right\} \in \mathcal{A}
$$

since \mathcal{A} is closed under countable intersections, and

$$
\inf _{n \geq 1} X_{n}=-\sup _{n \geq 1}\left(-X_{n}\right)
$$

is measurable by the same argument as before: $-X_{n}$ is measurable, then so is $\sup _{n \geq 1}\left(-X_{n}\right)$ and therefore so is the infimum (or one can argue directly).
\bullet

$$
\limsup _{n \rightarrow \infty} X_{n}=\inf _{n \geq 1}\left(\sup _{k \geq n} X_{k}\right)
$$

Note that each $Y_{n}:=\sup _{k \geq n} X_{k}$ is measurable as proved above, and so

$$
\limsup _{n \rightarrow \infty} X_{n}=\inf _{n \geq 1} Y_{n}
$$

is measurable as well.
-

$$
\liminf _{n \rightarrow \infty}=-\limsup _{n \rightarrow \infty}\left(-X_{n}\right)
$$

so it must be measurable.

- If $\lim _{n \rightarrow \infty} X_{n}$ exists, then

$$
\lim _{n \rightarrow \infty} X_{n}=\limsup _{n \rightarrow \infty} X_{n}
$$

and so must be measurable in that case.

Exercise 4.2 (On the cdf of min and max of i.i.d random variables)
Let X_{1}, \ldots, X_{n} be $\stackrel{\text { iid }}{\sim} F$.
(a) Let $S_{n}:=\max _{1 \leq i \leq n} X_{i}$. Find the cdf of S_{n} as a function of F.
(b) Do the same but for $I_{n}:=\min _{1 \leq i \leq n} X_{i}$.
(c) Fix $x \in \mathbb{R}$ such that $F(x) \in(0,1)$. What is the limit of the cdf of S_{n} at x as $n \rightarrow \infty$? What about the cdf of I_{n} ? How would you interpret these results? What does this mean if X_{1}, \ldots, X_{n} take values in a finite set $\left\{\xi_{1}, \ldots, \xi_{k}\right\} ?$

Solution 4.2

(a) S_{n} is a random variable by the previous question.

For $x \in \mathbb{R}$,

$$
\begin{aligned}
P\left(S_{n} \leq x\right) & =P\left(\max _{1 \leq u \leq n} X_{i} \leq x\right) \\
& =P\left(X_{1} \leq x, \ldots, X_{n} \leq x\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \leq x\right) \\
& =[F(x)]^{n}
\end{aligned}
$$

(b) For $x \in \mathbb{R}$,

$$
\begin{aligned}
P\left(I_{n} \leq x\right) & =1-P\left(I_{n}>x\right) \\
& =1-P\left(X_{1}>x, \ldots, X_{n}>x\right) \\
& =1-\prod_{i=1}^{n} P\left(X_{i}>x\right) \\
& =1-[1-F(x)]^{n} .
\end{aligned}
$$

(c) Let $x \in \mathbb{R}$ be such that $F(x) \in(0,1)$.

Then

$$
\lim _{n \rightarrow \infty} P\left(S_{n} \leq x\right)=\lim _{n \rightarrow \infty}[F(x)]^{n}=0
$$

and

$$
\lim _{n \rightarrow \infty} P\left(I_{n} \leq x\right)=\lim _{n \rightarrow \infty}\left(1-[1-F(x)]^{n}\right)=1-0=1
$$

This can be interpreted by saying that as n grows, the maximum and minimum are dragged to an extreme value (if they stayed somewhere inside the support of X_{1}, \ldots, X_{n} we would have obtained values of the cdf of S_{n} or I_{n} away from 0 and 1 , respectively).
In the example where $X_{i} \in\left\{\xi_{1}, \ldots, \xi_{k}\right\}$ with $\xi_{1}<\ldots<\xi_{k}, S_{n}$ and I_{n} will converge to ξ_{k} and ξ_{1} respectively, in probability (a concept to be defined later).

Exercise 4.3 (On expectation)
(a) For any cdf F show that

$$
P(X \in(a, b])=F(b)-F(a)
$$

for any $a<b$ and where X is a random variable with $\operatorname{cdf} F$.
(b) Let X be a nonnegative discrete random variable taking its values in the set $\left\{x_{1}, x_{2}, \ldots\right\}$ (possibly countably infinite), where we assume that the values are ordered by $x_{1}<x_{2}<\ldots$. Suppose $E(X)$ exists. Show that

$$
E(X)=\sum_{j=0}^{\infty}\left(x_{j+1}-x_{j}\right) P\left(X>x_{j}\right)
$$

with $x_{0}:=0$.
Does this match with the tail sum seen in the lecture?
(c) Show that if F is the cdf of X (the same X as in (b)), then $E(X)$ can also be given by the formula

$$
\begin{equation*}
E(X)=\int_{0}^{\infty}(1-F(x)) d x \tag{1}
\end{equation*}
$$

(d) Show that for a general discrete random variable (possibly taking values in $(-\infty, 0)$),

$$
\begin{equation*}
E(X)=-\int_{-\infty}^{0} P(X<x) d x+\int_{0}^{\infty}(1-F(x)) d x \tag{2}
\end{equation*}
$$

provided that $E(X)$ exists.
Remark: Actually, the formulas in 1 and 2 are true in general for any type of nonnegative and general random variables. Also, $\int_{-\infty}^{0} P(X<x) d x$ can be replaced by $\int_{-\infty}^{0} F(x) d x$.

Solution 4.3

(a) We have

$$
P(X \in(a, b])+P(X \leq a)=P(X \in(a, b] \cup(-\infty, a])=P(X \in(-\infty, b])
$$

Since $P(X \leq a)=F(a)$ and $P(X \leq b)=F(b)$, the result follows.
(b) We have

$$
\begin{aligned}
& \sum_{j=0}^{\infty}\left(x_{j+1}-x_{j}\right) P\left(X>x_{j}\right) \\
= & \sum_{j=0}^{\infty}\left(x_{j+1}-x_{j}\right) P\left(X \geq x_{j+1}\right) \\
= & \sum_{j=0}^{\infty}\left(x_{j+1}-x_{j}\right) \sum_{k=j+1}^{\infty} P\left(X=x_{k}\right) \\
= & \sum_{j=0}^{\infty}\left(x_{j+1}-x_{j}\right) \sum_{k=1}^{\infty} P\left(X=x_{k}\right) 1_{k \geq j+1} \\
= & \sum_{k=1}^{\infty} \sum_{j=0}^{\infty}\left(x_{j+1}-x_{j}\right) P\left(X=x_{k}\right) 1_{j \leq k-1} \\
= & \sum_{k=1}^{\infty} \sum_{j=0}^{k-1}\left(x_{j+1}-x_{j}\right) P\left(X=x_{k}\right) \\
= & \sum_{k=1}^{\infty}\left(x_{k}-x_{0}\right) P\left(X=x_{k}\right) \\
= & E(X)
\end{aligned}
$$

One must be careful to justify exchanging the summations, but this is correct in this case since all the summands are positive; in particular this can be seen as a discrete version of Fubini's theorem, which in this case gives that

$$
\sum_{m, n=0}^{\infty} a_{m, n}=\sum_{m \geq 0} \sum_{n \geq 0} a_{m, n}=\sum_{n \geq 0} \sum_{m \geq 0} a_{m, n}
$$

if all the $a_{m, n} \geq 0$.
This matches the tail sum for integer-valued random variables, where $\left\{x_{1}, x_{2}, \ldots\right\}=\{0,1, \ldots\}$, so that $x_{j+1}-x_{j}=1$ and $x_{j}=j$.
(c) Now we check that $E(X)=\int_{0}^{\infty}(1-F(x)) d x$: We have:

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { if } x<x_{1} \\
P\left(X=x_{1}\right) & \text { if } x_{1} \leq x<x_{2} \\
\ldots & \ldots \\
\sum_{j=1}^{k} P\left(X=x_{j}\right) & \text { if } x_{k} \leq x<x_{k+1}
\end{array}\right.
$$

Therefore,

$$
\begin{aligned}
\int_{0}^{\infty}(1-F(x)) d x & =\sum_{j=0}^{\infty} \int_{x_{j}}^{x_{j+1}}(1-F(x)) d x \\
& =\sum_{j=0}^{\infty} \int_{x_{j}}^{x_{j+1}}\left(1-P\left(X \leq x_{j}\right)\right) d x \\
& =\sum_{j=0}^{\infty}\left(x_{j+1}-x_{j}\right)\left(1-P\left(X \leq x_{j}\right)\right) \\
& =\sum_{j=0}^{\infty}\left(x_{j+1}-x_{j}\right) P\left(X>x_{j}\right) \\
& =E(X)
\end{aligned}
$$

The integrals are interpreted as being over $\left[x_{j}, x_{j+1}\right)$, though it does not matter whether the intervals are open or closed.
(d) We start by noting that we can always write

$$
X=\max (X, 0)+\min (X, 0)=X^{+}-X^{-}
$$

where $X^{+}:=\max (X, 0) \geq 0, X^{-}:=-\min (X, 0) \geq 0$.
By linearity of expectation, we have

$$
\begin{aligned}
E(X) & =E\left(X^{+}\right)-E\left(X^{-}\right) \\
& =\int_{0}^{\infty}\left(1-F^{+}(x)\right) d x-\int_{0}^{\infty}\left(1-F^{-}(x)\right) d x
\end{aligned}
$$

where F^{-}and F^{+}denote the cdf of X^{-}and X^{+}respectively. Now:

$$
\begin{aligned}
F^{+}(x)=P\left(X^{+} \leq x\right) & =\left\{\begin{array}{cc}
0, & x<0 \\
P(X \leq x, X>0)+P(X \leq 0), & x \geq 0
\end{array}\right. \\
& =\left\{\begin{array}{cc}
0, & x<0 \\
P(X \in(0, x])+F(0), & x \geq 0
\end{array}\right. \\
& =\left\{\begin{array}{cc}
0, & x<0 \\
F(x), & x \geq 0
\end{array}\right.
\end{aligned}
$$

Hence,

$$
\int_{0}^{\infty}\left(1-F^{+}(x)\right) d x=\int_{0}^{\infty}(1-F(x)) d x
$$

Similarly,

$$
\begin{aligned}
F^{-}(x)=P\left(X^{-} \leq x\right) & =\left\{\begin{array}{cl}
0, & x<0 \\
P(\min (X, 0) \geq-x, X>0)+P(X \leq 0), & x \geq 0
\end{array}\right. \\
& =\left\{\begin{array}{cl}
0, & x<0 \\
P(X \geq-x), & x \geq 0
\end{array}\right.
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{0}^{\infty}\left(1-F^{-}(x)\right) d x & =\int_{0}^{\infty}(1-P(X \geq-x)) d x \\
& =\int_{0}^{\infty} P(X<-x) d x \\
& =\int_{-\infty}^{0} P(X<x) d x
\end{aligned}
$$

It follows that

$$
E(X)=\int_{0}^{\infty}(1-F(x)) d x-\int_{-\infty}^{0} P(X<x) d x
$$

as claimed.

Exercise 4.4 (Quantiles)

For a given $0<\alpha<1$, we call the α-quantile of F the quantity

$$
q_{\alpha}=\inf \{x \in \mathbb{R}: F(x) \geq \alpha\}
$$

where F is a given cdf.
Remark: The function $\alpha \mapsto q_{\alpha}$ is also called the generalised inverse of the cdf F. If $\alpha=\frac{1}{2}, q_{\frac{1}{2}}$ is called the median.
(a) Show that $\alpha \mapsto q_{\alpha}$ is non-decreasing on $(0,1)$.
(b) Toss a fair coin n times and record

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { if heads at the } i \text { th toss } \\
0 & \text { otherwise }
\end{array}\right.
$$

Let

$$
Y_{n}=\sum_{i=1}^{n} X_{i}
$$

be the number of heads obtained in the n tosses.
Find the cdf of Y_{n}. Call it F_{n}.
(c) What is the median of F_{n} when n is even and when it is odd?

Solution 4.4

(a) For $\alpha^{\prime} \geq \alpha$ in $(0,1)$ it is clear that

$$
S_{\alpha^{\prime}}:=\left\{x \in \mathbb{R}: F(x) \geq \alpha^{\prime}\right\} \subseteq\{x \in \mathbb{R}: F(x) \geq \alpha\}=: S_{\alpha}
$$

This trivially implies that

$$
\begin{aligned}
\inf S_{\alpha^{\prime}} & \geq \inf S_{\alpha} \\
\Leftrightarrow q_{\alpha^{\prime}} & \geq q_{\alpha}
\end{aligned}
$$

(b) Here we have

$$
Y_{n}=\sum_{i=1}^{n} X_{i}=\text { "number of 1's among } n \text { possible occurrences" }
$$

Since the n coins are fair and independent, the pmf of Y_{n} is

$$
P\left(Y_{n}=j\right)=\frac{\binom{n}{j}}{2^{n}}, j=0, \ldots, n
$$

Hence, the cdf F_{n} is given by

$$
F_{n}(x)=\left\{\begin{array}{cc}
0, & x<0 \\
\frac{1}{2^{n}}, & 0 \leq x<1 \\
\frac{1+\binom{n}{1}}{2^{n}}, & 1 \leq x<2 \\
\ldots & \\
\frac{1}{2^{n}} \sum_{k=0}^{j}\binom{n}{k}, & j \leq x<j+1 \\
\ldots & x \geq n .
\end{array}\right.
$$

Y_{n} is called a Binomial random variable.
(c) By definition of $q_{\frac{1}{2}}$ (the median),

$$
q_{\frac{1}{2}}=\inf \left\{x: F_{n}(x) \geq \frac{1}{2}\right\}
$$

- Consider the case where n is even, $n=2 m$. We have:

$$
\frac{1}{2^{n}}\left[\sum_{j=0}^{m}\binom{n}{j}+\sum_{j=m+1}^{n}\binom{n}{j}\right]=1
$$

where

$$
\sum_{j=m+1}^{n}\binom{n}{j}=\sum_{j=0}^{m-1}\binom{n}{n-j}=\sum_{j=0}^{m-1}\binom{n}{j}
$$

Thus,

$$
\begin{aligned}
& \frac{1}{2^{n}}\left[\sum_{j=0}^{m}\binom{n}{j}+\sum_{j=0}^{m-1}\binom{n}{j}\right]=1 \\
\Leftrightarrow & \frac{1}{2^{n}}\left[2 \sum_{j=0}^{m-1}\binom{n}{j}+\binom{n}{m}\right]=1 \\
\Leftrightarrow & 2 F(m-1)=1-\frac{\binom{n}{m}}{2^{n}} \\
\Rightarrow & F(m-1)<\frac{1}{2}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \frac{1}{2^{n}}\left[\sum_{j=0}^{m-1}\binom{n}{j}+\sum_{j=m}^{n}\binom{n}{j}\right]=1 \\
\Leftrightarrow & \frac{1}{2^{n}}\left[\sum_{j=0}^{m-1}\binom{n}{j}+\sum_{j=0}^{m}\binom{n}{j}\right]=1 \\
\Leftrightarrow & 2 F(m)=1+\frac{\binom{n}{m-1}}{2^{n}} \\
\Rightarrow & F(m)>\frac{1}{2}
\end{aligned}
$$

This implies that $q_{\frac{1}{2}}=m=\frac{n}{2}$.

- If n is odd, $n=2 m+1$ then:

$$
\begin{aligned}
& \frac{1}{2^{n}}\left[\sum_{j=0}^{m}\binom{n}{j}+\sum_{j=m+1}^{n}\binom{n}{j}\right]=1 \\
\Leftrightarrow & \frac{1}{2^{n}}\left[\sum_{j=0}^{m}\binom{n}{j}+\sum_{j=0}^{m}\binom{n}{n-j}\right]=1 \\
\Leftrightarrow & 2 F(m)=1 \\
\Leftrightarrow & F(m)=\frac{1}{2} .
\end{aligned}
$$

Since F is a step function, this implies that $q_{\frac{1}{2}}=m=\frac{n-1}{2}$.
Exercise 4.5 (an interesting property of expectations)
(a) Suppose that X is a random variable. Show that $E\left(X^{2}\right)<\infty$ if and only if $\operatorname{var}(X)<\infty$.
(b) Suppose $\operatorname{var}(X)<\infty$. Show that $E(X)$ minimises the function

$$
a \mapsto E\left[(X-a)^{2}\right] \quad(a \in \mathbb{R})
$$

Solution 4.5

(a) If $\operatorname{var}(X)<\infty$, then by definition we must have $E(X)$ well-defined. Using the formula

$$
\operatorname{var}(\mathrm{X})=E\left(X^{2}\right)-E(X)^{2}
$$

we get that

$$
E\left(X^{2}\right)=\operatorname{var}(X)+E(X)^{2}<\infty
$$

Suppose now $E\left(X^{2}\right)<\infty$. By the Cauchy-Schwarz inequality (or Jensen's inequality)

$$
\begin{aligned}
E(X)^{2} & \leq E\left(X^{2}\right) \\
\Rightarrow|E(X)| & \leq \sqrt{E\left(X^{2}\right)}<\infty
\end{aligned}
$$

Thus, by definition of existence of $E(X)$, the expectation is well-defined.

Now, this implies that $E\left(X^{2}\right)$ and $E(X)$ are well-defined, and therefore

$$
E\left(X^{2}\right)-E(X)^{2}=E\left[(X-E(X))^{2}\right]=\operatorname{var}(X)<\infty
$$

(b) Let $\mu=E[X]$:

$$
\begin{aligned}
E\left[(X-a)^{2}\right] & =E\left[(X-\mu+\mu-a)^{2}\right] \\
& =E\left[(X-\mu)^{2}+2(X-\mu)(\mu-a)+(\mu-a)^{2}\right] \\
& =\operatorname{var}(\mathrm{X})+(\mu-a)^{2}
\end{aligned}
$$

Thus

$$
E\left[(X-a)^{2}\right] \geq \operatorname{var}(X)
$$

with equality if and only if $a=\mu$.
Exercise 4.6 (Optional, for the more courageous)
Consider again the birthday problem from another perspective. Suppose that people are coming to a party and you are assigned the mission of writing down the birth date of each guest as they show up.

Let X be the number of people that showed up until you see for the first time a person born on the same day as somebody who showed up earlier.
(a) Find an expression for $E(X)$ (this can be done in two different ways).
(b) Find an expression for $\sigma=\sqrt{\operatorname{var}(X)}$.
(c) The numerical values are given as

$$
\begin{gathered}
E(X) \approx 24.62 \\
\sigma \approx 12.19
\end{gathered}
$$

Find an interval $[a, b]$ which satisfies

$$
P(a \leq X \leq b) \geq 0.5
$$

Hint: Use Chebyshev's inequality.
Solution 4.6 For $n=2, \ldots, N+1$ with $N=365$, we have
$\{X=n\}=\left\{\right.$ first $n-1$ people have distinct birthdays, $n^{\text {th }}$ person has the same birthday as one of the previous ones $\}$ Therefore:

$$
P(N=n)=\frac{N(N-1) \ldots(N-(n-1)+1)}{N^{n-1}} \times \frac{n-1}{N}
$$

and if $n \leq 1$ or $n \geq N+2$ then $P(X=n)=0$. Then:

$$
\begin{aligned}
E(X) & =\sum_{n=2}^{N+1} n P(X=n) \\
& =\sum_{n=2}^{N+1} n \frac{N(N-1) \ldots(N-(n-1)+1)}{N^{n}}(n-1) \\
& =\sum_{n=1}^{N} n(n+1) \frac{N(N-1) \ldots(N-n+1)}{N^{n+1}}
\end{aligned}
$$

We can also use the tail sum formula

$$
\begin{aligned}
E(X) & =\sum_{n=0}^{\infty} P(X>n) \\
& =2+\sum_{n=2}^{N} P(X>n) \\
& =2+\sum_{n=2}^{N} \frac{N(N-1) \ldots(N-n+1)}{N^{n}}
\end{aligned}
$$

(a)

$$
\sigma^{2}=E\left(X^{2}\right)-E(X)^{2}
$$

where

$$
E\left(X^{2}\right)=\sum_{n=2}^{N+1} n(n+1)^{2} \frac{N(N-1) \ldots(N-n+1)}{N^{N+1}}
$$

Thus,

$$
\sigma=\left[\sum_{n=2}^{N+1} \frac{n(n+1)^{2} N(N-1) \ldots(N-n+1)}{N^{n+1}}-\left(\sum_{n=2}^{N} \frac{n(n+1) N(N-1) \ldots(N-n+1)}{N^{n+1}}\right)^{2}\right]^{\frac{1}{2}}
$$

(b) Using Chebyshev's inequality, we have that

$$
\begin{aligned}
& P\left(\frac{|X-\mu|}{\sigma}>k\right) \leq \frac{1}{k^{2}} \\
\Leftrightarrow & P\left(\frac{|X-\mu|}{\sigma} \leq k\right) \geq 1-\frac{1}{k^{2}} .
\end{aligned}
$$

If we choose k such that $1-\frac{1}{k^{2}}=\frac{1}{2}$, that is $k=\sqrt{2}$, then

$$
\begin{aligned}
P\left(\frac{|X-\mu|}{\sigma} \leq \sqrt{2}\right) & \geq \frac{1}{2} \\
\Leftrightarrow P(\mu-\sigma \sqrt{2} \leq X \leq \mu+\sqrt{2} \sigma) & \geq \frac{1}{2} \\
\Leftrightarrow P(X \in[7.37,41.86]) & \geq \frac{1}{2} .
\end{aligned}
$$

Therefore we can choose the interval $[a, b]=[7.37,41.86]$.

