Probability and Statistics

Exercise sheet 4

Exercise 4.1 (On measurability)

(a) Consider $X_1, ..., X_m$ $(m \ge 1)$ random variables defined on some (Ω, \mathcal{A}, P) and taking values in $(\mathbb{R}, \mathcal{B})$, where \mathcal{A} is a σ -algebra on Ω , P is a probability measure on \mathcal{A} and \mathcal{B} is the Borel σ -field.

Show that

$$-X_1, \max_{1 \le i \le m} X_i, \min_{1 \le i \le m} X_i$$

are random variables.

(b) Consider now a sequence $(X_n)_{n\geq 1}$ of random variables X_1, X_2, \dots defined on (Ω, \mathcal{A}, P) and taking values in $(\mathbb{R}, \mathcal{B})$ as in (a).

Show that:

$$\sup_{n \ge 1} X_n, \inf_{n \ge 1} X_n, \limsup_{n \to \infty} X_n, \liminf_{n \to \infty} X_n, \lim_{n \to \infty} X_n$$

are all random variables, in the case of the limit assuming that it exists. Here, recall the definition of

$$\limsup_{n \to \infty} := \inf_{n \ge 1} (\sup_{k \ge n} X_k)$$

and

$$\liminf_{n \to \infty} := \sup_{n \ge 1} (\inf_{k \ge n} X_k).$$

Solution 4.1

(a) Recall that to show that

$$X: (\Omega, \mathcal{A}, P) \mapsto (\mathbb{R}, \mathcal{B})$$

is a random variable, we need to prove that it is measurable, that is $\forall B \in \mathcal{B}, \{X \in B\} \in \mathcal{A}$. This is also equivalent to

$$\forall x \in \mathbb{R} \ \{X \le x\} \in \mathcal{A} \\ \Leftrightarrow \forall x \in \mathbb{R} \ \{X < x\} \in \mathcal{A} \\ \Leftrightarrow \forall x \in \mathbb{R} \ \{X \ge x\} \in \mathcal{A} \\ \Leftrightarrow \forall x \in \mathbb{R} \ \{X \ge x\} \in \mathcal{A} \\ \Leftrightarrow \forall x \in \mathbb{R} \ \{X > x\} \in \mathcal{A}$$

since $\$

$$\mathcal{B} = \sigma(\mathcal{O}) = \sigma(\{(-\infty, x] : x \in \mathbb{R}\})$$
$$= \sigma(\{(-\infty, x) : x \in \mathbb{R}\})$$
$$= \sigma(\{[x, +\infty) : x \in \mathbb{R}\})$$
$$= \sigma(\{(x, +\infty) : x \in \mathbb{R}\})$$

with \mathcal{O} the collection of all open sets and $\sigma(\mathcal{C})$ the minimal σ -algebra generated by a non-empty collection of sets \mathcal{C} .

• $\{-X_1 \le x\} = \{X_1 \ge -x\} \in \mathcal{A} \ \forall x \in \mathbb{R}$ because X_1 is measurable.

$$\left\{\max_{1\leq i\leq m} X_i \leq x\right\} = \bigcap_{i=1}^m \{X_i \leq x\} \in \mathcal{A}$$

since $X_1, ..., X_m$ are measurable and \mathcal{A} is closed under finite intersections.

$$\left\{\inf_{1\leq i\leq m} X_i\leq x\right\} = \bigcup_{i=1}^m \{X_i\leq x\}\in \mathcal{A}$$

for the same reason as above.

Alternatively, we can use the first part to say that $-X_1, ..., -X_m$ are random variables, and so we can argue that

$$\min_{1 \le i \le m} X_i = -\max_{1 \le i \le m} (-X_i)$$

is a random variable as well by the first and second parts.

(b) • For a sequence $(X_n)_{n\geq 1}$ of random variables, the reasoning is similar:

$$\{\sup_{n\geq 1} X_n \le x\} = \bigcap_{n\geq 1} \{X_n \le x\} \in \mathcal{A}$$

since \mathcal{A} is closed under countable intersections, and

$$\inf_{n \ge 1} X_n = -\sup_{n \ge 1} (-X_n)$$

is measurable by the same argument as before: $-X_n$ is measurable, then so is $\sup_{n\geq 1}(-X_n)$ and therefore so is the infimum (or one can argue directly).

$$\limsup_{n \to \infty} X_n = \inf_{n \ge 1} (\sup_{k \ge n} X_k)$$

Note that each $Y_n := \sup_{k \geq n} X_k$ is measurable as proved above, and so

$$\limsup_{n \to \infty} X_n = \inf_{n \ge 1} Y_n$$

is measurable as well.

$$\liminf_{n \to \infty} = -\limsup_{n \to \infty} (-X_n)$$

so it must be measurable.

• If $\lim_{n\to\infty} X_n$ exists, then

$$\lim_{n \to \infty} X_n = \limsup_{n \to \infty} X_n$$

and so must be measurable in that case.

Exercise 4.2 (On the cdf of min and max of i.i.d random variables) Let $X_1, ..., X_n$ be $\stackrel{\text{iid}}{\sim} F$.

- (a) Let $S_n := \max_{1 \le i \le n} X_i$. Find the cdf of S_n as a function of F.
- (b) Do the same but for $I_n := \min_{1 \le i \le n} X_i$.
- (c) Fix $x \in \mathbb{R}$ such that $F(x) \in (0,1)$. What is the limit of the cdf of S_n at x as $n \to \infty$? What about the cdf of I_n ? How would you interpret these results? What does this mean if $X_1, ..., X_n$ take values in a finite set $\{\xi_1, ..., \xi_k\}$?

Solution 4.2

(a) S_n is a random variable by the previous question. For $x \in \mathbb{R}$,

$$P(S_n \le x) = P\left(\max_{1 \le u \le n} X_i \le x\right)$$
$$= P(X_1 \le x, \dots, X_n \le x)$$
$$= \prod_{i=1}^n P(X_i \le x)$$
$$= [F(x)]^n.$$

(b) For $x \in \mathbb{R}$,

$$P(I_n \le x) = 1 - P(I_n > x)$$

= 1 - P(X_1 > x, ..., X_n > x)
= 1 - $\prod_{i=1}^{n} P(X_i > x)$
= 1 - [1 - F(x)]ⁿ.

(c) Let $x \in \mathbb{R}$ be such that $F(x) \in (0, 1)$.

Then

$$\lim_{n \to \infty} P(S_n \le x) = \lim_{n \to \infty} [F(x)]^n = 0$$

and

$$\lim_{n \to \infty} P(I_n \le x) = \lim_{n \to \infty} \left(1 - [1 - F(x)]^n\right) = 1 - 0 = 1.$$

This can be interpreted by saying that as n grows, the maximum and minimum are dragged to an extreme value (if they stayed somewhere inside the support of $X_1, ..., X_n$ we would have obtained values of the cdf of S_n or I_n away from 0 and 1, respectively).

In the example where $X_i \in \{\xi_1, ..., \xi_k\}$ with $\xi_1 < ... < \xi_k$, S_n and I_n will converge to ξ_k and ξ_1 respectively, in probability (a concept to be defined later).

Exercise 4.3 (On expectation)

(a) For any cdf F show that

$$P(X \in (a, b]) = F(b) - F(a)$$

for any a < b and where X is a random variable with cdf F.

(b) Let X be a nonnegative discrete random variable taking its values in the set $\{x_1, x_2, ...\}$ (possibly countably infinite), where we assume that the values are ordered by $x_1 < x_2 < ...$ Suppose E(X) exists. Show that

$$E(X) = \sum_{j=0}^{\infty} (x_{j+1} - x_j) P(X > x_j)$$

with $x_0 := 0$.

Does this match with the tail sum seen in the lecture?

(c) Show that if F is the cdf of X (the same X as in (b)), then E(X) can also be given by the formula

$$E(X) = \int_{0}^{\infty} (1 - F(x)) dx.$$
 (1)

(d) Show that for a general discrete random variable (possibly taking values in $(-\infty, 0)$),

$$E(X) = -\int_{-\infty}^{0} P(X < x) dx + \int_{0}^{\infty} (1 - F(x)) dx$$
(2)

provided that E(X) exists.

Remark: Actually, the formulas in 1 and 2 are true in general for any type of nonnegative and general random variables. Also, $\int_{-\infty}^{0} P(X < x) dx$ can be replaced by $\int_{-\infty}^{0} F(x) dx$.

Solution 4.3

(a) We have

$$P(X \in (a, b]) + P(X \le a) = P(X \in (a, b] \cup (-\infty, a]) = P(X \in (-\infty, b])$$

Since $P(X \le a) = F(a)$ and $P(X \le b) = F(b)$, the result follows.

(b) We have

$$\sum_{j=0}^{\infty} (x_{j+1} - x_j) P(X > x_j)$$

$$= \sum_{j=0}^{\infty} (x_{j+1} - x_j) P(X \ge x_{j+1})$$

$$= \sum_{j=0}^{\infty} (x_{j+1} - x_j) \sum_{k=j+1}^{\infty} P(X = x_k)$$

$$= \sum_{j=0}^{\infty} (x_{j+1} - x_j) \sum_{k=1}^{\infty} P(X = x_k) 1_{k \ge j+1}$$

$$= \sum_{k=1}^{\infty} \sum_{j=0}^{\infty} (x_{j+1} - x_j) P(X = x_k) 1_{j \le k-1}$$

$$= \sum_{k=1}^{\infty} \sum_{j=0}^{k-1} (x_{j+1} - x_j) P(X = x_k)$$

$$= \sum_{k=1}^{\infty} (x_k - x_0) P(X = x_k)$$

$$= E(X).$$

One must be careful to justify exchanging the summations, but this is correct in this case since all the summands are positive; in particular this can be seen as a discrete version of Fubini's theorem, which in this case gives that

$$\sum_{m,n=0}^{\infty} a_{m,n} = \sum_{m \ge 0} \sum_{n \ge 0} a_{m,n} = \sum_{n \ge 0} \sum_{m \ge 0} a_{m,n}$$

if all the $a_{m,n} \ge 0$.

This matches the tail sum for integer-valued random variables, where $\{x_1, x_2, ...\} = \{0, 1, ...\}$, so that $x_{j+1} - x_j = 1$ and $x_j = j$.

(c) Now we check that $E(X) = \int_0^\infty (1 - F(x)) dx$: We have:

$$F(x) = \begin{cases} 0 & \text{if } x < x_1 \\ P(X = x_1) & \text{if } x_1 \le x < x_2 \\ \dots & \dots \\ \sum_{j=1}^k P(X = x_j) & \text{if } x_k \le x < x_{k+1} \end{cases}$$

Therefore,

$$\int_0^\infty (1 - F(x)) dx = \sum_{j=0}^\infty \int_{x_j}^{x_{j+1}} (1 - F(x)) dx$$
$$= \sum_{j=0}^\infty \int_{x_j}^{x_{j+1}} (1 - P(X \le x_j)) dx$$
$$= \sum_{j=0}^\infty (x_{j+1} - x_j) (1 - P(X \le x_j))$$
$$= \sum_{j=0}^\infty (x_{j+1} - x_j) P(X > x_j)$$
$$= E(X).$$

The integrals are interpreted as being over $[x_j, x_{j+1})$, though it does not matter whether the intervals are open or closed.

(d) We start by noting that we can always write

 $X = \max(X,0) + \min(X,0) = X^+ - X^-$ where $X^+ := \max(X,0) \ge 0, X^- := -\min(X,0) \ge 0.$ By linearity of expectation, we have

$$E(X) = E(X^{+}) - E(X^{-})$$

= $\int_{0}^{\infty} (1 - F^{+}(x)) dx - \int_{0}^{\infty} (1 - F^{-}(x)) dx$

where F^- and F^+ denote the cdf of X^- and X^+ respectively. Now:

$$F^{+}(x) = P(X^{+} \le x) = \begin{cases} 0, & x < 0 \\ P(X \le x, X > 0) + P(X \le 0), & x \ge 0 \end{cases}$$
$$= \begin{cases} 0, & x < 0 \\ P(X \in (0, x]) + F(0), & x \ge 0 \end{cases}$$
$$= \begin{cases} 0, & x < 0 \\ F(x), & x \ge 0. \end{cases}$$

Hence,

$$\int_0^\infty (1 - F^+(x)) dx = \int_0^\infty (1 - F(x)) dx.$$

Similarly,

$$F^{-}(x) = P(X^{-} \le x) = \begin{cases} 0, & x < 0\\ P(\min(X, 0) \ge -x, X > 0) + P(X \le 0), & x \ge 0 \end{cases}$$
$$= \begin{cases} 0, & x < 0\\ P(X \ge -x), & x \ge 0. \end{cases}$$

6 / 11

Thus,

$$\int_0^\infty (1 - F^-(x))dx = \int_0^\infty (1 - P(X \ge -x))dx$$
$$= \int_0^\infty P(X < -x)dx$$
$$= \int_{-\infty}^0 P(X < x)dx.$$

It follows that

$$E(X) = \int_0^\infty (1 - F(x)) dx - \int_{-\infty}^0 P(X < x) dx$$

as claimed.

Exercise 4.4 (Quantiles)

For a given $0 < \alpha < 1$, we call the α -quantile of F the quantity

$$q_{\alpha} = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\},\$$

where F is a given cdf.

Remark: The function $\alpha \mapsto q_{\alpha}$ is also called the generalised inverse of the cdf F. If $\alpha = \frac{1}{2}$, $q_{\frac{1}{2}}$ is called the median.

- (a) Show that $\alpha \mapsto q_{\alpha}$ is non-decreasing on (0, 1).
- (b) Toss a fair coin n times and record

$$X_i = \begin{cases} 1 & \text{if heads at the } i\text{th toss} \\ 0 & \text{otherwise.} \end{cases}$$

Let

$$Y_n = \sum_{i=1}^n X_i$$

be the number of heads obtained in the n tosses.

Find the cdf of Y_n . Call it F_n .

(c) What is the median of F_n when n is even and when it is odd?

Solution 4.4

(a) For $\alpha' \ge \alpha$ in (0,1) it is clear that

$$S_{\alpha'} := \{ x \in \mathbb{R} : F(x) \ge \alpha' \} \subseteq \{ x \in \mathbb{R} : F(x) \ge \alpha \} =: S_{\alpha}$$

This trivially implies that

$$\inf S_{\alpha'} \ge \inf S_{\alpha}$$
$$\Leftrightarrow q_{\alpha'} \ge q_{\alpha}.$$

(b) Here we have

$$Y_n = \sum_{i=1}^n X_i$$
 = "number of 1's among *n* possible occurrences"

Since the n coins are fair and independent, the pmf of Y_n is

$$P(Y_n = j) = \frac{\binom{n}{j}}{2^n}, \ j = 0, ..., n$$

Hence, the cdf F_n is given by

$$F_n(x) = \begin{cases} 0, & x < 0\\ \frac{1}{2^n}, & 0 \le x < 1\\ \frac{1+\binom{n}{1}}{2^n}, & 1 \le x < 2\\ \dots & \\ \frac{1}{2^n} \sum_{k=0}^j \binom{n}{k}, & j \le x < j+1\\ \dots & \\ 1, & x \ge n. \end{cases}$$

 Y_n is called a Binomial random variable.

(c) By definition of $q_{\frac{1}{2}}$ (the median),

$$q_{\frac{1}{2}} = \inf\left\{x: F_n(x) \ge \frac{1}{2}\right\}.$$

• Consider the case where n is even, n = 2m. We have:

$$\frac{1}{2^n} \left[\sum_{j=0}^m \binom{n}{j} + \sum_{j=m+1}^n \binom{n}{j} \right] = 1$$

where

$$\sum_{j=m+1}^{n} \binom{n}{j} = \sum_{j=0}^{m-1} \binom{n}{n-j} = \sum_{j=0}^{m-1} \binom{n}{j}.$$

Thus,

$$\frac{1}{2^n} \left[\sum_{j=0}^m \binom{n}{j} + \sum_{j=0}^{m-1} \binom{n}{j} \right] = 1$$

$$\Leftrightarrow \frac{1}{2^n} \left[2 \sum_{j=0}^{m-1} \binom{n}{j} + \binom{n}{m} \right] = 1$$

$$\Leftrightarrow 2F(m-1) = 1 - \frac{\binom{n}{m}}{2^n}$$

$$\Rightarrow F(m-1) < \frac{1}{2}.$$

On the other hand,

$$\begin{split} \frac{1}{2^n} \left[\sum_{j=0}^{m-1} \binom{n}{j} + \sum_{j=m}^n \binom{n}{j} \right] &= 1 \\ \Leftrightarrow \frac{1}{2^n} \left[\sum_{j=0}^{m-1} \binom{n}{j} + \sum_{j=0}^m \binom{n}{j} \right] &= 1 \\ \Leftrightarrow 2F(m) &= 1 + \frac{\binom{n}{m-1}}{2^n} \\ \Rightarrow F(m) &> \frac{1}{2}. \end{split}$$

This implies that $q_{\frac{1}{2}} = m = \frac{n}{2}$. • If n is odd, n = 2m + 1 then:

$$\frac{1}{2^n} \left[\sum_{j=0}^m \binom{n}{j} + \sum_{j=m+1}^n \binom{n}{j} \right] = 1$$

$$\Leftrightarrow \frac{1}{2^n} \left[\sum_{j=0}^m \binom{n}{j} + \sum_{j=0}^m \binom{n}{n-j} \right] = 1$$

$$\Leftrightarrow 2F(m) = 1$$

$$\Leftrightarrow F(m) = \frac{1}{2}.$$

Since F is a step function, this implies that $q_{\frac{1}{2}} = m = \frac{n-1}{2}$.

Exercise 4.5 (an interesting property of expectations)

- (a) Suppose that X is a random variable. Show that $E(X^2) < \infty$ if and only if $var(X) < \infty$.
- (b) Suppose $var(X) < \infty$. Show that E(X) minimises the function

$$a \mapsto E[(X-a)^2] \quad (a \in \mathbb{R}).$$

Solution 4.5

(a) If $\operatorname{var}(X) < \infty$, then by definition we must have E(X) well-defined. Using the formula

$$\operatorname{var}(\mathbf{X}) = E(X^2) - E(X)^2$$

we get that

$$E(X^2) = \operatorname{var}(X) + E(X)^2 < \infty.$$

Suppose now $E(X^2) < \infty$. By the Cauchy-Schwarz inequality (or Jensen's inequality)

$$E(X)^2 \le E(X^2)$$

$$\Rightarrow |E(X)| \le \sqrt{E(X^2)} < \infty$$

Thus, by definition of existence of E(X), the expectation is well-defined.

Exercise sheet 4

Now, this implies that $E(X^2)$ and E(X) are well-defined, and therefore

$$E(X^2) - E(X)^2 = E\left[(X - E(X))^2\right] = \operatorname{var}(X) < \infty.$$

(b) Let $\mu = E[X]$:

$$E[(X-a)^2] = E[(X-\mu+\mu-a)^2]$$

= $E[(X-\mu)^2 + 2(X-\mu)(\mu-a) + (\mu-a)^2]$
= $var(X) + (\mu-a)^2.$

Thus

$$E[(X-a)^2] \ge \operatorname{var}(X)$$

with equality if and only if $a = \mu$.

Exercise 4.6 (Optional, for the more courageous)

Consider again the birthday problem from another perspective. Suppose that people are coming to a party and you are assigned the mission of writing down the birth date of each guest as they show up.

Let X be the number of people that showed up until you see for the first time a person born on the same day as somebody who showed up earlier.

- (a) Find an expression for E(X) (this can be done in two different ways).
- (b) Find an expression for $\sigma = \sqrt{\operatorname{var}(X)}$.
- (c) The numerical values are given as

$$E(X) \approx 24.62,$$

 $\sigma \approx 12.19.$

Find an interval [a, b] which satisfies

$$P(a \le X \le b) \ge 0.5.$$

Hint: Use Chebyshev's inequality.

Solution 4.6 For n = 2, ..., N + 1 with N = 365, we have

 ${X = n} = {\text{first } n - 1 \text{ people have distinct birthdays, } n^{\text{th}} \text{ person has the same birthday as one of the previous ones}}$

Therefore:

$$P(N = n) = \frac{N(N - 1)...(N - (n - 1) + 1)}{N^{n - 1}} \times \frac{n - 1}{N},$$

and if $n \leq 1$ or $n \geq N+2$ then P(X = n) = 0. Then:

$$E(X) = \sum_{n=2}^{N+1} nP(X = n)$$

= $\sum_{n=2}^{N+1} n \frac{N(N-1)...(N-(n-1)+1)}{N^n} (n-1)$
= $\sum_{n=1}^{N} n(n+1) \frac{N(N-1)...(N-n+1)}{N^{n+1}}.$

We can also use the tail sum formula

$$E(X) = \sum_{n=0}^{\infty} P(X > n)$$

= 2 + $\sum_{n=2}^{N} P(X > n)$
= 2 + $\sum_{n=2}^{N} \frac{N(N-1)...(N-n+1)}{N^n}$.

(a)

$$\sigma^2 = E(X^2) - E(X)^2$$

where

$$E(X^{2}) = \sum_{n=2}^{N+1} n(n+1)^{2} \frac{N(N-1)...(N-n+1)}{N^{N+1}}.$$

Thus,

$$\sigma = \left[\sum_{n=2}^{N+1} \frac{n(n+1)^2 N(N-1)...(N-n+1)}{N^{n+1}} - \left(\sum_{n=2}^{N} \frac{n(n+1)N(N-1)...(N-n+1)}{N^{n+1}}\right)^2\right]^{\frac{1}{2}}.$$

(b) Using Chebyshev's inequality, we have that

$$\begin{split} P\left(\frac{|X-\mu|}{\sigma} > k\right) &\leq \frac{1}{k^2} \\ \Leftrightarrow P\left(\frac{|X-\mu|}{\sigma} \leq k\right) \geq 1 - \frac{1}{k^2} \end{split}$$

If we choose k such that $1 - \frac{1}{k^2} = \frac{1}{2}$, that is $k = \sqrt{2}$, then

$$P\left(\frac{|X-\mu|}{\sigma} \le \sqrt{2}\right) \ge \frac{1}{2}$$

$$\Leftrightarrow P(\mu - \sigma\sqrt{2} \le X \le \mu + \sqrt{2}\sigma) \ge \frac{1}{2}$$

$$\Leftrightarrow P(X \in [7.37, 41.86]) \ge \frac{1}{2}.$$

Therefore we can choose the interval [a, b] = [7.37, 41.86].

11 / 11