Probability and Statistics

Exercise sheet 5

Exercise 5.1 Let X be a real-valued random variable defined on a probability space (Ω, \mathcal{A}, P). For a fixed integer $k \in\{1,2, \ldots\}$ show that $E\left(X^{k}\right)$ exists if and only if $E\left[(X-E(X))^{k}\right]$ exists. In other words, you need to show that

$$
E\left(|X|^{k}\right)<\infty \Leftrightarrow E\left[|X-E(X)|^{k}\right]<\infty
$$

(The case $k=1$ is trivially true).
Solution 5.1 Let $k \geq 2$ be an integer.

- Suppose that $E\left(X^{k}\right)$ exists, i.e. $E\left[|X|^{k}\right]<\infty$. Using Lyapunov's inequality we have (we take $\alpha=1$ and $\beta=k$) that

$$
E[|X|] \leq\left(E\left[|X|^{k}\right]\right)^{\frac{1}{k}}<\infty
$$

and hence $E[X]=\mu$ exists.
Now, by Minkowski's inequality it follows that

$$
E\left[|X-\mu|^{k}\right]^{\frac{1}{k}} \leq\left(E\left[|X|^{k}\right]\right)^{\frac{1}{k}}+|\mu|<\infty
$$

which implies that $E\left[(X-\mu)^{k}\right]$ exists.

- Now, suppose that $E\left[(X-\mu)^{k}\right]$ exists. Then, $E\left[|X-\mu|^{k}\right]<\infty$. By Minkowski's inequality, we have

$$
\begin{aligned}
E\left[|X|^{k}\right]^{\frac{1}{k}} & =\left(E\left[|X-\mu+\mu|^{k}\right]\right)^{\frac{1}{k}} \\
& \leq\left(E\left[|X-\mu|^{k}\right]\right)^{\frac{1}{k}}+\mu \\
& <\infty .
\end{aligned}
$$

This means that $E\left(X^{k}\right)$ exists.
Exercise 5.2 (Proving Jensen's inequality).
Let φ be a convex function defined on an interval (a, b) with $-\infty \leq a<b \leq+\infty$. Consider some random variable X such that $P(X \in(a, b))=1$. Assume that $E(X)$ and $E(\varphi(X))$ exist, that is, $E(|X|)<\infty$ and $E(|\varphi(X)|)<\infty$. Here, we recall that φ is convex on (a, b) if $\forall x, y \in(a, b)$ and $\lambda \in[0,1]$

$$
\varphi(\lambda x+(1-\lambda) y) \leq \lambda \varphi(x)+(1-\lambda) \varphi(y)
$$

and that it is strictly convex if $\forall x, y \in(a, b)$ such that $x \neq y$ and $\lambda \in(0,1)$

$$
\varphi(\lambda x+(1-\lambda) y)<\lambda \varphi(x)+(1-\lambda) \varphi(y)
$$

(a) Show that for any $c \in(a, b)$, we can find a linear function l such that

$$
\varphi(x) \geq l(x) \quad \forall x \in(a, b)
$$

and

$$
\varphi(c)=l(c)
$$

Hint: You may assume that φ admits left and right derivatives, i.e. the limits

$$
\varphi_{+}(x):=\lim _{\epsilon \rightarrow 0^{+}} \frac{\varphi(x+\epsilon)-\varphi(x)}{\epsilon}
$$

and

$$
\varphi_{-}(x):=\lim _{\epsilon \rightarrow 0^{-}} \frac{\varphi(x+\epsilon)-\varphi(x)}{\epsilon}
$$

both exist for any $x \in(a, b)$. Explain why $\varphi_{+}(x) \geq \varphi_{-}(x)$ for $x \in(a, b)$. Then, show that for any $s \in\left[\varphi_{-}(c), \varphi_{+}(c)\right]$ you can construct a line with slope s with the desired properties.
(b) Show that under the given assumptions on X we have

$$
E[\varphi(X)] \geq \varphi(E(X))
$$

Hint: Use your result from (a). Given the random variable X, what is a reasonable value to choose for c ?
(c) Suppose now that φ is strictly convex. Show that we have equality if and only if $P(X=$ $E(X))=1$, that is, X is a degenerate random variable.

Solution 5.2

(a) Let $x \in(a, b)$ and $b-x>t \geq \epsilon>0$. Then

$$
\begin{aligned}
\varphi(x+\epsilon) & =\varphi\left(\frac{\epsilon}{t}(x+t)+\left(1-\frac{\epsilon}{t}\right) x\right) \\
& \leq \frac{\epsilon}{t} \varphi(x+t)+\left(1-\frac{\epsilon}{t}\right) \varphi(x) \\
\Leftrightarrow \frac{\varphi(x+\epsilon)-\varphi(x)}{\epsilon} & \leq \frac{\varphi(x+t)-\varphi(x)}{t}
\end{aligned}
$$

which means that as $\epsilon \searrow 0$ the function

$$
\epsilon \mapsto \frac{\varphi(x+\epsilon)-\varphi(x)}{\epsilon}
$$

is non-increasing. (i.e. flipping it around, if ϵ increases this function is non-decreasing).
Furthermore, by putting $z=\lambda x+(1-\lambda) y$ (note that $z \in[x, y]$ when $x \leq y$), the convexity condition can be shown to be equivalent to

$$
\begin{equation*}
\frac{f(z)-f(x)}{z-x} \leq \frac{f(y)-f(x)}{y-x} \tag{1}
\end{equation*}
$$

or to

$$
\begin{equation*}
\frac{f(y)-f(z)}{y-z} \geq \frac{f(z)-f(x)}{z-x} \tag{2}
\end{equation*}
$$

Then, by (2), fixing some $a<y<x$, we have that for any $\epsilon \in(0, b-x)$,

$$
\frac{\varphi(x+\epsilon)-\varphi(x)}{\epsilon} \geq \frac{\varphi(x)-\varphi(y)}{x-y}
$$

Thus, as a monotone non-increasing (as ϵ decreases) function bounded by below, $\epsilon \mapsto$ $\frac{\varphi(x+\epsilon)-\varphi(x)}{\epsilon}$ admits a limit as $\epsilon \searrow 0$, which is by definition equal to the right derivative of φ at x, that is $\varphi_{+}^{\prime}(x)$.
Using similar arguments, we can show that

$$
\varphi_{-}^{\prime}(x)=\lim _{\epsilon \nearrow 0} \frac{\varphi(x+\epsilon)-\varphi(x)}{\epsilon}
$$

exists.
Moreover, by (2),

$$
\frac{\varphi(x+\epsilon)-\varphi(x)}{\epsilon} \geq \frac{-\varphi(x-\epsilon)+\varphi(x)}{\epsilon}
$$

which implies that as $\epsilon \searrow 0$,

$$
\varphi_{+}^{\prime}(x) \geq \varphi_{-}^{\prime}(x)
$$

Now, fix $c \in(a, b)$. For $x>c$, we have

$$
\frac{\varphi(x)-\varphi(c)}{x-c} \geq \frac{\varphi(c+\epsilon)-\varphi(c)}{\epsilon}
$$

(by (1)) for small $\epsilon>0$.
Taking $\epsilon \searrow 0$, this implies that

$$
\begin{equation*}
\frac{\varphi(x)-\varphi(c)}{x-c} \geq \varphi_{+}^{\prime}(c) \tag{3}
\end{equation*}
$$

Similarly, for $x<c$,

$$
\begin{align*}
& \frac{\varphi(c)-\varphi(x)}{c-x} \leq \frac{\varphi(c)-\varphi(c-\epsilon)}{\epsilon} \\
\Rightarrow & \frac{\varphi(c)-\varphi(x)}{c-x} \leq \varphi_{-}^{\prime}(c) . \tag{4}
\end{align*}
$$

Then we see from inequalities (3) and (4) that if we take any slope $s \in\left[\varphi_{-}^{\prime}(c), \varphi_{+}^{\prime}(c)\right]$, then

$$
\frac{\varphi(x)-\varphi(c)}{x-c} \geq s, \quad x>c
$$

and

$$
\frac{\varphi(c)-\varphi(x)}{c-x} \leq s, \quad x<c
$$

which, combined, yield

$$
\varphi(x)-\varphi(c) \geq s(x-c)
$$

or

$$
\varphi(x) \geq s(x-c)+\varphi(c)
$$

Since the inequality holds also for $x=c$, we conclude that for any $s \in\left[\varphi_{-}^{\prime}(c), \varphi_{+}^{\prime}(c)\right]$ the linear function

$$
l(x)=s(x-c)+\varphi(c)
$$

satisfies the requirements.
(b) Take $c=E(X)$. Then choosing one of the possible l from part (a), we get

$$
\begin{aligned}
\varphi(x) & \geq l(x) \\
\Rightarrow E[\varphi(X)] & \geq E[l(X)]=l(E(X))
\end{aligned}
$$

by linearity of expectation.
Since $l(E(X))=l(c)=\varphi(c)$, it follows that

$$
E[\varphi(X)] \geq \varphi(E(X))
$$

(c) Equality holds if and only if

$$
E[\varphi(X)-l(X)]=0
$$

Now, $\varphi(X)-l(X) \geq 0$ by construction of l. Thus, equality holds if and only if

$$
P(\varphi(X)=l(X))=1
$$

But we can consider the two events $X=E[X]$ and $X \neq E[X]$ (note that in the first case we know $\varphi(X)=l(X)$ by construction):

$$
\begin{equation*}
1=P(\varphi(X)=l(X))=P(X=E[X])+P(\varphi(X)=l(X), X \neq E[X]) \tag{5}
\end{equation*}
$$

However, we can check that $\varphi(x)>l(x)$ for any $x \neq E[X]=c$ if φ is strictly convex. To see this, note that in (1) and (2) the inequalities become strict if φ is strictly convex. Therefore, choosing for example $x>c$, we get that for small $\epsilon>0$,

$$
\frac{\varphi(x)-\varphi(c)}{x-c}>\frac{\varphi(c+\epsilon)-\varphi(c)}{\epsilon} \geq \varphi_{+}^{\prime}(c) .
$$

This implies that

$$
\varphi(x)>\varphi(c)+(x-c) \varphi_{+}(c) \geq \varphi(c)+s(x-c)
$$

A similar argument can be done for $x<c$, which proves our statement above, that $\varphi(x)>l(x)$ for $x \neq c$. But then we conclude that $\varphi(X)=l(X), X \neq E[X]$ is impossible (has probability 0), and finally from (5) we get

$$
P(X=E[X])=1
$$

Exercise 5.3 Suppose you can choose a number $n \geq 1$ and then toss a fair coin n times. You will be given a prize if you get either exactly 7 or exactly 9 heads. What is the "best" choice for the number n ?

Solution 5.3 The best n is the one that yields the highest probability to get the prize. It is clear that $n \geq 9$. Note that we want to maximize

$$
P\left(S_{n}=7 \text { or } 9\right)
$$

over the possible n, where $S_{n} \sim \operatorname{Bin}\left(n, \frac{1}{2}\right)$.

$$
\begin{aligned}
P\left(S_{n} \in\{7,9\}\right)= & \frac{1}{2^{n}}\left(\binom{n}{7}+\binom{n}{9}\right) \\
& = \begin{cases}0.072, & n=9 \\
0.126, & n=10 \\
0.187, & n=11 \\
0.247, & n=12 \\
0.296, & n=13 \\
0.331, & n=14 \\
0.349, & n=15 \\
0.349, & n=16 \\
0.333, & n=17\end{cases}
\end{aligned}
$$

One should choose either $n=15$ or 16 (the probability is exactly the same in both cases).
Exercise 5.4 (A novel way to give a test)
A student takes a 5 -answer multiple choice test. His/her grade is determined by the number of questions required to get 5 correct answers. The grading is done as follows:

- Grade A is given if the student only needs 5 questions;
- Grade B is given if the student needs 6 or 7 questions;
- Grade C is given if the student needs 8 or 9 questions;
- Grade F (fail) is given otherwise.

Suppose the student guesses independently at random on each question. What is the most likely grade (i.e. which outcome has the highest probability)?

Solution 5.4 Let N be the number of questions that the student needs to answer to get the 5 correct answers. It is clear that N is Negative Binomial, $\mathrm{NB}(r, p)$. Here, $r=5$ and $p=\frac{1}{5}$ since the probability that the student gets a question answered correctly is $\frac{1}{5}$ (he/she makes a random guess).

$$
\begin{aligned}
P(\text { student gets grade A }) & =P(N=5) \\
& =\binom{4}{4}\left(\frac{4}{5}\right)^{0} \frac{1}{5^{5}} \\
& =\frac{1}{5^{5}}=0.00032
\end{aligned}
$$

$$
\begin{aligned}
P(\text { student gets grade } \mathrm{B}) & =P(N=6 \text { or } 7) \\
& =\binom{5}{4}\left(\frac{4}{5}\right)^{1} \frac{1}{5^{5}}+\binom{6}{4}\left(\frac{4}{5}\right)^{2} \frac{1}{5^{5}} \\
& =\frac{1}{5^{5}}\left(4+15 \times \frac{16}{25}\right) \\
& =0.004352 . \\
P(\text { student gets grade C }) & =P(N=8 \text { or } 9) \\
& =\frac{1}{5^{5}}\left(\binom{7}{4}\left(\frac{4}{5}\right)^{3}+\binom{8}{4}\left(\frac{4}{5}\right)^{4}\right) \\
& =\frac{4^{3}}{5^{8}}\left(\binom{7}{4}+\binom{8}{4} \times \frac{4}{5}\right) \\
& =0.0149 .
\end{aligned}
$$

$$
\begin{aligned}
P(\text { student fails }) & =1-P(N<10) \\
& =0.980
\end{aligned}
$$

Failing the test is the most likely event (not surprisingly, since the student has only 1 chance out of 5 to get each question correctly answered, so it is unlikely that he will get 5 out of the first 9 correct).

Exercise 5.5 (Generating functions). (Optional)

Let X be some integer-valued random variable, that is $X(\omega) \in\{0,1,2, \ldots\} \forall \omega \in \Omega$, the sample space on which X is defined. The generating function of X is defined as

$$
G(s):=\sum_{k=0}^{\infty} s^{k} P(X=k)
$$

for those values of s such that the sum on the right-hand side converges.
Note that G is always well-defined for $|s| \leq 1$ since

$$
\sum_{k=0}^{\infty}|s|^{k} P(X=k) \leq \sum_{k=0}^{\infty} P(X=k)=1
$$

Also, $G(s)=E\left[s^{X}\right]$ is another expression for G.
(a) Consider a power series $f(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$, given a real sequence $\left(a_{k}\right)_{k \geq 0}$ and $s \in \mathbb{R}$ for which $f(s)$ is defined. Suppose that there is some $s_{0} \neq 0$ such that $f\left(s_{0}\right)$ is defined, that is $\sum_{k=0}^{\infty} a_{k} s_{0}^{k}$ converges.
Show that f is defined and infinitely differentiable for all s such that $|s|<\left|s_{0}\right|$ and

$$
f^{(j)}(s)=\sum_{k=j}^{\infty} a_{k} k(k-1) \ldots(k-j+1) s^{k-j}
$$

for $|s|<\left|s_{0}\right|$.
Hint: You may use the fact that if $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of differentiable functions f_{n} : $(a, b) \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ pointwise on (a, b) and $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b) for some functions $f, g:(a, b) \rightarrow \mathbb{R}$, then $f^{\prime}=g$. You may need to apply this inductively to conclude.
(b) Conclude from (a) that $\forall s:|s|<1$, the generating function G defined above is infinitely differentiable and compute $G^{(j)}(0)$.
(c) Let $X \sim \operatorname{Unif}\{1,2, \ldots, n\}$ for some $n \geq 1$. What is the expression of G_{X}, the generating function of such an X ?
(d) Consider now two random variables X and Y that are i.i.d $\sim \operatorname{Unif}\{1,2, \ldots, n\}$. Let $S=X+Y$. What is the expression of G_{S}, the generating function of S ?
(e) Use (b) to find the pmf of S. Is it easier to do it directly?

Solution 5.5

(a) Let $|s|<\left|s_{0}\right|$ where $\sum_{k=0}^{\infty} a_{k} s_{0}^{k}<\infty$. Then, $\lim _{k \rightarrow \infty} a_{k} s_{0}^{k}=0$ and we can find $M>0$ such that $\left|a_{k} s_{0}^{k}\right| \leq M$ for any $k \in\{0,1, \ldots\}$. Now,

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|a_{k}\right||s|^{k} & =\sum_{k=0}^{\infty}\left|a_{k}\right|\left|s_{0}\right|^{k}\left|\frac{s}{s_{0}}\right|^{k} \\
& \leq M \sum_{k=0}^{\infty}\left|\frac{s}{s_{0}}\right|^{k} \\
& =\frac{M}{1-\frac{|s|}{\left|s_{0}\right|}}<\infty
\end{aligned}
$$

Thus, $f(s)$ is well-defined.
Now let

$$
f_{n}(s)=\sum_{k=0}^{n} a_{k} s^{k}, \quad n \in\{1,2, \ldots\}
$$

Then f_{n} is differentiable on \mathbb{R} since it is a polynomial, and in particular it is differentiable on $\left(-\left|s_{0}\right|,\left|s_{0}\right|\right)$ with derivative

$$
f_{n}^{\prime}(s)=\sum_{k=1}^{n} k a_{k} s^{k-1}
$$

For $|s| \leq \rho<\left|s_{0}\right|$ we have that

$$
\begin{aligned}
\sum_{k=1}^{n} k\left|a_{k}\right||s|^{k-1} & =\sum_{k=0}^{n} k\left|a_{k}\right|\left(\frac{|s|}{\left|s_{0}\right|}\right)^{k-1}\left|s_{0}\right|^{k-1} \\
& \leq M \sum_{k=1}^{n} k\left(\frac{\rho}{\left|s_{0}\right|}\right)^{k-1} \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow} \frac{M}{\left(1-\frac{\rho}{\left|s_{0}\right|}\right)^{2}}
\end{aligned}
$$

since $\frac{\rho}{\left|s_{0}\right|}<1$.
The series $\sum_{k=1}^{\infty} k a_{k} s^{k-1}$ is then uniformly convergent on $[-|\rho|,|\rho|]$ for any $0<\rho<\left|s_{0}\right|$. Using the hint, we conclude that $f(s)=\sum_{k=0}^{\infty} a_{k} s^{k}$ is differentiable on $\left(-\left|s_{0}\right|,\left|s_{0}\right|\right)$ and

$$
f^{\prime}(s)=\sum_{k=1}^{\infty} k a_{k} s^{k-1}
$$

for any $s \in\left(-\left|s_{0}\right|,\left|s_{0}\right|\right)$.
Applying this argument to $\tilde{a}_{k}=(k+1) a_{k+1}$ and $\tilde{f}(s)=\sum_{k=0}^{\infty} \tilde{a}_{k} s^{k}$ we can show by induction that f is infinitely differentiable on $\left(-\left|s_{0}\right|,\left|s_{0}\right|\right)$.
(b) Take $s_{0}=1$. Then $G(s)=\sum_{k=0}^{\infty} s^{k} P(X=k)$ is well-defined for s_{0}. Using (a), it follows that G is infinitely differentiable at $s=0$, with

$$
G^{(j)}(s)=\sum_{k=j}^{\infty} k(k-1) \ldots(k-j+1) s^{k-j} P(x=k)
$$

for $s \in(-1,1)$ and $j \in\{0,1, \ldots\}$. In particular

$$
G^{(j)}(0)=j!P(X=j)
$$

(c) For $X \sim \operatorname{Unif}\{1,2, \ldots, n\}$,

$$
G_{X}(s)=E\left[s^{X}\right]
$$

where s^{X} is distributed as $\operatorname{Unif}\left\{s, s^{2}, \ldots, s^{n}\right\}$, and this is well-defined for any $s \in \mathbb{R}$. Therefore

$$
\begin{aligned}
G_{X}(s) & =\frac{1}{n} \sum_{k=1}^{n} s^{k}, \quad \forall s \in \mathbb{R} \\
& =\frac{s\left(1-s^{n}\right)}{n(1-s)}, \quad \forall s \in \mathbb{R} \backslash\{1\}
\end{aligned}
$$

Let X and Y be i.i.d $\sim \operatorname{Unif}\{1,2, \ldots, n\}$. Then,

$$
\begin{aligned}
G_{S}(s)=E\left[s^{S}\right] & =E\left[s^{X+Y}\right] \\
& =E\left[s^{X} s^{Y}\right] \\
& =E\left[s^{X}\right] E\left[s^{Y}\right]
\end{aligned}
$$

since $s^{X}=f(X)$ and $s^{Y}=g(Y)$ are independent.
It follows that

$$
G_{S}(s)=\left(\frac{1}{n} \sum_{k=1}^{n} s^{k}\right)^{2}, \quad \forall s \in \mathbb{R}
$$

(d) It follows from (b) that

$$
P(S=j)=\frac{G_{S}^{(j)}(0)}{j!}, \quad j \in\{0,1, \ldots\}
$$

Note that G_{S} is a polynomial of degree $2 n$, hence the support of S is necessarily bounded above by $2 n$. It can also be seen directly from the definition of S that

$$
S \in\{2,3, \ldots, 2 n\}=\operatorname{supp}(S)
$$

For $j \in\{2,3,4, \ldots, 2 n\}$, we can compute $G_{s}^{(j)}$ using the Leibniz formula for higher derivatives of the product:

$$
(f g)^{(k)}=\sum_{j=0}^{k}\binom{k}{j} f^{(j)} g^{(k-j)}
$$

Then,

$$
\begin{align*}
G_{S}^{(j)}(0) & =\sum_{i=0}^{j}\binom{j}{i} G_{X}^{(i)}(0) G_{Y}^{(j-i)}(0) \\
& =\sum_{i=0}^{j}\binom{j}{i} i!P(X=i) \times(j-i)!P(Y=j-i) \tag{6}\\
& =\sum_{i=0}^{j} j!P(X=i) P(Y=j-i) \\
& =j!\sum_{i=0}^{j} P(X=i) P(Y=j-i)
\end{align*}
$$

where $P(X=i)=\frac{1}{n}$ for $i=1, \ldots, n$ and similarly $P(Y=j-i)=\frac{1}{n}$ for $j-i=1, \ldots, n$, or in other words $i=j-n, j-n+1, . ., j-1$.
It follows that in the sum (6), we only get contributions from those terms such that

$$
\max (1, j-n) \leq i \leq \min (n, j-1)
$$

In conclusion,

$$
P(S=j)=\frac{\min (n, j-1)-\max (1, j-n)+1}{n^{2}}, \quad j \in\{2,3, \ldots, 2 n\}
$$

In this case, this computation does not appear to be easier than done directly. Nevertheless, one can see from this expression that S is not uniformly distributed on $\{2, \ldots, 2 n\}$.

