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Probability and Statistics

Exercise sheet 5

Exercise 5.1 Let X be a real-valued random variable defined on a probability space (Ω,A, P ).
For a fixed integer k ∈ {1, 2, ...} show that E(Xk) exists if and only if E[(X − E(X))k] exists. In
other words, you need to show that

E(|X|k) <∞ ⇔ E[|X − E(X)|k] <∞.

(The case k = 1 is trivially true).

Solution 5.1 Let k ≥ 2 be an integer.
• Suppose that E(Xk) exists, i.e. E[|X|k] <∞. Using Lyapunov’s inequality we have (we take

α = 1 and β = k) that

E[|X|] ≤ (E[|X|k]) 1
k <∞

and hence E[X] = µ exists.
Now, by Minkowski’s inequality it follows that

E[|X − µ|k] 1
k ≤ (E[|X|k]) 1

k + |µ| <∞

which implies that E[(X − µ)k] exists.
• Now, suppose that E[(X − µ)k] exists. Then, E[|X − µ|k] <∞. By Minkowski’s inequality,

we have

E[|X|k] 1
k = (E[|X − µ+ µ|k]) 1

k

≤ (E[|X − µ|k]) 1
k + µ

<∞.

This means that E(Xk) exists.

Exercise 5.2 (Proving Jensen’s inequality).

Let ϕ be a convex function defined on an interval (a, b) with −∞ ≤ a < b ≤ +∞. Consider
some random variable X such that P (X ∈ (a, b)) = 1. Assume that E(X) and E(ϕ(X)) exist, that
is, E(|X|) <∞ and E(|ϕ(X)|) <∞. Here, we recall that ϕ is convex on (a, b) if ∀x, y ∈ (a, b) and
λ ∈ [0, 1]

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

and that it is strictly convex if ∀x, y ∈ (a, b) such that x 6= y and λ ∈ (0, 1)

ϕ(λx+ (1− λ)y) < λϕ(x) + (1− λ)ϕ(y).

(a) Show that for any c ∈ (a, b), we can find a linear function l such that

ϕ(x) ≥ l(x) ∀x ∈ (a, b)
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and
ϕ(c) = l(c).

Hint: You may assume that ϕ admits left and right derivatives, i.e. the limits

ϕ+(x) := lim
ε→0+

ϕ(x+ ε)− ϕ(x)
ε

and
ϕ−(x) := lim

ε→0−

ϕ(x+ ε)− ϕ(x)
ε

both exist for any x ∈ (a, b). Explain why ϕ+(x) ≥ ϕ−(x) for x ∈ (a, b). Then, show that for
any s ∈ [ϕ−(c), ϕ+(c)] you can construct a line with slope s with the desired properties.

(b) Show that under the given assumptions on X we have

E[ϕ(X)] ≥ ϕ(E(X)).

Hint: Use your result from (a). Given the random variable X, what is a reasonable value to
choose for c?

(c) Suppose now that ϕ is strictly convex. Show that we have equality if and only if P (X =
E(X)) = 1, that is, X is a degenerate random variable.

Solution 5.2

(a) Let x ∈ (a, b) and b− x > t ≥ ε > 0. Then

ϕ(x+ ε) = ϕ
(ε
t
(x+ t) +

(
1− ε

t

)
x
)

≤ ε

t
ϕ(x+ t) +

(
1− ε

t

)
ϕ(x)

⇔ ϕ(x+ ε)− ϕ(x)
ε

≤ ϕ(x+ t)− ϕ(x)
t

which means that as ε↘ 0 the function

ε 7→ ϕ(x+ ε)− ϕ(x)
ε

is non-increasing. (i.e. flipping it around, if ε increases this function is non-decreasing).
Furthermore, by putting z = λx+ (1− λ)y (note that z ∈ [x, y] when x ≤ y), the convexity
condition can be shown to be equivalent to

f(z)− f(x)
z − x

≤ f(y)− f(x)
y − x

(1)

or to
f(y)− f(z)

y − z
≥ f(z)− f(x)

z − x
. (2)

Then, by (2), fixing some a < y < x, we have that for any ε ∈ (0, b− x),

ϕ(x+ ε)− ϕ(x)
ε

≥ ϕ(x)− ϕ(y)
x− y

.
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Thus, as a monotone non-increasing (as ε decreases) function bounded by below, ε 7→
ϕ(x+ε)−ϕ(x)

ε admits a limit as ε↘ 0, which is by definition equal to the right derivative of ϕ
at x, that is ϕ′+(x).
Using similar arguments, we can show that

ϕ′−(x) = lim
ε↗0

ϕ(x+ ε)− ϕ(x)
ε

exists.
Moreover, by (2),

ϕ(x+ ε)− ϕ(x)
ε

≥ −ϕ(x− ε) + ϕ(x)
ε

which implies that as ε↘ 0,

ϕ′+(x) ≥ ϕ′−(x).

Now, fix c ∈ (a, b). For x > c, we have

ϕ(x)− ϕ(c)
x− c

≥ ϕ(c+ ε)− ϕ(c)
ε

(by (1)) for small ε > 0.
Taking ε↘ 0, this implies that

ϕ(x)− ϕ(c)
x− c

≥ ϕ′+(c). (3)

Similarly, for x < c,

ϕ(c)− ϕ(x)
c− x

≤ ϕ(c)− ϕ(c− ε)
ε

⇒ ϕ(c)− ϕ(x)
c− x

≤ ϕ′−(c).
(4)

Then we see from inequalities (3) and (4) that if we take any slope s ∈ [ϕ′−(c), ϕ′+(c)], then

ϕ(x)− ϕ(c)
x− c

≥ s, x > c

and
ϕ(c)− ϕ(x)

c− x
≤ s, x < c

which, combined, yield

ϕ(x)− ϕ(c) ≥ s(x− c)
or

ϕ(x) ≥ s(x− c) + ϕ(c).

Since the inequality holds also for x = c, we conclude that for any s ∈ [ϕ′−(c), ϕ′+(c)] the
linear function

l(x) = s(x− c) + ϕ(c)
satisfies the requirements.
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(b) Take c = E(X). Then choosing one of the possible l from part (a), we get

ϕ(x) ≥ l(x)
⇒ E[ϕ(X)] ≥ E[l(X)] = l(E(X))

by linearity of expectation.
Since l(E(X)) = l(c) = ϕ(c), it follows that

E[ϕ(X)] ≥ ϕ(E(X)).

(c) Equality holds if and only if

E[ϕ(X)− l(X)] = 0.

Now, ϕ(X)− l(X) ≥ 0 by construction of l. Thus, equality holds if and only if

P (ϕ(X) = l(X)) = 1.

But we can consider the two events X = E[X] and X 6= E[X] (note that in the first case we
know ϕ(X) = l(X) by construction):

1 = P (ϕ(X) = l(X)) = P (X = E[X]) + P (ϕ(X) = l(X), X 6= E[X]). (5)

However, we can check that ϕ(x) > l(x) for any x 6= E[X] = c if ϕ is strictly convex. To see
this, note that in (1) and (2) the inequalities become strict if ϕ is strictly convex. Therefore,
choosing for example x > c, we get that for small ε > 0,

ϕ(x)− ϕ(c)
x− c

>
ϕ(c+ ε)− ϕ(c)

ε
≥ ϕ′+(c).

This implies that

ϕ(x) > ϕ(c) + (x− c)ϕ+(c) ≥ ϕ(c) + s(x− c).

A similar argument can be done for x < c, which proves our statement above, that ϕ(x) > l(x)
for x 6= c. But then we conclude that ϕ(X) = l(X), X 6= E[X] is impossible (has probability
0), and finally from (5) we get

P (X = E[X]) = 1.

Exercise 5.3 Suppose you can choose a number n ≥ 1 and then toss a fair coin n times. You will
be given a prize if you get either exactly 7 or exactly 9 heads. What is the “best” choice for the
number n?

Solution 5.3 The best n is the one that yields the highest probability to get the prize. It is clear
that n ≥ 9. Note that we want to maximize

P (Sn = 7 or 9)

over the possible n, where Sn ∼ Bin(n, 1
2 ).
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P (Sn ∈ {7, 9}) = 1
2n

((
n

7

)
+
(
n

9

))

=



0.072, n = 9
0.126, n = 10
0.187, n = 11
0.247, n = 12
0.296, n = 13
0.331, n = 14
0.349, n = 15
0.349, n = 16
0.333, n = 17

One should choose either n = 15 or 16 (the probability is exactly the same in both cases).

Exercise 5.4 (A novel way to give a test)

A student takes a 5-answer multiple choice test. His/her grade is determined by the number of
questions required to get 5 correct answers. The grading is done as follows:
• Grade A is given if the student only needs 5 questions;
• Grade B is given if the student needs 6 or 7 questions;
• Grade C is given if the student needs 8 or 9 questions;
• Grade F (fail) is given otherwise.
Suppose the student guesses independently at random on each question. What is the most likely

grade (i.e. which outcome has the highest probability)?

Solution 5.4 Let N be the number of questions that the student needs to answer to get the 5
correct answers. It is clear that N is Negative Binomial, NB(r, p). Here, r = 5 and p = 1

5 since the
probability that the student gets a question answered correctly is 1

5 (he/she makes a random guess).

P (student gets grade A) = P (N = 5)

=
(

4
4

)(
4
5

)0 1
55

= 1
55 = 0.00032.

P (student gets grade B) = P (N = 6 or 7)

=
(

5
4

)(
4
5

)1 1
55 +

(
6
4

)(
4
5

)2 1
55

= 1
55

(
4 + 15× 16

25

)
= 0.004352.

P (student gets grade C) = P (N = 8 or 9)

= 1
55

((
7
4

)(
4
5

)3
+
(

8
4

)(
4
5

)4
)

= 43

58

((
7
4

)
+
(

8
4

)
× 4

5

)
= 0.0149.
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P (student fails) = 1− P (N < 10)
= 0.980

Failing the test is the most likely event (not surprisingly, since the student has only 1 chance
out of 5 to get each question correctly answered, so it is unlikely that he will get 5 out of the first 9
correct).

Exercise 5.5 (Generating functions). (Optional)

Let X be some integer-valued random variable, that is X(ω) ∈ {0, 1, 2, ...} ∀ω ∈ Ω, the sample
space on which X is defined. The generating function of X is defined as

G(s) :=
∞∑
k=0

skP (X = k),

for those values of s such that the sum on the right-hand side converges.
Note that G is always well-defined for |s| ≤ 1 since

∞∑
k=0
|s|kP (X = k) ≤

∞∑
k=0

P (X = k) = 1.

Also, G(s) = E[sX ] is another expression for G.

(a) Consider a power series f(s) =
∑∞
k=0 aks

k, given a real sequence (ak)k≥0 and s ∈ R for
which f(s) is defined. Suppose that there is some s0 6= 0 such that f(s0) is defined, that is∑∞

k=0 aks
k
0 converges.

Show that f is defined and infinitely differentiable for all s such that |s| < |s0| and

f (j)(s) =
∞∑
k=j

akk(k − 1)...(k − j + 1)sk−j

for |s| < |s0|.
Hint: You may use the fact that if (fn)∞n=1 is a sequence of differentiable functions fn :
(a, b) → R such that fn → f pointwise on (a, b) and f ′n → g uniformly on (a, b) for some
functions f, g : (a, b)→ R, then f ′ = g. You may need to apply this inductively to conclude.

(b) Conclude from (a) that ∀s : |s| < 1, the generating function G defined above is infinitely
differentiable and compute G(j)(0).

(c) Let X ∼ Unif{1, 2, ..., n} for some n ≥ 1. What is the expression of GX , the generating
function of such an X?

(d) Consider now two random variables X and Y that are i.i.d ∼ Unif{1, 2, ..., n}. Let S = X+Y .
What is the expression of GS , the generating function of S?

(e) Use (b) to find the pmf of S. Is it easier to do it directly?

Solution 5.5
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(a) Let |s| < |s0| where
∑∞
k=0 aks

k
0 <∞. Then, limk→∞ aks

k
0 = 0 and we can find M > 0 such

that |aksk0 | ≤M for any k ∈ {0, 1, ...}. Now,

∞∑
k=0
|ak||s|k =

∞∑
k=0
|ak||s0|k

∣∣∣∣ ss0

∣∣∣∣k
≤M

∞∑
k=0

∣∣∣∣ ss0

∣∣∣∣k
= M

1− |s|
|s0|

<∞.

Thus, f(s) is well-defined.
Now let

fn(s) =
n∑
k=0

aks
k, n ∈ {1, 2, ...}

Then fn is differentiable on R since it is a polynomial, and in particular it is differentiable on
(−|s0|, |s0|) with derivative

f ′n(s) =
n∑
k=1

kaks
k−1.

For |s| ≤ ρ < |s0| we have that

n∑
k=1

k|ak||s|k−1 =
n∑
k=0

k|ak|
(
|s|
|s0|

)k−1
|s0|k−1

≤M
n∑
k=1

k

(
ρ

|s0|

)k−1

−→
n→∞

M(
1− ρ

|s0|

)2

since ρ
|s0| < 1.

The series
∑∞
k=1 kaks

k−1 is then uniformly convergent on [−|ρ|, |ρ|] for any 0 < ρ < |s0|.
Using the hint, we conclude that f(s) =

∑∞
k=0 aks

k is differentiable on (−|s0|, |s0|) and

f ′(s) =
∞∑
k=1

kaks
k−1

for any s ∈ (−|s0|, |s0|).
Applying this argument to ãk = (k+ 1)ak+1 and f̃(s) =

∑∞
k=0 ãks

k we can show by induction
that f is infinitely differentiable on (−|s0|, |s0|).

(b) Take s0 = 1. Then G(s) =
∑∞
k=0 s

kP (X = k) is well-defined for s0. Using (a), it follows that
G is infinitely differentiable at s = 0, with

G(j)(s) =
∞∑
k=j

k(k − 1)...(k − j + 1)sk−jP (x = k)
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for s ∈ (−1, 1) and j ∈ {0, 1, ...}. In particular

G(j)(0) = j!P (X = j).

(c) For X ∼ Unif{1, 2, ..., n},

GX(s) = E[sX ]

where sX is distributed as Unif{s, s2, ..., sn}, and this is well-defined for any s ∈ R. Therefore

GX(s) = 1
n

n∑
k=1

sk, ∀s ∈ R

= s(1− sn)
n(1− s) , ∀s ∈ R \ {1}.

Let X and Y be i.i.d ∼ Unif{1, 2, ..., n}. Then,

GS(s) = E[sS ] = E[sX+Y ]
= E[sXsY ]
= E[sX ]E[sY ]

since sX = f(X) and sY = g(Y ) are independent.
It follows that

GS(s) =
(

1
n

n∑
k=1

sk

)2

, ∀s ∈ R.

(d) It follows from (b) that

P (S = j) = G
(j)
S (0)
j! , j ∈ {0, 1, ...}.

Note that GS is a polynomial of degree 2n, hence the support of S is necessarily bounded
above by 2n. It can also be seen directly from the definition of S that

S ∈ {2, 3, ..., 2n} = supp(S).

For j ∈ {2, 3, 4, ..., 2n}, we can compute G(j)
s using the Leibniz formula for higher derivatives

of the product:

(fg)(k) =
k∑
j=0

(
k

j

)
f (j)g(k−j).

Then,
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G
(j)
S (0) =

j∑
i=0

(
j

i

)
G

(i)
X (0)G(j−i)

Y (0)

=
j∑
i=0

(
j

i

)
i!P (X = i)× (j − i)!P (Y = j − i)

=
j∑
i=0

j!P (X = i)P (Y = j − i)

= j!
j∑
i=0

P (X = i)P (Y = j − i)

(6)

where P (X = i) = 1
n for i = 1, ..., n and similarly P (Y = j − i) = 1

n for j − i = 1, ..., n, or in
other words i = j − n, j − n+ 1, .., j − 1.
It follows that in the sum (6), we only get contributions from those terms such that

max(1, j − n) ≤ i ≤ min(n, j − 1).

In conclusion,

P (S = j) = min(n, j − 1)−max(1, j − n) + 1
n2 , j ∈ {2, 3, ..., 2n}.

In this case, this computation does not appear to be easier than done directly. Nevertheless,
one can see from this expression that S is not uniformly distributed on {2, ..., 2n}.
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