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Probability and Statistics

Exercise sheet 7

Exercise 7.1 (Getting the distribution of independent Binomials.)
We recall for this question the following (general) definition:
For X and Y two random variables, not necessarily defined on the same probability space, we

say that X and Y have the same distribution (denoted X d= Y ) if

FX = FY on R (1)

with FX and FY the cdf’s of X and Y , respectively. Note that when X and Y are discrete, (1) is
equivalent to pX = pY , where pX and pY are the pmf’s of X and Y respectively.

Consider now X1 and X2 two independent random variables such that X1 ∼ Bin(n1, p) and
X2 ∼ Bin(n2, p), with n1 ≥ 1, n2 ≥ 1 in N and p ∈ (0, 1). We want to show that

X1 +X2 ∼ Bin(n1 + n2, p).

(a) The hard way:
Assume without loss of generality that n1 ≤ n2. Let k ∈ {0, ..., n1 + n2}. Show that

P (X1 +X2 = k) =

 min(k,n1)∑
j=max(0,k−n2)

(
n1

j

)(
n2

k − j

) pk(1− p)n1+n2−k.

Using the fact that the pmf of any random variable with distribution Hypergeo(n,D,N) has
to add up to 1, show that

min(k,n1)∑
j=max(0,k−n2)

(
n1

j

)(
n2

k − j

)
=
(
n1 + n2

k

)
and conclude.

(b) A more elegant way:
On Ω = {0, 1}n1+n2 define the Bernoulli random variables Y1, ..., Yn1 , Yni+1, ..., Yn1+n2 such
that they are all iid∼ Bernoulli(p).
Here, the Yi have the natural definition that for each i ∈ {1, ..., n1 + n2},

Yi(ω1, ..., ωn1+n2) = ωi

for (ω1, ..., ωn1+n2) ∈ {0, 1}n1+n2 , and Ω is equipped with the probability measure P such
that

P ((ω1, ..., ωn1+n2)) = pω1(1− p)1−ω1 ...pωn1+n2 (1− p)1−ωn1+n2

defined on A = 2Ω.
Define the random variables

X ′1 := Y1 + ...+ Yn1 ,
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X ′2 := Yn1+1 + ...+ Yn1+n2 .

Show using a simple argument that

X1 +X2
d= X ′1 +X ′2

(without computing their cdf’s or pmf’s explicitly).
Conclude now that X1 +X2 ∼ Bin(n1 + n2, p).

Solution 7.1

(a) The hard way:
Let k ∈ {0, ..., n1 + n2}.

{X1 +X2 = k} =
k⋃
j=0
{X1 = j,X2 = k − j}

where the sets {X1 = j,X2 = k − j} are pairwise disjoint for j ∈ {0, ..., k}.
Using independence of X1 and X2 we can write

P (X1 +X2 = k) =
k∑
j=0

P (X1 = j)P (X2 = k − j)

where

P (X1 = j) =
{ (

n1
j

)
pj(1− p)n1−j if 0 ≤ j ≤ n1,

0 otherwise,

and

P (X2 = k − j) =
{ (

n2
k−j
)
pk−j(1− p)n2−k+j if 0 ≤ k − j ≤ n2,

0 otherwise.

The conditions {
0 ≤ j ≤ n1,

0 ≤ k − j ≤ n2,

are equivalent to {
0 ≤ j ≤ n1,

k − n2 ≤ j ≤ k,

which are also equivalent to

max(0, k − n2) ≤ j ≤ min(k, n1).

Thus,

P (X1 +X2 = k) =

 min(k,n1)∑
j=max(0,k−n2)

(
n1

j

)(
n2

k − j

)× pk(1− p)n1+n2−k.
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Consider now Y ∼ Hypergeo(k, n1, n1 + n2). We know that the pmf of Y is given by

p(y) = P (Y = y) =
(
n1
y

)(
n1+n2−n1

k−y
)(

n1+n2
k

)
for max(0, k − n2) ≤ y ≤ min(k, n1). Thus,

min(k,n1)∑
y=max(0,k−n2)

p(y) = 1,

which gives the identity

min(k,n1)∑
j=max(0,k−n2)

(
n1

j

)(
n2

k − j

)
=
(
n1 + n2

k

)
.

It follows that

P (X1 +X2 = k) =
(
n1 + n2

k

)
pk(1− p)n1+n2−k

for k ∈ {0, ..., n1 + n2}, from which we conclude that

X1 +X2 ∼ Bin(n1 + n2, p).

(b) A more elegant way:
If we compute the probability mass functions of X1 +X2 and X ′1 +X ′2, we clearly see that
they must be equal. This follows by the definition of X1, X2 and X ′1, X ′2 and the fact that
X1 |= X2 and X ′1 |= X ′2.
Then, X1 +X2 has the same distribution as the sum of n1 +n2 i.i.d Bernoulli(p), and therefore
must have a Bin(n1 + n2, p) distribution.

Exercise 7.2

(a) Let

f(x) := 1
xk
1x∈[1,+∞).

For what value of k, if any, is f a density function?

(b) Give an example of a density function f such that c
√
f cannot be a density function for any

c > 0.

(c) Let

f(x) = c |x| (1− x2)1|x|≤1.

1. Find c > 0 so that f is a density function.
2. Find the cdf corresponding to this density.
3. Compute P (X < − 1

2 ) and P (|X| ≤ 1
2 ).

Solution 7.2
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(a) From the lectures, we know that for a measurable f ≥ 0 to be a density on R, it has to satisfy∫
R
f(t)dt = 1.

f is measurable since it is piecewise continuous. We see that for f to be at all integrable, k
has to be strictly larger than 1.
Let k > 1. Then ∫

R

dx

xk
1x∈[1,∞) =

∫ ∞
1

dx

xk
= 1
k − 1 .

Then k − 1 = 1⇒ k = 2. Hence, k = 2 is the only possibility for f to be a density.

(b) If we take

f(x) = 1
x21x∈[1,+∞)

then

√
f(x) = 1

x
1x∈[1,+∞)

which is not integrable, which implies that there is no c ∈ R such that c
√
f is a density.

(c)
f(x) = c|x|(1− x2)1|x|≤1.

1.

1 =
∫
R
f(x)dx

= 2c
∫ 1

0
x(1− x2)dx

= 2c
[
− (1− x2)2

4

]1

0

= c

2(0 + 1)

= c

2 .

Thus, c = 2.
2. By definition, the cdf of the random variable whose density is f is given by

F (x) = P (X ≤ x) =
∫ x

−∞
f(t)dt

=


0 if x < −1,

2
∫ x
−1 |t|(1− t

2)dt if − 1 ≤ x < 1,
1 if x ≥ 1.

In the interval [−1, 1], there are two further cases:
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F (x) =
{

2
∫ x
−1(−t)(1− t2)dt if − 1 ≤ x ≤ 0,

2
∫ 0
−1(−t)(1− t2)dt+ 2

∫ x
0 t(1− t

2)dt if 0 ≤ x ≤ 1,

where

2
∫ x

−1
(−t)(1− t2)dt =

[
(1− t2)2

2

]x
−1

= (1− x2)2

2

and

2
∫ x

0
t(1− t2)dt =

[
− (1− t2)2

2

]x
0

= 1
2(1− (1− x2)2).

Thus

F (x) =
{

(1−x2)2

2 if − 1 ≤ x ≤ 0,
1− (1−x2)2

2 if 0 ≤ x ≤ 1.

To conclude,

F (x) =


0 if x < −1,

(1−x2)2

2 if − 1 ≤ x < 0,
1− (1−x2)2

2 if 0 ≤ x < 1,
1 if x ≥ 1.

As a quick check of monotonicity, one can observe that (1−x2)2 decreases as |x| increases,
and therefore each of the branches is monotonically increasing. Moreover, one sees that
F (0) = 1

2 is the same on the two middle branches.
3.

P

(
X < −1

2

)
= P

(
X ≤ −1

2

)
= F

(
−1

2

)
=
(

1− 1
4

)2
× 1

2

= 9
32

(in the first step we used the fact that X is absolutely continuous, implying that
P (X = a) = 0 for any a ∈ R).

P

(
|X| ≤ 1

2

)
= F

(
1
2

)
− F

(
−1

2

)
= 1− F

(
−1

2

)
− F

(
−1

2

)
= 1− 2× 9

32
= 1− 9

16 = 7
16 .
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Exercise 7.3 (On moment generating functions).
For a random variable X, the moment generating function is defined as

ΨX(t) := E[etX ]
for any t ∈ R for which this expectation is finite.

In this question, we will assume that for two random variables X and Y (not necessarily defined
on the same probability space), we have the equivalence

X
d= Y ⇔ ΨX = ΨY on (a, b)

for some non-empty open interval (a, b) containing 0. (One can prove this equivalence indeed holds,
as long as such an interval (a, b) exists where the moment generating functions are defined).

(a) Let X ∼ Bin(n, p). Compute ΨX (on its domain of definition). If X1 ∼ Bin(n1, p) and
X2 ∼ Bin(n2, p) are independent, compute ΨX1+X2 . Can you conclude again that X1 +X2 ∼
Bin(n1 + n2, p)?

(b) Let X ∼ N (0, 1). Compute ΨX (on its domain of definition). If X1, X2, ..., Xn are iid∼ N (0, 1),
compute ΨX1+...+Xn . What is then the distribution of X1 + ...+Xn?

(c) Let X ∼ Exp(λ) for some λ > 0. Recall that this means that the density of X is given by

f(x) = λe−λx1x∈(0,∞).

Compute ΨX (on its domain of definition).

(d) Let X ∼ G(α, β), α > 0, β > 0. Compute ΨX (on its domain of definition). If X1, ..., Xn are
independent such that Xi ∼ G(αi, β) for αi > 0, β > 0, compute ΨX1+...+Xn . What is the
distribution of X1 + ...+Xn?

Solution 7.3
(a)

X ∼ Bin(n, p).

We can calculate the moment generating function as follows:

ΨX(t) = E
(
etX
)

=
n∑
k=0

etk
(
n

k

)
pk(1− p)n−k

=
n∑
k=0

(
n

k

)(
etp
)k (1− p)n−k

=
(
etp+ 1− p

)n ∀t ∈ R.

Let X1 ∼ Bin(n1, p) and X2 ∼ Bin(n2, p), such that X1 |= X2. Then,

ΨX1+X2(t) = E
[
et(X1+X2)

]
= E

[
etX1etX2

]
= E

(
etX1

)
E
(
etX1

)
(by independence)

=
(
etp+ 1− p

)n1 (
etp+ 1− p

)n2

=
(
etp+ 1− p

)n1+n2 ∀t ∈ R.
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Comparing with our earlier formula, and since the moment generating function determines
the distribution (by our assumption), we conclude that X1 +X2 ∼ Bin(n1 + n2, p).

(b) X ∼ N (0, 1). We calculate

Ψx(t) = E
[
etX
]

=
∫
R

1√
2π
etxe−

x2
2 dx

= 1√
2π

∫ ∞
−∞

e−
1
2 (x2−2tx+t2)dx× e t

2
2

= 1√
2π

∫ ∞
−∞

e−
1
2 (x−t)2

dx× e t
2
2

=
∫ ∞
−∞

1√
2π
e−

1
2 z

2
dz × e t

2
2 (with z = x− t)

= e
t2
2

(in the last step we notice that we are just integrating the density of a N (0, 1) distribution).

If X1, ..., Xn are iid∼ N (0, 1) we have

ΨX1+...Xn(t) = E
[
etX1 ...etXn

]
=

n∏
j=1

E
[
etXj

]
by independence

=
(
e
t2
2

)n
= e

nt2
2 .

To answer the question about the distribution of X1 + ...+Xn, note that if we go back to the
situation with one random variable X ∼ N (0, 1), we have for any σ > 0

ΨσX = E
[
etσX

]
= ΨX(tσ)

= e
t2σ2

2 ∀t ∈ R.

Hence the distribution of X1 + ...+Xn is equal to the distribution of
√
nZ with Z ∼ N (0, 1).

We will see in the lectures that this means that X1 + ...Xn ∼ N (0, n).

(c) X ∼ Exp(λ) for some λ ∈ (0,+∞). We have

ΨX(t) =
∫ ∞

0
λe−λxetxdx

= λ

∫ ∞
0

e(t−λ)xdx

<∞ if and only if t− λ < 0

in which case,
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∫ ∞
0

e(t−λ)xdx = 1
λ− t

.

Thus,

ΨX(t) = λ

λ− t
for all t ∈ (−∞, λ).

(d) X ∼ G(α, β), α > 0, β > 0.
We have

ΨX(t) = βα

Γ(α)

∫ ∞
0

extxα−1e−βxdx

= βα

Γ(α)

∫ ∞
0

xα−1e(t−β)xdx

<∞ if and only if t < β

in which case,

∫ ∞
0

xα−1e(t−β)xdx = (β − t)α

Γ(α)

∫ ∞
0

xα−1e−(β−t)xdx× Γ(α)
(β − t)α

= Γ(α)
(β − t)α

using the fact that

γα

Γ(α)x
α−1e−γc1x∈(0,∞)

is a density (of G(α, γ)) provided that α > 0 and γ > 0.
Thus,

ΨX(t) = βα

(β − t)α =
(

β

β − t

)α
∀t ∈ (−∞, β).

Let X1, ..., Xn be independent random variables with each Xi ∼ G(αi, β) for i ∈ {1, ..., n}.
We have

ΨX1+...Xn(t) =
n∏
i=1

E[etXi ]

=
n∏
i=1

ΨXi(t) ∀t ∈ (−∞, β)

=
n∏
i=1

(
β

β − t

)αi
∀t ∈ (−∞, β)

=
(

β

β − t

)∑n

i=1
αi

∀t ∈ (−∞, β)

from which we conclude that X1 + ...Xn ∼ G(
∑n
i=1 αi, β).
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Exercise 7.4 (Optional).
The first goal of this exercise is to show that:

(a) X : (Ω,A, P )→ (R,BR) is an absolutely continuous random variable with density f if and
only if

∀x ∈ R F (x) =
∫

(−∞,x]
fdλ =

∫ x

−∞
f(t)dt.

1. Show that the condition is necessary.
2. To show that it is sufficient, define the probability measure

µ1(B) =
∫
B

fdλ =
∫
B

f(t)dt, ∀B ∈ BR.

Use Carathéodory’s extension theorem to show that µ1 and PX have to be equal and conclude.

The second goal is to show the following:

(b) A measurable function f ≥ 0 on (R,BR) is the density of some absolutely continuous random
variable if and only if ∫

R
f(t)dt = 1.

1. Show that this condition is necessary.
2. To show that it is sufficient, define

F (x) :=
∫ x

−∞
f(t)dt, x ∈ R.

Show that:

• F is non-decreasing on R,
• limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1,
• F is right-continuous on R.

Conclude from this that F has to be the cdf of some random variable X (simply invoke a
result from the lecture; no need to give a formal proof).
Finally, show that this X has to be absolutely continuous with density f (for this use (a)).

Solution 7.4

(a) 1. That the condition is necessary is rather obvious since for B ∈ (−∞, x]

PX(B) = F (x) =
∫
B

fdλ =
∫ x

−∞
f(t)dt.
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2. Define the probability measure

µ1(B) =
∫
B

fdλ =
∫
B

f(t)dt.

Take now B =
⋃
i∈N(ai, bi] for some a1, a2, ...., b1, b2, ... ∈ R such that ai < bi for each

i ∈ N and the (ai, bi] are all pairwise disjoint.
Then, .

µ1(B) =
∑
i∈N

µ1((ai, bi]) by σ -additivity of µ1

=
∑
i∈N

∫
(ai,bi]

f(t)dt by definition of µ1

=
∑
i∈N

(F (bi)− F (ai))

=
∑
i∈N

P (X ∈ (ai, bi])

= P

(
X ∈

⋃
i∈N

(ai, bi]
)

by σ-additivity of P

= PX(B).

Hence, µ1 and PX have to be equal on the ring

R =
{⋃
i∈N

(ai, bi] : −∞ < ai < bi <∞

}
.

Now, BR = σ(R) and µ1 is σ-finite (since it is finite as a probability measure). Using
Carathéodory’s extension theorem (see Theorem 3.3 in the Measure and Integration
script, p.20) we know that there exists a unique measure µ on BR such that µ = µ1 on
R.
We conclude that µ1 = PX and that X is absolutely continuous with density f .

(b) 1. This is easy to see, since by definition

1 = P (Ω)
= P (X ∈ R)

=
∫ ∞
−∞

f(t)dt.

2.

• Let x ≤ y. We have 1(−∞,x] ≤ 1(−∞,y] which implies that∫
(−∞,x]

f(t)dt ≤
∫

(−∞,y]
f(t)dt,

that is, F is non-decreasing.
•

F (x) =
∫
R
f(t)1(−∞,x](t)dt
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with 0 ≤ f1(−∞,x] ≤ f .
Since f is integrable and

lim
x→+∞

f(t)1(−∞,x](t) = 0

for any t ∈ R, it follows from the dominated convergence theorem that

lim
x→−∞

F (x) =
∫
R

lim
x→−∞

f(t)1(−∞,x](t)dt = 0.

Similarly, we can show that

lim
x→+∞

F (x) =
∫
R

lim
x→+∞

f(t)1(−∞,x](t)dt

=
∫
R
f(t)dt = 1.

• That F is right-continuous follows from the fact that it is continuous, which has been
proved in lectures.

We conclude that there exists a random variable X (on some probability space (Ω,A, P ))
with cdf equal to this F .
To show that this existing random variable is absolutely continuous with density f , it suffices
to use (a) to conclude that we must have that

PX(B) = P (X ∈ B) =
∫
B

f(t)dt

for any B ∈ B.
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