ETH Ziirich, Spring 2019
Lecturer: Fadoua Balabdaoui Coordinator: David Martins

Probability and Statistics
Exercise sheet 8

Exercise 8.1
(a) Let X ~ U([0,1]). Compute E(X™), E(X#) (n > 1), and Wy (t) = E[e!X] whenever it is
defined.

(b) Let X ~ Beta(a, ), a > 0 and 8 > 0. Compute E(X) and var(X).
Hint: Use the “trick” that any density function f has to integrate to 1.

(¢) Let X ~ Exp(A), for A > 0. Compute the cdf of X and E(X™) for n > 1.

Remark: Watch out for the parametrisation - different sources may use different parametri-
sations. In the lectures we consider the density function of an Exp(\)-distributed random
variable to be f(z) = Ae™* for x > 0.

Solution 8.1

(a) For a > —1,

! 1
E(X"‘):/ x%dx = .
0 a+1

In particular,

1
E(X™) =
(X7) n+1
and ) n
E(X»)= .
n+1
Moreover,
Ux(t) = Ele""]
1
2/ e®dx
0
el -1
ot

for any ¢ # 0, while ¥ x(0) = 1.
(b) The density of X is

22 (1 — g)f1
flz) = é(aﬁ))]lme(o,l)

where B(a, 8) = Fé?(ji%%) is the beta function.
Thus,
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B 1 ;100"1(1—:E)ﬁ*1
E(X)f/O xwdx

1, .« _ B—1
:/ 7(1 ?) dx
0

B(«
a+1ﬂ/ 1—x51
B(a+1,p)

Ble+1,5)
B(a, B)
_ e+ DB (a + B)
L)AL (a+B+1)

o
a+p

(using the density “trick” and the formula for the beta function).

2y _ 1x2xa_1(1_$)6_1 .
£ = [

B bgotl(1 — g)f—1
o vt

_ Bla+2.) / V)
0

B(a, B) B(a+2,p)
_ B(a+2,5)
B(a, B)
_ T(a+2T(A)(a +f)
F(a)L(B) (e + B +2)
ala+1)

C(a+B)(a+B+1)

Therefore we obtain

var(X) = E(X?) — E(X)?
B ala+1) B a?
C(atB)(a+p+1) (a+ﬂ>
P+’ +a2B+aB—a®—a’B—a?
(a+B)*(a+p+1)
af
(a+B)2(a+p+1)

(¢) The density of X is

f(@) = Xe 1z

For x > 0, we calculate
/ Ae Mdr=1—e
0
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and therefore

We also compute

AR A
= )\i/o yre Vdy
_T(n+1)
=—

n!
T

(using properties of the gamma function; alternatively one could integrate by parts).

Exercise 8.2 (Waiting time.)

An auto towing company services a 50 mile stretch of a highway. The company is located 20
miles from one end of the stretch. Breakdowns occur uniformly along the highway and the towing
trucks travel at a constant speed of 50mph. Find the mean and variance of the time elapsed between
the instant the company is called and a towing truck arrives.

Solution 8.2 Call the left endpoint of the 50 mile stretch zero, and let X be the number of miles
from the left endpoint that a breakdown occurs. Then X ~ U[0,50]. Assume that the towing

company is located 20 miles from the left endpoint, so that the distance Y of the breakdown from
the location of the towing company is Y = | X — 20|. It will take the truck Z = % = |X;)20‘

to reach the location of the breakdown. We want the mean and variance of Z. First,

50 50
E(Z)—E<|X_2O|> —i/ |:C—20|f($)d$:i/ |z — 20|dx
0 0

hours

50 ~ 50 502
1 20 50 1
=_— 20 — z)d —20)dz = ——[200 + 450] = 0.26h.
2500 J, x)wr/go (& = 20)dz = 57551200 +450]
Next,
B(7%) = - B[(X —20)%] = -~ B[X? — 40X + 400]
2500 2500

- L1 50( 2 — 402 + 400)dx = 0.0933
T 250050 J, " T~ 0.0999,

and therefore

var(Z) = E(Z%) — E(Z)* = 0.0933 — 0.26* ~ 0.0257.

(if one wanted the units, one could write var(Z) ~ 0.0257h?).

Exercise 8.3 (Uniforms, uniforms...)
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(a) Consider a random variable X ~ U ([—%,%]). Find E(sin(X)) and var(sin(X)).
(b) The lengths of the sides of a triangle are X, 2X and 2.5X with X ~ U([0, «]) for some o > 0.

e Find the mean and variance of its area.

Hint: Recall that if
a+b+ec

2
with a, b, ¢ the lengths, then the area of the triangle is

Al = V/s(s —a)(s —b)(s — )

(Heron’s formula).
e How should we choose a so that the mean area is > 17
(¢) Take Xy, ..., X, to be £ U([0,1]). Let M,, = max(Xi,...,X,). Find the cdf and pdf of M,,.
Can you recognise this distribution? What are E(M,,) and var(M,)?

Solution 8.3

(a) We have
E(sin(X)) = ? sin(z) dx
_z ™
=0
and
k1 2
var(sin(X)) = E(sin(X)?) = / sin() dx

_ i

B 21— cos(2z)

_/g o dx

_!

=5

(b) The area of the triangle is given by Heron’s formula:

|A| = X?1/2.75 x 0.25 x 0.75 x 1.75 = aX?

for a constant a ~ 0.95.

e Note that if X ~ U([0,qa]), then Y = £ ~ U([0,1]). Therefore,
E[|A[] = BlaX?]
= ac’E[Y?]

(lOé2

as we found in question 1(a).
Moreover
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also by question 1(a). Finally
2 _ 4a%at

var(|A[) = E[|A]] - E[|A[] 45

2
‘w‘>1@a>\/§~1.7&
3 a

so this is the suitable value of «.

e We need to ensure that

(¢c) We can easily compute the cdf: for z € (0, 1),

Fy, (2)=P(M, <z2)=P(X; <z,..,X, <z)=2a"

For general z,

0, z <0,
Fuy,(z)=4q 2™, 0<ax<1,
1, 1 <z

Therefore, its density is
fat, (z) = na" ™!
on (0,1) (0 otherwise).

We can recognise this as a particular case of a Beta distribution, M,, ~ Beta(n,1). Thus from
question 1(b),

n
E(M,) =
(M) n+1
and n
var(M,) =

(n+1)%(n+2)

Exercise 8.4 (Quantile transformation.) Recall that for a given cdf F, the quantile ¢, of order
a € (0,1) is defined as

to = inf{t: F(t) > a} = F~(a).
F~1 denotes the generalised inverse of F. When the latter is bijective (at least in the neigh-
bourhood of t,), then F~! is the inverse of F in the classical sense.
(a) Consider U ~ U([0, 1]). Show that 1 — U ~ U([0, 1]).
Hint: Compute, for example, the cdf or the pdf of 1 — U.

(b) Consider

X = —% log(U)

(for w: U(w) = 0, take X (w) = 0, say).
Find the cdf of X. Can you recognise this distribution?
(¢) Now, consider the following problem: take a cdf F' which is bijective when viewed as a map
F:(a,b) — (0,1), for some —oo < a < b < +00.
Define X = F~Y(U), with U ~ U([0, 1]).
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e Compute the cdf of X.

Hint: You may need to consider the cases a = —00, a > —00, b = +00, b < +00.
e Compute the pdf of X, assuming that F is C' on (a,b) with F'(z) > 0 Vx € (a,b).
e Can you make the link to (b)?

(d) Suppose you are given a numerical algorithm which enables you to generate a random number
from [0,1]. You would like to generate a random number X which follows the Cauchy
distribution, i.e.

1

=— R.
(1 +22)’ ve

fx (@)
Can you propose a way to do that, based on your previous findings?

Solution 8.4
(a) For z € (0,1), it is clear that
PAl-U<z)=PU>1-2)

=PU>1-1x)
=1-PU<1—1x)
=1-(1-z)==x

(using absolute continuity of U in the second line). For general x, note that 1 — U cannot be
smaller than 0 or greater than 1, so

0, x <0,
Fiyl@)=<¢ z, 0<z<1,
1, 1<z

So we conclude that 1 — U ~ U([0, 1]).

(b) Similarly we compute for x > 0:

PX<z)=P —Xlog(U) < x)
= P(log(U) > —Ax)
= P(U > e )
=PU > e )

1 -z

and

0, x <0,
FX(x):{ 1767/\1, ng

Therefore X has an Exp(A) distribution, by 1(c).

(c) e We calculate for z € (a,b),

Fx(z)=P(X <x)
— P(FY(U) < 2)
—PU<F@) ()
= F(z) ()
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(*x) holds since F(x) € [0,1]. (%) requires more justification. By definition, for u € (0,1),

F~Y(u) =t, = inf{t: F(t) > u}.

Since F' is non-decreasing and right-continuous, we can see that the set on the right-hand
side is a closed interval of the form [z, +00] for some xg, indeed we have

{t: F(t) > u} = [tu, +00).

Therefore,
x>ty
& X € [ty,+00) = {t: F(t) > u}
& Flr) >u

Therefore, since U € (0,1) almost surely, the step (x) is justified. We observe that X
has the cdf F', and moreover while we only wrote this for « € (a,b), we can see that
F(z) = Fx(x) =0 on (—o00,a] and F(x) = Fx(z) =1 on [b, +00). We conclude that X
and F~1(U) have the same cdf, which is F.

o If F is piecewise C!, then by the fundamental theorem of calculus,

F@)= [ Py
so the density of F'is f(z) = F'(x).
e In (b) we defined

1
X = Y log(U).

Note that an Exp()\) random variable has a cdf F(z) =1 —e~** on (0, +00). Since F is
smooth and strictly increasing, we find the inverse by calculating

g 1 _
y=1—e A @m:—xlog(l—y):F 1(y)

Therefore, X = —+log(1 — U) has an Exp(\)-distribution. This is not exactly the same
as in (b), but since by (a), 1 — U also has a U([0, 1]) distribution, we can replace U by
1 — U in the expression above.

(d) Let U be the random number generated by the algorithm, with distribution U ~ U(]0, 1]).
For the Cauchy distribution, we can compute

F(z) = /x édy _ (g + arctan(m))

—oo (L +y?) m

and therefore by the previous parts, we can use the inverse

Pie)=an (s (- 1))

to simulate a random variable X with a Cauchy distribution, namely by setting

X =F }U) = tan (71' (U— ;)) .
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Exercise 8.5 (Optional.) Let X1,..., X, (for some n > 2) be random variables defined on the
same probability space (2,4, P). A necessary and sufficient condition for (mutual) independence
of X1,..., X, is that

P(X) <zp,., Xy <) = HP(XZ- < ) (1)

i=1

for any (x1,...,z,) € R™.
The goal of this exercise is to show that when X7, ..., X,, are discrete, (1) is equivalent to

P(Xi, =21, X, = am) = [[ P(Xi, = ) (2)

=1
forany 1 <m <mnand i; < ... <ip, (T1,..., Tsmpm) € R™.
(a) Take m = n (in which case i1 = 1,ia = 2, ...,y = n).

e Focus on X; and show that (2) implies that for any (z1, ..., x,) € R,

P(X1 S xl,Xg = T, ,Xn = {L‘n) = P(Xl S xl)P(Xg = LL‘Q)P(Xn = :L‘n)
e Repeating this argument inductively, show that (1) holds.

(b) Now, we want to show that (1) implies (2). Fix {i1,...,im} = J C {1,...,n}, with strict
inclusion.

e Show that (1) implies that

P(Xll S X1, "'aXim S ‘TTTL) = HP(XZJ < x])
j=1

Hint: You may want to take limits in (1) as z; — +oo for i € J.

e Focus on 7 (hold the other events depending on s, ..., i, fixed).
Show that we have

P(Xh < $17Xi2 < X9, -"aXim < Hj‘m) = P(Xi1 < I1)P(Xi2 < .Z‘Q)P(X < Jim)

tm —

for any (z1, ..., 2s,) € R™.
Hint: Consider Ay := {X;, <z — %,Xh < Z9,...,X;, < x,} and use the monotone
convergence theorem.

e Conclude that

P(le = Jfl,Xiz S Loy uey < l‘m) = P(X“ = xl)P(ng S Z‘Q)P(le S .I‘m)

i =
e Repeat your argument inductively to conclude.

Solution 8.5

(a) e Since Xy, ..., X,, are discrete, assume that X; is supported on {x{,z3,...}. Then,
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P(Xl g x17X2 = .’L'Q,...,Xn = ‘rn) = ZP(XI = x117X1 g x17X2 = $27'~~7Xn = xn)

i=1

- ZP(Xl = leaXZ =2, ..., Xp = xn)]]-:ﬂgwl
=1

=S | TIPX; =2)) | P(X1 =2} <y,
i=1 \j=2
m [ee]

=[] P(X;=2;)) P(X1 =2} 1,1,
j=2 i=1

e Similarly if we assume that

P(X; <z, X1 < @po1, X = 2y o0y Xpp = ) =
P(X1 S Il)...P(Xk_l S :Z?k_l)P(Xk = :Ek)P(Xn = In),

we assume that X}, is supported on {z%, x5, ...} and redo the computations:

P(X; <z1,Xe <oy, X <@gy Xbg1 = Tht1y ooy X = Tny)

o0
=Y P(Xy <z, X <@gy, Xpg S g, Xpg = 2F, Xi1 = 2pg1, 000y X = )

P
) k—1 m
=> P(X; < x;) II PXj=2)) | P(Xp = 2) 1,0 ey,
P

i=1 \j=1 j=k+1
k—1 m o]
= (X < xj) H P(X; = xj)ZP(Xk = )]]-Tf<xk
j=1 j=k+1 i=1
k-1 m
= 1P <ay) [ P(Xj=a)P(Xy <)

Jj=1 j=k+1
= P(X1 S xl)P(XQ S l‘g)P(Xk S :L’k)P(X]H_l = xk+1)P(Xn = l’n)

Thus, by induction we obtain the desired result.

(b) Now, we want to show that (1) implies (2). Fix {i1,....,in} = J C {1,...,n}, with strict
inclusion.

e For each k € Ny and (21, ..., 2,,) € R™, consider the measurable set
m

Ay = ﬂ{Xlﬁk} n ﬂ{XlJ ij}

14T j=1
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The sequence (Ag)xk>o is increasing with

o0 m
U Ak =A= m{Xij S l‘j}.
k=0 j=1

By the monotone convergence theorem,

P(A) = lim P(Ag)
k—o0
where

m

P(Ap) =[] P < k) x ] P(Xs, < 2y)

£J Jj=1
and limy_, o P(X; < k) = 1 using the same theorem. This implies that

m

lim P(A;) = [[ P(Xi, < ).

k—oo .
j=1
It follows that
P <ﬂ{Xi_7~ < xj]’) = HP(Xi_,» < zj),

i=1 j=1

or equivalently,
P(le S 1, ...,Iim S .Tm) = HP(X,] S $j).
i=1

e Now, let us focus on X; . As in the hint, we consider the measurable set By := {X;, <
T %,Xh < @9y, X;, <y} for k> 1.
The sequence (By)k>1 is increasing with

<z}

tm —

U By =B :={X; <z,X;, <x3,... X
k=1

By the monotone convergence theorem, limy_, o, P(By) = P(B). But

1
P(Bk) = P <X“ S Tr1 — %7Xi2 < o, ;sz S Im)

im S J"m)

1
=P (Xil S Ty — k) P(ng S .IZQ)P(X

and using the same theorem, limy_, ., P (XZ-1 <z — %) = P(X;, < z1). This implies
that

P(X11 < LIIl,XiQ < 1’2,...,X¢m < ZEm) = P(X“ < 1’1)P(X12 < 12)P(sz < l‘m)

as we wanted.
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e Now,

P(X;, =21, X5, <xa,.., X, <)
=P(X;, <x1,X;, <wa,....X;,, <ap) — P(Xy, <21,X4, <22y, Xy, < Ty
= P(X;, <x1)P(X;, <x9)..P(X;,, <) — P(X;, <21)P(X;, <29)..P(X
= [P(X;, <x1) — P(X;, <21)|P(Xi, <22)...P(X;, <)
= P(X;, = 21)P(X;, < x9)..P(X;,, <xn).

m —

< Tpp)

Tm

e Similarly, given the previous result, one can obtain by the monotone convergence
argument that

P(X“ < £C1,Xi2 < x2,Xi3 < Z’g...,Xim < .’Em) = P(.XVZ1 < .’El)P(XZ2 < .’ﬂz)]g()(l3 < $3)P(sz < l'm),

and therefore by taking a difference we get

P(AXV21 = $1,Xi2 = x2aXi3 S .’173,...,X < .’Em) = P(Xil = .’131)P<X22 = ,CCQ)P(XZ‘S S $3)~-~P(Xim S LEm)

AR
We can keep on going, and by an inductive argument we get eventually
m
P(Xu =T, 7sz = xm) = HP(XZ] = :L’j)

j=1

as we wanted.
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