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Probability and Statistics

Exercise sheet 8

Exercise 8.1

(a) Let X ∼ U([0, 1]). Compute E(Xn), E(X 1
n ) (n ≥ 1), and ΨX(t) = E[etX ] whenever it is

defined.

(b) Let X ∼ Beta(α, β), α > 0 and β > 0. Compute E(X) and var(X).
Hint: Use the “trick” that any density function f has to integrate to 1.

(c) Let X ∼ Exp(λ), for λ > 0. Compute the cdf of X and E(Xn) for n ≥ 1.
Remark: Watch out for the parametrisation - different sources may use different parametri-
sations. In the lectures we consider the density function of an Exp(λ)-distributed random
variable to be f(x) = λe−λx for x ≥ 0.

Solution 8.1

(a) For α > −1,

E(Xα) =
∫ 1

0
xαdx = 1

α+ 1 .

In particular,

E(Xn) = 1
n+ 1

and
E(X 1

n ) = n

n+ 1 .

Moreover,

ΨX(t) = E[etX ]

=
∫ 1

0
etxdx

= et − 1
t

for any t 6= 0, while ΨX(0) = 1.

(b) The density of X is

f(x) = xα−1(1− x)β−1

B(α, β) 1x∈(0,1)

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) is the beta function.

Thus,

1 / 11



Probability and Statistics, Spring 2019 Exercise sheet 8

E(X) =
∫ 1

0
x
xα−1(1− x)β−1

B(α, β) dx

=
∫ 1

0

xα(1− x)β−1

B(α, β) dx

= B(α+ 1, β)
B(α, β)

∫ 1

0

xα(1− x)β−1

B(α+ 1, β) dx

= B(α+ 1, β)
B(α, β)

= Γ(α+ 1)Γ(β)Γ(α+ β)
Γ(α)Γ(β)Γ(α+ β + 1)

= α

α+ β

(using the density “trick” and the formula for the beta function).

E(X2) =
∫ 1

0
x2x

α−1(1− x)β−1

B(α, β) dx

=
∫ 1

0

xα+1(1− x)β−1

B(α, β) dx

= B(α+ 2, β)
B(α, β)

∫ 1

0

xα+1(1− x)β−1

B(α+ 2, β) dx

= B(α+ 2, β)
B(α, β)

= Γ(α+ 2)Γ(β)Γ(α+ β)
Γ(α)Γ(β)Γ(α+ β + 2)

= α(α+ 1)
(α+ β)(α+ β + 1) .

Therefore we obtain

var(X) = E(X2)− E(X)2

= α(α+ 1)
(α+ β)(α+ β + 1) −

α2

(α+ β)2

= α3 + α2 + α2β + αβ − α3 − α2β − α2

(α+ β)2(α+ β + 1)

= αβ

(α+ β)2(α+ β + 1) .

(c) The density of X is

f(x) = λe−λx1x≥0.

For x > 0, we calculate ∫ x

0
λe−λxdx = 1− e−λx
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and therefore

F (x) =
{

0, x < 0
1− e−λx, x ≥ 0.

We also compute

E(Xn) =
∫ ∞

0
xnλe−λxdx

=
∫ ∞

0

yn

λn
λe−y

dy

λ
(y = λx)

= 1
λn

∫ ∞
0

yne−ydy

= Γ(n+ 1)
λn

= n!
λn

(using properties of the gamma function; alternatively one could integrate by parts).

Exercise 8.2 (Waiting time.)
An auto towing company services a 50 mile stretch of a highway. The company is located 20

miles from one end of the stretch. Breakdowns occur uniformly along the highway and the towing
trucks travel at a constant speed of 50mph. Find the mean and variance of the time elapsed between
the instant the company is called and a towing truck arrives.

Solution 8.2 Call the left endpoint of the 50 mile stretch zero, and let X be the number of miles
from the left endpoint that a breakdown occurs. Then X ∼ U[0, 50]. Assume that the towing
company is located 20 miles from the left endpoint, so that the distance Y of the breakdown from
the location of the towing company is Y = |X − 20|. It will take the truck Z = Y

50 = |X−20|
50 hours

to reach the location of the breakdown. We want the mean and variance of Z. First,

E(Z) = E

(
|X − 20|

50

)
= 1

50

∫ 50

0
|x− 20|f(x)dx = 1

502

∫ 50

0
|x− 20|dx

= 1
2500

∫ 20

0
(20− x)dx+

∫ 50

20
(x− 20)dx = 1

2500 [200 + 450] = 0.26h.

Next,

E(Z2) = 1
2500E[(X − 20)2] = 1

2500E[X2 − 40X + 400]

= 1
2500

1
50

∫ 50

0
(x2 − 40x+ 400)dx ≈ 0.0933,

and therefore

var(Z) = E(Z2)− E(Z)2 = 0.0933− 0.262 ≈ 0.0257.

(if one wanted the units, one could write var(Z) ≈ 0.0257h2).

Exercise 8.3 (Uniforms, uniforms...)
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(a) Consider a random variable X ∼ U
([
−π2 ,

π
2
])
. Find E(sin(X)) and var(sin(X)).

(b) The lengths of the sides of a triangle are X, 2X and 2.5X with X ∼ U([0, α]) for some α > 0.

• Find the mean and variance of its area.
Hint: Recall that if

s = a+ b+ c

2
with a, b, c the lengths, then the area of the triangle is

|∆| =
√
s(s− a)(s− b)(s− c)

(Heron’s formula).
• How should we choose α so that the mean area is ≥ 1?

(c) Take X1, ..., Xn to be iid∼ U([0, 1]). Let Mn = max(X1, ..., Xn). Find the cdf and pdf of Mn.
Can you recognise this distribution? What are E(Mn) and var(Mn)?

Solution 8.3

(a) We have

E(sin(X)) =
∫ π

2

−π2

sin(x)
π

dx

= 0

and

var(sin(X)) = E(sin(X)2) =
∫ π

2

−π2

sin(x)2

π
dx

=
∫ π

2

−π2

1− cos(2x)
2π dx

= 1
2 .

(b) The area of the triangle is given by Heron’s formula:

|∆| = X2√2.75× 0.25× 0.75× 1.75 = aX2

for a constant a ≈ 0.95.

• Note that if X ∼ U([0, α]), then Y = X
α ∼ U([0, 1]). Therefore,

E[|∆|] = E[aX2]
= aα2E[Y 2]

= aα2

3

as we found in question 1(a).
Moreover

E[|∆|2] = a2α4E[Y 4]

= a2α4

5
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also by question 1(a). Finally

var(|∆|) = E[|∆|2]− E[|∆|]2 = 4a2α4

45 .

• We need to ensure that

aα2

3 ≥ 1⇔ α ≥
√

3
a
≈ 1.78,

so this is the suitable value of α.

(c) We can easily compute the cdf: for x ∈ (0, 1),

FMn(x) = P (Mn ≤ x) = P (X1 ≤ x, ...,Xn ≤ x) = xn.

For general x,

FMn
(x) =

 0, x < 0,
xn, 0 ≤ x < 1,
1, 1 ≤ x.

Therefore, its density is

fMn(x) = nxn−1

on (0, 1) (0 otherwise).
We can recognise this as a particular case of a Beta distribution, Mn ∼ Beta(n, 1). Thus from
question 1(b),

E(Mn) = n

n+ 1
and

var(Mn) = n

(n+ 1)2(n+ 2) .

Exercise 8.4 (Quantile transformation.) Recall that for a given cdf F , the quantile tα of order
α ∈ (0, 1) is defined as

tα = inf{t : F (t) ≥ α} =: F−1(α).

F−1 denotes the generalised inverse of F . When the latter is bijective (at least in the neigh-
bourhood of tα), then F−1 is the inverse of F in the classical sense.

(a) Consider U ∼ U([0, 1]). Show that 1− U ∼ U([0, 1]).
Hint: Compute, for example, the cdf or the pdf of 1− U .

(b) Consider
X := − 1

λ
log(U)

(for ω : U(ω) = 0, take X(ω) = 0, say).
Find the cdf of X. Can you recognise this distribution?

(c) Now, consider the following problem: take a cdf F which is bijective when viewed as a map
F : (a, b)→ (0, 1), for some −∞ ≤ a < b ≤ +∞.
Define X = F−1(U), with U ∼ U([0, 1]).
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• Compute the cdf of X.
Hint: You may need to consider the cases a = −∞, a > −∞, b = +∞, b < +∞.
• Compute the pdf of X, assuming that F is C1 on (a, b) with F ′(x) > 0 ∀x ∈ (a, b).
• Can you make the link to (b)?

(d) Suppose you are given a numerical algorithm which enables you to generate a random number
from [0, 1]. You would like to generate a random number X which follows the Cauchy
distribution, i.e.

fX(x) = 1
π(1 + x2) , x ∈ R.

Can you propose a way to do that, based on your previous findings?

Solution 8.4

(a) For x ∈ (0, 1), it is clear that

P (1− U ≤ x) = P (U ≥ 1− x)
= P (U > 1− x)
= 1− P (U ≤ 1− x)
= 1− (1− x) = x

(using absolute continuity of U in the second line). For general x, note that 1− U cannot be
smaller than 0 or greater than 1, so

F1−U (x) =

 0, x < 0,
x, 0 ≤ x < 1,
1, 1 ≤ x.

So we conclude that 1− U ∼ U([0, 1]).

(b) Similarly we compute for x > 0:

P (X ≤ x) = P

(
− 1
λ

log(U) ≤ x
)

= P (log(U) ≥ −λx)
= P (U ≥ e−λx)
= P (U > e−λx)
= 1− e−λx.

and

FX(x) =
{

0, x < 0,
1− e−λx, 0 ≤ x.

Therefore X has an Exp(λ) distribution, by 1(c).

(c) • We calculate for x ∈ (a, b),

FX(x) = P (X ≤ x)
= P (F−1(U) ≤ x)
= P (U ≤ F (x)) (∗)
= F (x). (∗∗)
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(∗∗) holds since F (x) ∈ [0, 1]. (∗) requires more justification. By definition, for u ∈ (0, 1),

F−1(u) = tu = inf{t : F (t) ≥ u}.

Since F is non-decreasing and right-continuous, we can see that the set on the right-hand
side is a closed interval of the form [x0,+∞] for some x0, indeed we have

{t : F (t) ≥ u} = [tu,+∞).

Therefore,

x ≥ tu
⇔ x ∈ [tu,+∞) = {t : F (t) ≥ u}
⇔ F (x) ≥ u

Therefore, since U ∈ (0, 1) almost surely, the step (∗) is justified. We observe that X
has the cdf F , and moreover while we only wrote this for x ∈ (a, b), we can see that
F (x) = FX(x) = 0 on (−∞, a] and F (x) = FX(x) = 1 on [b,+∞). We conclude that X
and F−1(U) have the same cdf, which is F .

• If F is piecewise C1, then by the fundamental theorem of calculus,

F (x) =
∫ x

a

F ′(y)dy

so the density of F is f(x) = F ′(x).
• In (b) we defined

X = − 1
λ

log(U).

Note that an Exp(λ) random variable has a cdf F (x) = 1− e−λx on (0,+∞). Since F is
smooth and strictly increasing, we find the inverse by calculating

y = 1− e−λx ⇔ x = − 1
λ

log(1− y) = F−1(y).

Therefore, X = − 1
λ log(1− U) has an Exp(λ)-distribution. This is not exactly the same

as in (b), but since by (a), 1− U also has a U([0, 1]) distribution, we can replace U by
1− U in the expression above.

(d) Let U be the random number generated by the algorithm, with distribution U ∼ U([0, 1]).
For the Cauchy distribution, we can compute

F (x) =
∫ x

−∞

1
π(1 + y2)dy = 1

π

(π
2 + arctan(x)

)
and therefore by the previous parts, we can use the inverse

F−1(x) = tan
(
π

(
x− 1

2

))
to simulate a random variable X with a Cauchy distribution, namely by setting

X = F−1(U) = tan
(
π

(
U − 1

2

))
.

7 / 11



Probability and Statistics, Spring 2019 Exercise sheet 8

Exercise 8.5 (Optional.) Let X1, ..., Xn (for some n ≥ 2) be random variables defined on the
same probability space (Ω,A, P ). A necessary and sufficient condition for (mutual) independence
of X1, ..., Xn is that

P (X1 ≤ x1, ..., Xn ≤ xn) =
n∏
i=1

P (Xi ≤ xi) (1)

for any (x1, ..., xn) ∈ Rn.
The goal of this exercise is to show that when X1, ..., Xn are discrete, (1) is equivalent to

P (Xi1 = x1, ..., Xim = xm) =
m∏
j=1

P (Xij = xj) (2)

for any 1 ≤ m ≤ n and i1 < ... < im, (x1, ..., xm) ∈ Rm.

(a) Take m = n (in which case i1 = 1, i2 = 2, ..., im = n).

• Focus on X1 and show that (2) implies that for any (x1, ..., xn) ∈ Rn,

P (X1 ≤ x1, X2 = x2, ..., Xn = xn) = P (X1 ≤ x1)P (X2 = x2)...P (Xn = xn).

• Repeating this argument inductively, show that (1) holds.

(b) Now, we want to show that (1) implies (2). Fix {i1, ..., im} = J ⊂ {1, ..., n}, with strict
inclusion.

• Show that (1) implies that

P (Xi1 ≤ x1, ..., Xim ≤ xm) =
m∏
j=1

P (Xij ≤ xj).

Hint: You may want to take limits in (1) as xi → +∞ for i 6∈ J .
• Focus on i1 (hold the other events depending on i2, ..., im fixed).
Show that we have

P (Xi1 < x1, Xi2 ≤ x2, ..., Xim ≤ xm) = P (Xi1 < x1)P (Xi2 ≤ x2)...P (Xim ≤ xm)

for any (x1, ..., xm) ∈ Rm.
Hint: Consider Ak := {Xi1 ≤ x1 − 1

k , Xi2 ≤ x2, ..., Xim ≤ xm} and use the monotone
convergence theorem.

• Conclude that

P (Xi1 = x1, Xi2 ≤ x2, ..., Xim ≤ xm) = P (Xi1 = x1)P (Xi2 ≤ x2)...P (Xim ≤ xm).

• Repeat your argument inductively to conclude.

Solution 8.5

(a) • Since X1, ..., Xn are discrete, assume that X1 is supported on {x1
1, x

1
2, ...}. Then,
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P (X1 ≤ x1, X2 = x2, ..., Xn = xn) =
∞∑
i=1

P (X1 = x1
i , X1 ≤ x1, X2 = x2, ..., Xn = xn)

=
∞∑
i=1

P (X1 = x1
i , X2 = x2, ..., Xn = xn)1x1

i
≤x1

=
∞∑
i=1

 m∏
j=2

P (Xj = xj)

P (X1 = x1
i )1x1

i
≤x1

=
m∏
j=2

P (Xj = xj)
∞∑
i=1

P (X1 = x1
i )1x1

i
≤x1

=
m∏
j=2

P (Xj = xj)P (X1 ≤ x1)

= P (X1 ≤ x1)P (X2 = x2)...P (Xn = xn).

• Similarly if we assume that

P (X1 ≤ x1, ..., Xk−1 ≤ xk−1, Xk = xk, ..., Xn = xn) =
P (X1 ≤ x1)...P (Xk−1 ≤ xk−1)P (Xk = xk)...P (Xn = xn),

we assume that Xk is supported on {xk1 , xk2 , ...} and redo the computations:

P (X1 ≤ x1, X2 ≤ x2, ..., Xk ≤ xk, Xk+1 = xk+1, ..., Xn = xn)

=
∞∑
i=1

P (X1 ≤ x1, X2 ≤ x2, ..., Xk ≤ xk, Xk = xki , Xk+1 = xk+1, ..., Xn = xn)

=
∞∑
i=1

P (X1 ≤ x1, X2 ≤ x2, ..., Xk = xki , Xk+1 = xk+1, ..., Xn = xn)1xk
i
≤xk

=
∞∑
i=1

k−1∏
j=1

P (Xj ≤ xj)

 m∏
j=k+1

P (Xj = xj)

P (Xk = xki )1xk
i
≤xk

=
k−1∏
j=1

P (Xj ≤ xj)
m∏

j=k+1
P (Xj = xj)

∞∑
i=1

P (Xk = xki )1xk
i
≤xk

=
k−1∏
j=1

P (Xj ≤ xj)
m∏

j=k+1
P (Xj = xj)P (Xk ≤ xk)

= P (X1 ≤ x1)P (X2 ≤ x2)...P (Xk ≤ xk)P (Xk+1 = xk+1)...P (Xn = xn).

Thus, by induction we obtain the desired result.

(b) Now, we want to show that (1) implies (2). Fix {i1, ..., im} = J ⊂ {1, ..., n}, with strict
inclusion.

• For each k ∈ N0 and (x1, ..., xm) ∈ Rm, consider the measurable set

Ak :=

⋂
l 6=J
{Xl ≤ k}

 ∩
 m⋂
j=1
{Xij ≤ xj}

 .
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The sequence (Ak)k≥0 is increasing with

∞⋃
k=0

Ak = A =
m⋂
j=1
{Xij ≤ xj}.

By the monotone convergence theorem,

P (A) = lim
k→∞

P (Ak)

where

P (Ak) =
∏
l 6=J

P (Xl ≤ k)×
m∏
j=1

P (Xij ≤ xj)

and limk→∞ P (Xl ≤ k) = 1 using the same theorem. This implies that

lim
k→∞

P (Ak) =
m∏
j=1

P (Xij ≤ xj).

It follows that

P

(
m⋂
i=1
{Xij ≤ xj}

)
=

m∏
j=1

P (Xij ≤ xj),

or equivalently,

P (Xi1 ≤ x1, ..., xim ≤ xm) =
m∏
i=1

P (Xij ≤ xj).

• Now, let us focus on Xi1 . As in the hint, we consider the measurable set Bk := {Xi1 ≤
x1 − 1

k , Xi2 ≤ x2, ..., Xim ≤ xm} for k ≥ 1.
The sequence (Bk)k≥1 is increasing with

∞⋃
k=1

Bk = B := {Xi1 < x1, Xi2 ≤ x2, ..., Xim ≤ xm}.

By the monotone convergence theorem, limk→∞ P (Bk) = P (B). But

P (Bk) = P

(
Xi1 ≤ x1 −

1
k
,Xi2 ≤ x2, ..., Xim ≤ xm

)
= P

(
Xi1 ≤ x1 −

1
k

)
P (Xi2 ≤ x2)...P (Xim ≤ xm)

and using the same theorem, limk→∞ P
(
Xi1 ≤ x1 − 1

k

)
= P (Xi1 < x1). This implies

that

P (Xi1 < x1, Xi2 ≤ x2, ..., Xim ≤ xm) = P (Xi1 < x1)P (Xi2 ≤ x2)...P (Xim ≤ xm)

as we wanted.
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• Now,

P (Xi1 = x1, Xi2 ≤ x2, ..., Xim ≤ xm)
= P (Xi1 ≤ x1, Xi2 ≤ x2, ..., Xim ≤ xm)− P (Xi1 < x1, Xi2 ≤ x2, ..., Xim ≤ xm)
= P (Xi1 ≤ x1)P (Xi2 ≤ x2)...P (Xim ≤ xm)− P (Xi1 < x1)P (Xi2 ≤ x2)...P (Xim ≤ xm)
= [P (Xi1 ≤ x1)− P (Xi1 < x1)]P (Xi2 ≤ x2)...P (Xim ≤ xm)
= P (Xi1 = x1)P (Xi2 ≤ x2)...P (Xim ≤ xm).

• Similarly, given the previous result, one can obtain by the monotone convergence
argument that

P (Xi1 < x1, Xi2 < x2, Xi3 ≤ x3..., Xim ≤ xm) = P (Xi1 < x1)P (Xi2 < x2)P (Xi3 ≤ x3)...P (Xim ≤ xm),

and therefore by taking a difference we get

P (Xi1 = x1, Xi2 = x2, Xi3 ≤ x3, ..., Xim ≤ xm) = P (Xi1 = x1)P (Xi2 = x2)P (Xi3 ≤ x3)...P (Xim ≤ xm).

We can keep on going, and by an inductive argument we get eventually

P (Xi1 = x1, ..., Xim = xm) =
m∏
j=1

P (Xij = xj)

as we wanted.
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