Probability and Statistics

Exercise sheet 8

Exercise 8.1

(a) Let $X \sim \mathrm{U}([0,1])$. Compute $E\left(X^{n}\right), E\left(X^{\frac{1}{n}}\right)(n \geq 1)$, and $\Psi_{X}(t)=E\left[e^{t X}\right]$ whenever it is defined.
(b) Let $X \sim \operatorname{Beta}(\alpha, \beta), \alpha>0$ and $\beta>0$. Compute $E(X)$ and $\operatorname{var}(X)$.

Hint: Use the "trick" that any density function f has to integrate to 1.
(c) Let $X \sim \operatorname{Exp}(\lambda)$, for $\lambda>0$. Compute the cdf of X and $E\left(X^{n}\right)$ for $n \geq 1$.

Remark: Watch out for the parametrisation - different sources may use different parametrisations. In the lectures we consider the density function of an $\operatorname{Exp}(\lambda)$-distributed random variable to be $f(x)=\lambda e^{-\lambda x}$ for $x \geq 0$.

Solution 8.1

(a) For $\alpha>-1$,

$$
E\left(X^{\alpha}\right)=\int_{0}^{1} x^{\alpha} d x=\frac{1}{\alpha+1} .
$$

In particular,

$$
E\left(X^{n}\right)=\frac{1}{n+1}
$$

and

$$
E\left(X^{\frac{1}{n}}\right)=\frac{n}{n+1} .
$$

Moreover,

$$
\begin{aligned}
\Psi_{X}(t) & =E\left[e^{t X}\right] \\
& =\int_{0}^{1} e^{t x} d x \\
& =\frac{e^{t}-1}{t}
\end{aligned}
$$

for any $t \neq 0$, while $\Psi_{X}(0)=1$.
(b) The density of X is

$$
f(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)} \mathbb{1}_{x \in(0,1)}
$$

where $B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ is the beta function.
Thus,

$$
\begin{aligned}
E(X) & =\int_{0}^{1} x \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)} d x \\
& =\int_{0}^{1} \frac{x^{\alpha}(1-x)^{\beta-1}}{B(\alpha, \beta)} d x \\
& =\frac{B(\alpha+1, \beta)}{B(\alpha, \beta)} \int_{0}^{1} \frac{x^{\alpha}(1-x)^{\beta-1}}{B(\alpha+1, \beta)} d x \\
& =\frac{B(\alpha+1, \beta)}{B(\alpha, \beta)} \\
& =\frac{\Gamma(\alpha+1) \Gamma(\beta) \Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\alpha+\beta+1)} \\
& =\frac{\alpha}{\alpha+\beta}
\end{aligned}
$$

(using the density "trick" and the formula for the beta function).

$$
\begin{aligned}
E\left(X^{2}\right) & =\int_{0}^{1} x^{2} \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)} d x \\
& =\int_{0}^{1} \frac{x^{\alpha+1}(1-x)^{\beta-1}}{B(\alpha, \beta)} d x \\
& =\frac{B(\alpha+2, \beta)}{B(\alpha, \beta)} \int_{0}^{1} \frac{x^{\alpha+1}(1-x)^{\beta-1}}{B(\alpha+2, \beta)} d x \\
& =\frac{B(\alpha+2, \beta)}{B(\alpha, \beta)} \\
& =\frac{\Gamma(\alpha+2) \Gamma(\beta) \Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\alpha+\beta+2)} \\
& =\frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)} .
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
\operatorname{var}(X) & =E\left(X^{2}\right)-E(X)^{2} \\
& =\frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)}-\frac{\alpha^{2}}{(\alpha+\beta)^{2}} \\
& =\frac{\alpha^{3}+\alpha^{2}+\alpha^{2} \beta+\alpha \beta-\alpha^{3}-\alpha^{2} \beta-\alpha^{2}}{(\alpha+\beta)^{2}(\alpha+\beta+1)} \\
& =\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
\end{aligned}
$$

(c) The density of X is

$$
f(x)=\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}
$$

For $x>0$, we calculate

$$
\int_{0}^{x} \lambda e^{-\lambda x} d x=1-e^{-\lambda x}
$$

and therefore

$$
F(x)=\left\{\begin{array}{cc}
0, & x<0 \\
1-e^{-\lambda x}, & x \geq 0
\end{array}\right.
$$

We also compute

$$
\begin{aligned}
E\left(X^{n}\right) & =\int_{0}^{\infty} x^{n} \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} \frac{y^{n}}{\lambda^{n}} \lambda e^{-y} \frac{d y}{\lambda} \quad(y=\lambda x) \\
& =\frac{1}{\lambda^{n}} \int_{0}^{\infty} y^{n} e^{-y} d y \\
& =\frac{\Gamma(n+1)}{\lambda^{n}} \\
& =\frac{n!}{\lambda^{n}}
\end{aligned}
$$

(using properties of the gamma function; alternatively one could integrate by parts).

Exercise 8.2 (Waiting time.)

An auto towing company services a 50 mile stretch of a highway. The company is located 20 miles from one end of the stretch. Breakdowns occur uniformly along the highway and the towing trucks travel at a constant speed of 50 mph . Find the mean and variance of the time elapsed between the instant the company is called and a towing truck arrives.

Solution 8.2 Call the left endpoint of the 50 mile stretch zero, and let X be the number of miles from the left endpoint that a breakdown occurs. Then $X \sim \mathrm{U}[0,50]$. Assume that the towing company is located 20 miles from the left endpoint, so that the distance Y of the breakdown from the location of the towing company is $Y=|X-20|$. It will take the truck $Z=\frac{Y}{50}=\frac{|X-20|}{50}$ hours to reach the location of the breakdown. We want the mean and variance of Z. First,

$$
\begin{aligned}
E(Z) & =E\left(\frac{|X-20|}{50}\right)=\frac{1}{50} \int_{0}^{50}|x-20| f(x) d x=\frac{1}{50^{2}} \int_{0}^{50}|x-20| d x \\
& =\frac{1}{2500} \int_{0}^{20}(20-x) d x+\int_{20}^{50}(x-20) d x=\frac{1}{2500}[200+450]=0.26 h
\end{aligned}
$$

Next,

$$
\begin{aligned}
E\left(Z^{2}\right) & =\frac{1}{2500} E\left[(X-20)^{2}\right]=\frac{1}{2500} E\left[X^{2}-40 X+400\right] \\
& =\frac{1}{2500} \frac{1}{50} \int_{0}^{50}\left(x^{2}-40 x+400\right) d x \approx 0.0933
\end{aligned}
$$

and therefore

$$
\operatorname{var}(Z)=E\left(Z^{2}\right)-E(Z)^{2}=0.0933-0.26^{2} \approx 0.0257
$$

(if one wanted the units, one could write $\operatorname{var}(Z) \approx 0.0257 h^{2}$).
Exercise 8.3 (Uniforms, uniforms...)
(a) Consider a random variable $X \sim \mathrm{U}\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right)$. Find $E(\sin (X))$ and $\operatorname{var}(\sin (X))$.
(b) The lengths of the sides of a triangle are $X, 2 X$ and $2.5 X$ with $X \sim \mathrm{U}([0, \alpha])$ for some $\alpha>0$.

- Find the mean and variance of its area.

Hint: Recall that if

$$
s=\frac{a+b+c}{2}
$$

with a, b, c the lengths, then the area of the triangle is

$$
|\Delta|=\sqrt{s(s-a)(s-b)(s-c)}
$$

(Heron's formula).

- How should we choose α so that the mean area is ≥ 1 ?
(c) Take X_{1}, \ldots, X_{n} to be $\stackrel{\text { iid }}{\sim} \mathrm{U}([0,1])$. Let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$. Find the cdf and pdf of M_{n}. Can you recognise this distribution? What are $E\left(M_{n}\right)$ and $\operatorname{var}\left(M_{n}\right)$?

Solution 8.3

(a) We have

$$
\begin{aligned}
E(\sin (X)) & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin (x)}{\pi} d x \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{var}(\sin (X))=E\left(\sin (X)^{2}\right) & =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin (x)^{2}}{\pi} d x \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1-\cos (2 x)}{2 \pi} d x \\
& =\frac{1}{2}
\end{aligned}
$$

(b) The area of the triangle is given by Heron's formula:

$$
|\Delta|=X^{2} \sqrt{2.75 \times 0.25 \times 0.75 \times 1.75}=a X^{2}
$$

for a constant $a \approx 0.95$.

- Note that if $X \sim \mathrm{U}([0, \alpha])$, then $Y=\frac{X}{\alpha} \sim \mathrm{U}([0,1])$. Therefore,

$$
\begin{aligned}
E[|\Delta|] & =E\left[a X^{2}\right] \\
& =a \alpha^{2} E\left[Y^{2}\right] \\
& =\frac{a \alpha^{2}}{3}
\end{aligned}
$$

as we found in question 1(a).
Moreover

$$
\begin{aligned}
E\left[|\Delta|^{2}\right] & =a^{2} \alpha^{4} E\left[Y^{4}\right] \\
& =\frac{a^{2} \alpha^{4}}{5}
\end{aligned}
$$

also by question 1(a). Finally

$$
\operatorname{var}(|\Delta|)=E\left[|\Delta|^{2}\right]-E[|\Delta|]^{2}=\frac{4 a^{2} \alpha^{4}}{45}
$$

- We need to ensure that

$$
\frac{a \alpha^{2}}{3} \geq 1 \Leftrightarrow \alpha \geq \sqrt{\frac{3}{a}} \approx 1.78
$$

so this is the suitable value of α.
(c) We can easily compute the cdf: for $x \in(0,1)$,

$$
F_{M_{n}}(x)=P\left(M_{n} \leq x\right)=P\left(X_{1} \leq x, \ldots, X_{n} \leq x\right)=x^{n}
$$

For general x,

$$
F_{M_{n}}(x)=\left\{\begin{array}{cc}
0, & x<0 \\
x^{n}, & 0 \leq x<1 \\
1, & 1 \leq x
\end{array}\right.
$$

Therefore, its density is

$$
f_{M_{n}}(x)=n x^{n-1}
$$

on $(0,1)$ (0 otherwise).
We can recognise this as a particular case of a Beta distribution, $M_{n} \sim \operatorname{Beta}(n, 1)$. Thus from question 1(b),

$$
E\left(M_{n}\right)=\frac{n}{n+1}
$$

and

$$
\operatorname{var}\left(M_{n}\right)=\frac{n}{(n+1)^{2}(n+2)}
$$

Exercise 8.4 (Quantile transformation.) Recall that for a given $\operatorname{cdf} F$, the quantile t_{α} of order $\alpha \in(0,1)$ is defined as

$$
t_{\alpha}=\inf \{t: F(t) \geq \alpha\}=: F^{-1}(\alpha)
$$

F^{-1} denotes the generalised inverse of F. When the latter is bijective (at least in the neighbourhood of t_{α}), then F^{-1} is the inverse of F in the classical sense.
(a) Consider $U \sim \mathrm{U}([0,1])$. Show that $1-U \sim \mathrm{U}([0,1])$.

Hint: Compute, for example, the cdf or the pdf of $1-U$.
(b) Consider

$$
X:=-\frac{1}{\lambda} \log (U)
$$

(for $\omega: U(\omega)=0$, take $X(\omega)=0$, say).
Find the cdf of X. Can you recognise this distribution?
(c) Now, consider the following problem: take a cdf F which is bijective when viewed as a map $F:(a, b) \rightarrow(0,1)$, for some $-\infty \leq a<b \leq+\infty$.
Define $X=F^{-1}(U)$, with $U \sim \mathrm{U}([0,1])$.

- Compute the cdf of X.

Hint: You may need to consider the cases $a=-\infty, a>-\infty, b=+\infty, b<+\infty$.

- Compute the pdf of X, assuming that F is C^{1} on (a, b) with $F^{\prime}(x)>0 \forall x \in(a, b)$.
- Can you make the link to (b)?
(d) Suppose you are given a numerical algorithm which enables you to generate a random number from $[0,1]$. You would like to generate a random number X which follows the Cauchy distribution, i.e.

$$
f_{X}(x)=\frac{1}{\pi\left(1+x^{2}\right)}, x \in \mathbb{R}
$$

Can you propose a way to do that, based on your previous findings?

Solution 8.4

(a) For $x \in(0,1)$, it is clear that

$$
\begin{aligned}
P(1-U \leq x) & =P(U \geq 1-x) \\
& =P(U>1-x) \\
& =1-P(U \leq 1-x) \\
& =1-(1-x)=x
\end{aligned}
$$

(using absolute continuity of U in the second line). For general x, note that $1-U$ cannot be smaller than 0 or greater than 1 , so

$$
F_{1-U}(x)=\left\{\begin{array}{lc}
0, & x<0, \\
x, & 0 \leq x<1, \\
1, & 1 \leq x .
\end{array}\right.
$$

So we conclude that $1-U \sim \mathrm{U}([0,1])$.
(b) Similarly we compute for $x>0$:

$$
\begin{aligned}
P(X \leq x) & =P\left(-\frac{1}{\lambda} \log (U) \leq x\right) \\
& =P(\log (U) \geq-\lambda x) \\
& =P\left(U \geq e^{-\lambda x}\right) \\
& =P\left(U>e^{-\lambda x}\right) \\
& =1-e^{-\lambda x} .
\end{aligned}
$$

and

$$
F_{X}(x)=\left\{\begin{array}{cc}
0, & x<0, \\
1-e^{-\lambda x}, & 0 \leq x .
\end{array}\right.
$$

Therefore X has an $\operatorname{Exp}(\lambda)$ distribution, by 1(c).
(c) - We calculate for $x \in(a, b)$,

$$
\begin{align*}
F_{X}(x) & =P(X \leq x) \\
& =P\left(F^{-1}(U) \leq x\right) \\
& =P(U \leq F(x)) \tag{*}\\
& =F(x) . \tag{**}
\end{align*}
$$

$(* *)$ holds since $F(x) \in[0,1] .(*)$ requires more justification. By definition, for $u \in(0,1)$,

$$
F^{-1}(u)=t_{u}=\inf \{t: F(t) \geq u\} .
$$

Since F is non-decreasing and right-continuous, we can see that the set on the right-hand side is a closed interval of the form $\left[x_{0},+\infty\right]$ for some x_{0}, indeed we have

$$
\{t: F(t) \geq u\}=\left[t_{u},+\infty\right)
$$

Therefore,

$$
\begin{aligned}
& x \geq t_{u} \\
& \Leftrightarrow x \in\left[t_{u},+\infty\right)=\{t: F(t) \geq u\} \\
& \Leftrightarrow F(x) \geq u
\end{aligned}
$$

Therefore, since $U \in(0,1)$ almost surely, the step $(*)$ is justified. We observe that X has the $\operatorname{cdf} F$, and moreover while we only wrote this for $x \in(a, b)$, we can see that $F(x)=F_{X}(x)=0$ on $(-\infty, a]$ and $F(x)=F_{X}(x)=1$ on $[b,+\infty)$. We conclude that X and $F^{-1}(U)$ have the same cdf, which is F.

- If F is piecewise C^{1}, then by the fundamental theorem of calculus,

$$
F(x)=\int_{a}^{x} F^{\prime}(y) d y
$$

so the density of F is $f(x)=F^{\prime}(x)$.

- In (b) we defined

$$
X=-\frac{1}{\lambda} \log (U)
$$

Note that an $\operatorname{Exp}(\lambda)$ random variable has a $\operatorname{cdf} F(x)=1-e^{-\lambda x}$ on $(0,+\infty)$. Since F is smooth and strictly increasing, we find the inverse by calculating

$$
y=1-e^{-\lambda x} \Leftrightarrow x=-\frac{1}{\lambda} \log (1-y)=F^{-1}(y) .
$$

Therefore, $X=-\frac{1}{\lambda} \log (1-U)$ has an $\operatorname{Exp}(\lambda)$-distribution. This is not exactly the same as in (b), but since by (a), $1-U$ also has a $\mathrm{U}([0,1])$ distribution, we can replace U by $1-U$ in the expression above.
(d) Let U be the random number generated by the algorithm, with distribution $U \sim \mathrm{U}([0,1])$. For the Cauchy distribution, we can compute

$$
F(x)=\int_{-\infty}^{x} \frac{1}{\pi\left(1+y^{2}\right)} d y=\frac{1}{\pi}\left(\frac{\pi}{2}+\arctan (x)\right)
$$

and therefore by the previous parts, we can use the inverse

$$
F^{-1}(x)=\tan \left(\pi\left(x-\frac{1}{2}\right)\right)
$$

to simulate a random variable X with a Cauchy distribution, namely by setting

$$
X=F^{-1}(U)=\tan \left(\pi\left(U-\frac{1}{2}\right)\right) .
$$

Exercise 8.5 (Optional.) Let X_{1}, \ldots, X_{n} (for some $n \geq 2$) be random variables defined on the same probability space (Ω, \mathcal{A}, P). A necessary and sufficient condition for (mutual) independence of X_{1}, \ldots, X_{n} is that

$$
\begin{equation*}
P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \leq x_{i}\right) \tag{1}
\end{equation*}
$$

for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
The goal of this exercise is to show that when X_{1}, \ldots, X_{n} are discrete, (1) is equivalent to

$$
\begin{equation*}
P\left(X_{i_{1}}=x_{1}, \ldots, X_{i_{m}}=x_{m}\right)=\prod_{j=1}^{m} P\left(X_{i_{j}}=x_{j}\right) \tag{2}
\end{equation*}
$$

for any $1 \leq m \leq n$ and $i_{1}<\ldots<i_{m},\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$.
(a) Take $m=n$ (in which case $i_{1}=1, i_{2}=2, \ldots, i_{m}=n$).

- Focus on X_{1} and show that (2) implies that for any $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$,

$$
P\left(X_{1} \leq x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=P\left(X_{1} \leq x_{1}\right) P\left(X_{2}=x_{2}\right) \ldots P\left(X_{n}=x_{n}\right)
$$

- Repeating this argument inductively, show that (1) holds.
(b) Now, we want to show that (1) implies (2). Fix $\left\{i_{1}, \ldots, i_{m}\right\}=\mathcal{J} \subset\{1, \ldots, n\}$, with strict inclusion.
- Show that (1) implies that

$$
P\left(X_{i_{1}} \leq x_{1}, \ldots, X_{i_{m}} \leq x_{m}\right)=\prod_{j=1}^{m} P\left(X_{i_{j}} \leq x_{j}\right)
$$

Hint: You may want to take limits in (1) as $x_{i} \rightarrow+\infty$ for $i \notin \mathcal{J}$.

- Focus on i_{1} (hold the other events depending on i_{2}, \ldots, i_{m} fixed).

Show that we have

$$
P\left(X_{i_{1}}<x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right)=P\left(X_{i_{1}}<x_{1}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
$$

for any $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$.
Hint: Consider $A_{k}:=\left\{X_{i_{1}} \leq x_{1}-\frac{1}{k}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right\}$ and use the monotone convergence theorem.

- Conclude that

$$
P\left(X_{i_{1}}=x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right)=P\left(X_{i_{1}}=x_{1}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
$$

- Repeat your argument inductively to conclude.

Solution 8.5

(a) - Since X_{1}, \ldots, X_{n} are discrete, assume that X_{1} is supported on $\left\{x_{1}^{1}, x_{2}^{1}, \ldots\right\}$. Then,

$$
\begin{aligned}
P\left(X_{1} \leq x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) & =\sum_{i=1}^{\infty} P\left(X_{1}=x_{i}^{1}, X_{1} \leq x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \\
& =\sum_{i=1}^{\infty} P\left(X_{1}=x_{i}^{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right) \mathbb{1}_{x_{i}^{1} \leq x_{1}} \\
& =\sum_{i=1}^{\infty}\left(\prod_{j=2}^{m} P\left(X_{j}=x_{j}\right)\right) P\left(X_{1}=x_{i}^{1}\right) \mathbb{1}_{x_{i}^{1} \leq x_{1}} \\
& =\prod_{j=2}^{m} P\left(X_{j}=x_{j}\right) \sum_{i=1}^{\infty} P\left(X_{1}=x_{i}^{1}\right) \mathbb{1}_{x_{i}^{1} \leq x_{1}} \\
& =\prod_{j=2}^{m} P\left(X_{j}=x_{j}\right) P\left(X_{1} \leq x_{1}\right) \\
& =P\left(X_{1} \leq x_{1}\right) P\left(X_{2}=x_{2}\right) \ldots P\left(X_{n}=x_{n}\right) .
\end{aligned}
$$

- Similarly if we assume that

$$
\begin{aligned}
& P\left(X_{1} \leq x_{1}, \ldots, X_{k-1} \leq x_{k-1}, X_{k}=x_{k}, \ldots, X_{n}=x_{n}\right)= \\
& P\left(X_{1} \leq x_{1}\right) \ldots P\left(X_{k-1} \leq x_{k-1}\right) P\left(X_{k}=x_{k}\right) \ldots P\left(X_{n}=x_{n}\right)
\end{aligned}
$$

we assume that X_{k} is supported on $\left\{x_{1}^{k}, x_{2}^{k}, \ldots\right\}$ and redo the computations:

$$
\begin{aligned}
& P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{k} \leq x_{k}, X_{k+1}=x_{k+1}, \ldots, X_{n}=x_{n}\right) \\
= & \sum_{i=1}^{\infty} P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{k} \leq x_{k}, X_{k}=x_{i}^{k}, X_{k+1}=x_{k+1}, \ldots, X_{n}=x_{n}\right) \\
= & \sum_{i=1}^{\infty} P\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{k}=x_{i}^{k}, X_{k+1}=x_{k+1}, \ldots, X_{n}=x_{n}\right) \mathbb{1}_{x_{i}^{k} \leq x_{k}} \\
= & \sum_{i=1}^{\infty}\left(\prod_{j=1}^{k-1} P\left(X_{j} \leq x_{j}\right)\right)\left(\prod_{j=k+1}^{m} P\left(X_{j}=x_{j}\right)\right) P\left(X_{k}=x_{i}^{k}\right) \mathbb{1}_{x_{i}^{k} \leq x_{k}} \\
= & \prod_{j=1}^{k-1} P\left(X_{j} \leq x_{j}\right) \prod_{j=k+1}^{m} P\left(X_{j}=x_{j}\right) \sum_{i=1}^{\infty} P\left(X_{k}=x_{i}^{k}\right) \mathbb{1}_{x_{i}^{k} \leq x_{k}} \\
= & \prod_{j=1}^{k-1} P\left(X_{j} \leq x_{j}\right) \prod_{j=k+1}^{m} P\left(X_{j}=x_{j}\right) P\left(X_{k} \leq x_{k}\right) \\
= & P\left(X_{1} \leq x_{1}\right) P\left(X_{2} \leq x_{2}\right) \ldots P\left(X_{k} \leq x_{k}\right) P\left(X_{k+1}=x_{k+1}\right) \ldots P\left(X_{n}=x_{n}\right) .
\end{aligned}
$$

Thus, by induction we obtain the desired result.
(b) Now, we want to show that (1) implies (2). Fix $\left\{i_{1}, \ldots, i_{m}\right\}=\mathcal{J} \subset\{1, \ldots, n\}$, with strict inclusion.

- For each $k \in \mathbb{N}_{0}$ and $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$, consider the measurable set

$$
A_{k}:=\left(\bigcap_{l \neq \mathcal{J}}\left\{X_{l} \leq k\right\}\right) \cap\left(\bigcap_{j=1}^{m}\left\{X_{i_{j}} \leq x_{j}\right\}\right)
$$

The sequence $\left(A_{k}\right)_{k \geq 0}$ is increasing with

$$
\bigcup_{k=0}^{\infty} A_{k}=A=\bigcap_{j=1}^{m}\left\{X_{i_{j}} \leq x_{j}\right\}
$$

By the monotone convergence theorem,

$$
P(A)=\lim _{k \rightarrow \infty} P\left(A_{k}\right)
$$

where

$$
P\left(A_{k}\right)=\prod_{l \neq \mathcal{J}} P\left(X_{l} \leq k\right) \times \prod_{j=1}^{m} P\left(X_{i_{j}} \leq x_{j}\right)
$$

and $\lim _{k \rightarrow \infty} P\left(X_{l} \leq k\right)=1$ using the same theorem. This implies that

$$
\lim _{k \rightarrow \infty} P\left(A_{k}\right)=\prod_{j=1}^{m} P\left(X_{i_{j}} \leq x_{j}\right)
$$

It follows that

$$
P\left(\bigcap_{i=1}^{m}\left\{X_{i_{j}} \leq x_{j}\right\}\right)=\prod_{j=1}^{m} P\left(X_{i_{j}} \leq x_{j}\right)
$$

or equivalently,

$$
P\left(X_{i_{1}} \leq x_{1}, \ldots, x_{i_{m}} \leq x_{m}\right)=\prod_{i=1}^{m} P\left(X_{i_{j}} \leq x_{j}\right)
$$

- Now, let us focus on $X_{i_{1}}$. As in the hint, we consider the measurable set $B_{k}:=\left\{X_{i_{1}} \leq\right.$ $\left.x_{1}-\frac{1}{k}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right\}$ for $k \geq 1$.
The sequence $\left(B_{k}\right)_{k \geq 1}$ is increasing with

$$
\bigcup_{k=1}^{\infty} B_{k}=B:=\left\{X_{i_{1}}<x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right\}
$$

By the monotone convergence theorem, $\lim _{k \rightarrow \infty} P\left(B_{k}\right)=P(B)$. But

$$
\begin{aligned}
P\left(B_{k}\right) & =P\left(X_{i_{1}} \leq x_{1}-\frac{1}{k}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right) \\
& =P\left(X_{i_{1}} \leq x_{1}-\frac{1}{k}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
\end{aligned}
$$

and using the same theorem, $\lim _{k \rightarrow \infty} P\left(X_{i_{1}} \leq x_{1}-\frac{1}{k}\right)=P\left(X_{i_{1}}<x_{1}\right)$. This implies that

$$
P\left(X_{i_{1}}<x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right)=P\left(X_{i_{1}}<x_{1}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
$$

as we wanted.

- Now,

$$
\begin{aligned}
& P\left(X_{i_{1}}=x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right) \\
= & P\left(X_{i_{1}} \leq x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right)-P\left(X_{i_{1}}<x_{1}, X_{i_{2}} \leq x_{2}, \ldots, X_{i_{m}} \leq x_{m}\right) \\
= & P\left(X_{i_{1}} \leq x_{1}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)-P\left(X_{i_{1}}<x_{1}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right) \\
= & {\left[P\left(X_{i_{1}} \leq x_{1}\right)-P\left(X_{i_{1}}<x_{1}\right)\right] P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right) } \\
= & P\left(X_{i_{1}}=x_{1}\right) P\left(X_{i_{2}} \leq x_{2}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
\end{aligned}
$$

- Similarly, given the previous result, one can obtain by the monotone convergence argument that

$$
P\left(X_{i_{1}}<x_{1}, X_{i_{2}}<x_{2}, X_{i_{3}} \leq x_{3} \ldots, X_{i_{m}} \leq x_{m}\right)=P\left(X_{i_{1}}<x_{1}\right) P\left(X_{i_{2}}<x_{2}\right) P\left(X_{i_{3}} \leq x_{3}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
$$

and therefore by taking a difference we get

$$
P\left(X_{i_{1}}=x_{1}, X_{i_{2}}=x_{2}, X_{i_{3}} \leq x_{3}, \ldots, X_{i_{m}} \leq x_{m}\right)=P\left(X_{i_{1}}=x_{1}\right) P\left(X_{i_{2}}=x_{2}\right) P\left(X_{i_{3}} \leq x_{3}\right) \ldots P\left(X_{i_{m}} \leq x_{m}\right)
$$

We can keep on going, and by an inductive argument we get eventually

$$
P\left(X_{i_{1}}=x_{1}, \ldots, X_{i_{m}}=x_{m}\right)=\prod_{j=1}^{m} P\left(X_{i_{j}}=x_{j}\right)
$$

as we wanted.

