FORMULAE SHEET

for
Probability and Statistics
Spring 2019

1 Standard discrete distributions

1. Bernoulli distribution
$X \sim \operatorname{Ber}(p)(p \in(0,1))$. Then, the pmf is given by

$$
p_{X}(x)=\left\{\begin{array}{cc}
p, & x=1 \\
1-p, & x=0
\end{array}=p^{x}(1-p)^{1-x} .\right.
$$

X satisfies: $E(X)=p, \operatorname{var}(X)=p(1-p)$.
2. Binomial distribution
$X \sim \operatorname{Bin}(n, p)(n \in \mathbb{N}, p \in(0,1))$. Then, the pmf is given by

$$
p_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x \in\{0,1, \ldots, n\} .
$$

X satisfies: $E(X)=n p, \operatorname{var}(X)=n p(1-p)$.
3. Geometric distribution
$X \sim \operatorname{Geo}(p)(p \in(0,1))$. Then, the pmf is given by

$$
p_{X}(x)=(1-p)^{x-1} p, \quad x \in\{1,2, \ldots\}
$$

X satisfies: $E(X)=\frac{1}{p}, \operatorname{var}(X)=\frac{1-p}{p^{2}}$.

4. Poisson distribution

$X \sim \operatorname{Poi}(\lambda)(\lambda>0)$. Then, the pmf is given by

$$
p_{X}(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x \in\{0,1,2, \ldots\} .
$$

X satisfies: $E(X)=\lambda, \operatorname{var}(X)=\lambda$.

5. Discrete uniform distribution

$X \sim \operatorname{Unif}\{a, a+1, \ldots, b\}(a \leq b$ integers $)$. Then, the pmf is given by

$$
p_{X}(x)=\frac{1}{b-a+1} \quad x \in\{a, a+1, \ldots, b\}
$$

X satisfies: $E(X)=\frac{a+b}{2}, \operatorname{var}(X)=\frac{(b-a+1)^{2}-1}{12}$.
For $a=1$ and $b=N \geq 1$ an integer: $E(X)=\frac{N+1}{2}$, $\operatorname{var}(X)=\frac{N^{2}-1}{12}$.

6. Negative binomial distribution

$X \sim \mathrm{NB}(r, p)(p \in(0,1), r \in\{1,2, \ldots\})$. Then, the pmf is given by

$$
p_{X}(x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r}, \quad x \in\{r, r+1, \ldots\}
$$

X satisfies: $E(X)=\frac{r}{p}, \operatorname{var}(X)=\frac{r(1-p)}{p^{2}}$.
7. Hypergeometric distribution
$X \sim \operatorname{Hypergeo}(n, D, N)(n, D, N$ positive integers such that $n, D \leq N)$. Then, the pmf is given by
$p_{X}(x)=\frac{\binom{D}{x}\binom{N-D}{n-x}}{\binom{N}{n}}, \quad x \in\{\max (0, n-N+D), \ldots, \min (n, D)\}$.
X satisfies: $E(X)=n \frac{D}{N}, \operatorname{var}(X)=n \frac{D}{N}\left(1-\frac{D}{N}\right)\left(\frac{N-n}{N-1}\right)$.

2 Standard continuous distributions

1. Uniform distribution

$X \sim \mathrm{U}([a, b])(a<b)$. Then, the pdf is given by

$$
f_{X}(x)=\frac{1}{b-a} \mathbb{1}_{x \in[a, b]} .
$$

X satisfies: $E(X)=\frac{a+b}{2}, \operatorname{var}(X)=\frac{(b-a)^{2}}{12}$.

2. Beta distribution

$X \sim \mathrm{~B}(\alpha, \beta)(\alpha, \beta>0)$. Then, the pdf is given by

$$
f_{X}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \mathbb{1}_{x \in(0,1)}
$$

with

$$
\Gamma(a)=\int_{0}^{\infty} t^{a-1} e^{-t} d t, \quad \text { for } a>0
$$

X satisfies: $E(X)=\frac{\alpha}{\alpha+\beta}, \operatorname{var}(X)=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$.

3. Exponential distribution

$X \sim \operatorname{Exp}(\lambda)(\lambda>0)$. Then, the pdf is given by

$$
f_{X}(x)=\lambda e^{-\lambda x} \mathbb{1}_{x>0} .
$$

X satisfies: $E(X)=\frac{1}{\lambda}, \operatorname{var}(X)=\frac{1}{\lambda^{2}}$.

4. Gamma distribution

$X \sim \mathrm{G}(\alpha, \lambda)(\alpha, \lambda>0)$. Then, the pdf is given by

$$
f_{X}(x)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \mathbb{1}_{x>0} .
$$

X satisfies: $E(X)=\frac{\alpha}{\lambda}, \operatorname{var}(X)=\frac{\alpha}{\lambda^{2}}$.

5. Normal distribution

$X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)(\mu \in \mathbb{R}, \sigma>0)$. Then, the pdf is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

X satisfies: $E(X)=\mu, \operatorname{var}(X)=\sigma^{2}, \Psi_{X}(t)=E\left[e^{t X}\right]=$ $\exp \left(\mu t+\frac{\sigma^{2}}{2} t^{2}\right)$ for $t \in \mathbb{R}$.
If $\mu=0$ and $\sigma=1$, we say that X is standard normal and its cdf is denoted by Φ.
Here are some special values of the quantiles for the standard normal distribution:

$$
\begin{aligned}
z_{0.95}=\Phi^{-1}(0.95) & \approx 1.65 \\
z_{0.975}=\Phi^{-1}(0.975) & \approx 1.96 \\
z_{0.99}=\Phi^{-1}(0.99) & \approx 2.33 \\
z_{0.995}=\Phi^{-1}(0.995) & \approx 2.57
\end{aligned}
$$

6. Multivariate normal distribution
$\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim \mathcal{N}(\mu, \Sigma)$ for some $\mu \in \mathbb{R}^{n}$ and $\Sigma \in$ $\mathbb{R}^{n \times n}$ symmetric and positive semi-definite.
\mathbf{X} satisfies $E(\mathbf{X})=\mu$ with $\mu_{i}=E\left(X_{i}\right)(1 \leq i \leq n)$ and Σ is the covariance matrix with $\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)(1 \leq i, j \leq n)$.
If Σ is invertible (positive definite), then \mathbf{X} admits a density with respect to Lebesgue measure on \mathbb{R}^{n}, given by

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2} \sqrt{|\operatorname{det}(\Sigma)|}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \Sigma^{-1}(\mathbf{x}-\mu)}, \quad \mathbf{x} \in \mathbb{R}^{n}
$$

3 Some inequalities

1. Markov's inequality

Let X be a non-negative random variable, $E(X)<\infty$ and $a>0$. Then

$$
P(X \geq a) \leq \frac{E(X)}{a}
$$

2. Chebyshev's inequality

Let X be a random variable with $E(X)=\mu<\infty$ and $\operatorname{var}(X)=\sigma^{2}<\infty$, and let $a>0$. Then

$$
P(|X-\mu| \geq a) \leq \frac{\sigma^{2}}{a^{2}}
$$

3. Cauchy-Schwarz inequality

Let X, Y be random variables defined on the same probability space with $E\left(X^{2}\right), E\left(Y^{2}\right)<\infty$. Then

$$
|E(X Y)| \leq \sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}
$$

with equality if and only if either $P(X=0)=1$ or there exists $a \in \mathbb{R}$ such that $P(Y=a X)=1$.

4. Minkowski's inequality

Let X, Y be random variables defined on the same probability space with $E\left(|X|^{p}\right), E\left(|Y|^{p}\right)<\infty$ for some $p \geq 1$. Then

$$
E\left(|X+Y|^{p}\right)^{\frac{1}{p}} \leq E\left(|X|^{p}\right)^{\frac{1}{p}}+E\left(|Y|^{p}\right)^{\frac{1}{p}}
$$

5. Jensen's inequality

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and X a random variable such that $E(|X|)<\infty$ and $E(|f(X)|)<\infty$. Then

$$
E(f(X)) \geq f(E(X))
$$

If f is strictly convex, then equality holds if and only if $P(X=E(X))=1$.

4 Miscellaneous

1. Covariance

For X, Y two random variables defined on the same probability space with $E(|X|), E(|Y|), E(|X Y|)<\infty$,

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =E[(X-E(X))(Y-E(Y))] \\
& =E(X Y)-E(X) E(Y)
\end{aligned}
$$

For any $n, m \in \mathbb{N}, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}$ real numbers, X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} random variables defined on the same probability space with well-defined $\operatorname{cov}\left(X_{i}, Y_{j}\right)$ for $1 \leq$ $i \leq n$ and $1 \leq j \leq m$ we have

$$
\operatorname{cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{m} b_{j} Y_{j}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i} b_{j} \operatorname{cov}\left(X_{i}, Y_{j}\right)
$$

2. Correlation

If X, Y are two random variables defined on the same probability space with $0<\operatorname{var}(X), \operatorname{var}(Y)<\infty$, then

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

It always holds that $|\operatorname{corr}(X, Y)| \leq 1$. Equality occurs if and only if there exists $a \neq 0$ and $b \in \mathbb{R}$ such that $P(Y=a X+b)=1$, with $\operatorname{sgn}(a)=\operatorname{sgn}(\operatorname{corr}(X, Y))$.

3. Mean of a random vector

If $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ is a random vector in \mathbb{R}^{n}, such that $E\left(\left|X_{i}\right|\right)<\infty$ for $i=1, \ldots, n$, then $E(\mathbf{X})=\mu \in \mathbb{R}^{n}$ with $\mu_{i}=E\left(X_{i}\right)$ for $i=1, \ldots, n$. For any vector $a \in \mathbb{R}^{n}$, $E\left(a^{T} \mathbf{X}\right)=a^{T} \mu$.

4. Covariance matrix of a random vector

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ be a random vector in \mathbb{R}^{n}, such that $\operatorname{cov}\left(X_{i}, X_{j}\right)$ is defined for $1 \leq i, j \leq n$. Then \mathbf{X} admits a covariance matrix, $\Sigma \in \mathbb{R}^{n \times n}$, given by $\Sigma_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$ for $1 \leq i, j \leq n$.

The covariance matrix Σ is also given by

$$
\Sigma=E\left[(\mathbf{X}-\mu)(\mathbf{X}-\mu)^{T}\right]
$$

where $\mu=E(\mathbf{X})$.
For any vector $a \in \mathbb{R}^{n}, \operatorname{var}\left(a^{T} \mathbf{X}\right)=a^{T} \Sigma a$.

5. Uncorrelation and independence

Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ be a random vector in \mathbb{R}^{n} with a welldefined covariance matrix Σ. If X_{1}, \ldots, X_{n} are independent, then $\operatorname{cov}\left(X_{i} X_{j}\right)=0$ for all $i \neq j$. If $\operatorname{var}\left(X_{i}\right)>0$ for all $i=1, \ldots, n$, then this is equivalent to $\operatorname{corr}\left(X_{i}, X_{j}\right)=0$ for all $i \neq j$. In this case, Σ is a diagonal matrix.
In the special case where $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T} \sim \mathcal{N}(\mu, \Sigma), \Sigma$ is diagonal if and only if X_{1}, \ldots, X_{n} are independent.

6. Normal approximation for Poisson

Let $X=X_{\lambda} \sim \operatorname{Poi}(\lambda)$, with $\lambda \in(0, \infty)$. Then,

$$
\frac{X_{\lambda}-\lambda}{\sqrt{\lambda}} \xrightarrow{d} \mathcal{N}(0,1)
$$

as $\lambda \rightarrow \infty$.

7. Fisher information

Consider a parametric model $\mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\}$ where Θ is a parameter space and P_{θ} a probability measure defined (on a measurable space $(\mathcal{X}, \mathcal{B})$) admitting a density $f(\cdot \mid \theta)$ with respect to some σ-finite dominating measure μ on $(\mathcal{X}, \mathcal{B})$.
Based on $X_{1}, \ldots, X_{n} \in \mathcal{X}$ i.i.d. random variables $\sim f\left(\cdot \mid \theta_{0}\right)$ for some unknown $\theta_{0} \in \Theta$, we want to estimate θ_{0}.

Under some regularity conditions, the Fisher information of the model at θ_{0} is given by

$$
\begin{aligned}
I\left(\theta_{0}\right) & =E\left[\left(\left.\frac{\partial \log f\left(X_{1} \mid \theta\right)}{\partial \theta}\right|_{\theta=\theta_{0}}\right)^{2}\right] \\
& =-E\left[\left.\frac{\partial^{2} \log f\left(X_{1} \mid \theta\right)}{\partial^{2} \theta}\right|_{\theta=\theta_{0}}\right] .
\end{aligned}
$$

