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1 Standard discrete distributions

1. Bernoulli distribution

X ∼ Ber(p) (p ∈ (0, 1)). Then, the pmf is given by

pX(x) =

{
p, x = 1

1− p, x = 0
= px(1− p)1−x.

X satisfies: E(X) = p, var(X) = p(1− p).

2. Binomial distribution

X ∼ Bin(n, p) (n ∈ N, p ∈ (0, 1)). Then, the pmf is given by

pX(x) =

(
n

x

)
px(1− p)n−x, x ∈ {0, 1, ..., n}.

X satisfies: E(X) = np, var(X) = np(1− p).

3. Geometric distribution

X ∼ Geo(p) (p ∈ (0, 1)). Then, the pmf is given by

pX(x) = (1− p)x−1p, x ∈ {1, 2, ...}.

X satisfies: E(X) = 1
p
, var(X) = 1−p

p2
.

4. Poisson distribution

X ∼ Poi(λ) (λ > 0). Then, the pmf is given by

pX(x) =
λxe−λ

x!
, x ∈ {0, 1, 2, ...}.

X satisfies: E(X) = λ, var(X) = λ.

5. Discrete uniform distribution

X ∼ Unif{a, a + 1, ..., b} (a ≤ b integers). Then, the pmf is
given by

pX(x) =
1

b− a+ 1
x ∈ {a, a+ 1, ..., b}.

X satisfies: E(X) = a+b
2

, var(X) = (b−a+1)2−1
12

.

For a = 1 and b = N ≥ 1 an integer: E(X) = N+1
2

,

var(X) = N2−1
12

.

6. Negative binomial distribution

X ∼ NB(r, p) (p ∈ (0, 1), r ∈ {1, 2, ...}). Then, the pmf is
given by

pX(x) =

(
x− 1

r − 1

)
pr(1− p)x−r, x ∈ {r, r + 1, ...}.

X satisfies: E(X) = r
p
, var(X) = r(1−p)

p2
.

7. Hypergeometric distribution

X ∼ Hypergeo(n,D,N) (n,D,N positive integers such that
n,D ≤ N). Then, the pmf is given by

pX(x) =

(
D
x

)(
N−D
n−x

)(
N
n

) , x ∈ {max(0, n−N+D), ...,min(n,D)}.

X satisfies: E(X) = nD
N

, var(X) = nD
N

(
1− D

N

) (
N−n
N−1

)
.

2 Standard continuous distributions

1. Uniform distribution

X ∼ U([a, b]) (a < b). Then, the pdf is given by

fX(x) =
1

b− a1x∈[a,b].

X satisfies: E(X) = a+b
2

, var(X) = (b−a)2

12
.

2. Beta distribution

X ∼ B(α, β) (α, β > 0). Then, the pdf is given by

fX(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

1x∈(0,1)

with

Γ(a) =

∫ ∞
0

ta−1e−tdt, for a > 0.

X satisfies: E(X) = α
α+β

, var(X) = αβ
(α+β)2(α+β+1)

.

3. Exponential distribution

X ∼ Exp(λ) (λ > 0). Then, the pdf is given by

fX(x) = λe−λx1x>0.

X satisfies: E(X) = 1
λ

, var(X) = 1
λ2 .

4. Gamma distribution

X ∼ G(α, λ) (α, λ > 0). Then, the pdf is given by

fX(x) =
λα

Γ(α)
xα−1e−λx1x>0.

X satisfies: E(X) = α
λ

, var(X) = α
λ2 .

5. Normal distribution

X ∼ N (µ, σ2) (µ ∈ R, σ > 0). Then, the pdf is given by

fX(x) =
1√
2πσ

e
− (x−µ)2

2σ2 , x ∈ R.

X satisfies: E(X) = µ, var(X) = σ2, ΨX(t) = E[etX ] =

exp
(
µt+ σ2

2
t2
)

for t ∈ R.

If µ = 0 and σ = 1, we say that X is standard normal and
its cdf is denoted by Φ.

Here are some special values of the quantiles for the standard
normal distribution:

z0.95 = Φ−1(0.95) ≈ 1.65,

z0.975 = Φ−1(0.975) ≈ 1.96,

z0.99 = Φ−1(0.99) ≈ 2.33,

z0.995 = Φ−1(0.995) ≈ 2.57.
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6. Multivariate normal distribution

X = (X1, ..., Xn)T ∼ N (µ,Σ) for some µ ∈ Rn and Σ ∈
Rn×n symmetric and positive semi-definite.

X satisfies E(X) = µ with µi = E(Xi) (1 ≤ i ≤ n) and Σ is
the covariance matrix with Σij = cov(Xi, Xj) (1 ≤ i, j ≤ n).

If Σ is invertible (positive definite), then X admits a density
with respect to Lebesgue measure on Rn, given by

fX(x) =
1

(2π)n/2
√
|det(Σ)|

e−
1
2

(x−µ)TΣ−1(x−µ), x ∈ Rn.

3 Some inequalities

1. Markov’s inequality

Let X be a non-negative random variable, E(X) < ∞ and
a > 0. Then

P (X ≥ a) ≤ E(X)

a
.

2. Chebyshev’s inequality

Let X be a random variable with E(X) = µ < ∞ and
var(X) = σ2 <∞, and let a > 0. Then

P (|X − µ| ≥ a) ≤ σ2

a2
.

3. Cauchy-Schwarz inequality

Let X,Y be random variables defined on the same probabil-
ity space with E(X2), E(Y 2) <∞. Then

|E(XY )| ≤
√
E(X2)E(Y 2)

with equality if and only if either P (X = 0) = 1 or there
exists a ∈ R such that P (Y = aX) = 1.

4. Minkowski’s inequality

Let X,Y be random variables defined on the same probabil-
ity space with E(|X|p), E(|Y |p) <∞ for some p ≥ 1. Then

E(|X + Y |p)
1
p ≤ E(|X|p)

1
p + E(|Y |p)

1
p .

5. Jensen’s inequality

Let f : R→ R be a convex function and X a random variable
such that E(|X|) <∞ and E(|f(X)|) <∞. Then

E(f(X)) ≥ f(E(X)).

If f is strictly convex, then equality holds if and only if
P (X = E(X)) = 1.

4 Miscellaneous

1. Covariance

For X,Y two random variables defined on the same proba-
bility space with E(|X|), E(|Y |), E(|XY |) <∞,

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

= E(XY )− E(X)E(Y ).

For any n,m ∈ N, a1, . . . , an, b1, . . . , bm real numbers,
X1, . . . , Xn and Y1, . . . , Ym random variables defined on the
same probability space with well-defined cov(Xi, Yj) for 1 ≤
i ≤ n and 1 ≤ j ≤ m we have

cov

( n∑
i=1

aiXi,

m∑
j=1

bjYj

)
=

m∑
j=1

n∑
i=1

aibjcov(Xi, Yj).

2. Correlation

If X,Y are two random variables defined on the same prob-
ability space with 0 < var(X), var(Y ) <∞, then

corr(X,Y ) =
cov(X,Y )√

var(X)var(Y )
.

It always holds that |corr(X,Y )| ≤ 1. Equality occurs
if and only if there exists a 6= 0 and b ∈ R such that
P (Y = aX + b) = 1, with sgn(a) = sgn(corr(X,Y )).

3. Mean of a random vector

If X = (X1, ..., Xn)T is a random vector in Rn, such that
E(|Xi|) < ∞ for i = 1, . . . , n, then E(X) = µ ∈ Rn
with µi = E(Xi) for i = 1, ..., n. For any vector a ∈ Rn,
E(aTX) = aTµ.

4. Covariance matrix of a random vector

Let X = (X1, ..., Xn)T be a random vector in Rn, such that
cov(Xi, Xj) is defined for 1 ≤ i, j ≤ n. Then X admits a
covariance matrix, Σ ∈ Rn×n, given by Σij = cov(Xi, Xj)
for 1 ≤ i, j ≤ n.

The covariance matrix Σ is also given by

Σ = E[(X− µ)(X− µ)T ]

where µ = E(X).

For any vector a ∈ Rn, var(aTX) = aTΣ a.

5. Uncorrelation and independence

Let X = (X1, ..., Xn)T be a random vector in Rn with a well-
defined covariance matrix Σ. If X1, . . . , Xn are independent,
then cov(XiXj) = 0 for all i 6= j. If var(Xi) > 0 for all
i = 1, . . . , n, then this is equivalent to corr(Xi, Xj) = 0 for
all i 6= j. In this case, Σ is a diagonal matrix.

In the special case where X = (X1, ..., Xn)T ∼ N (µ,Σ), Σ is
diagonal if and only if X1, . . . , Xn are independent.

6. Normal approximation for Poisson

Let X = Xλ ∼ Poi(λ), with λ ∈ (0,∞). Then,

Xλ − λ√
λ

d→ N (0, 1)

as λ→∞.

7. Fisher information

Consider a parametric model P = {Pθ, θ ∈ Θ} where Θ is
a parameter space and Pθ a probability measure defined (on
a measurable space (X ,B)) admitting a density f(·|θ) with
respect to some σ-finite dominating measure µ on (X ,B).

Based on X1, . . . , Xn ∈ X i.i.d. random variables ∼ f(·|θ0)
for some unknown θ0 ∈ Θ, we want to estimate θ0.

Under some regularity conditions, the Fisher information of
the model at θ0 is given by

I(θ0) = E

[(
∂ log f(X1|θ)

∂θ
|θ=θ0

)2
]

= −E
[
∂2 log f(X1|θ)

∂2θ
|θ=θ0

]
.
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