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Problem set 1

1. Consider the space X := ∆n/∂∆n ≈ Sn for n ≥ 1. The quotient map

σn : ∆n → X, viewed as a singular n-simplex, is a cycle in Sn(X, ∗). Show

that [σn] generates Hn(X, ∗;Z) ∼= H̃n(X;Z).

2. Consider the space Y ≈ Sn obtained by gluing two copies ∆n
± of ∆n along

their boundaries (using the identity map). Consider the obvious singular

simplices τ± : ∆n → Y mapping to the subsets ∆n
± ⊂ Y . Check that

τ+ − τ− is a cycle and prove that [τ+ − τ−] generates H̃n(Y ;Z).

Hint: Use the Mayer-Vietoris sequence.

3. Suppose you know that Hk(RPn;Z2) = 0 for all k > n. In the lecture you

have seen a long exact sequence (also known as the Smith-sequence) for

the 2:1-covering Sn → RPn. Use the Smith-sequence for this covering to

compute Hk(RPn;Z2) for 0 ≤ k ≤ n.

4. Let f : RPn → RPm be any map, where n > m > 0. Show that the

induced map f# : π1(RPn)→ π1(RPm) is trivial.

5. Show that RP 2 is not a retract of RP 3.

6. The Borsuk-Ulam theorem says that for every map f : Sn → Rn there

exists a point x ∈ Sn such that f(x) = f(−x). Give a proof of the theorem

based on the following steps:

(a) Let g : Sn → Sn be an odd map, i.e., such that g(−x) = −g(x) for

all x ∈ Sn. Show that g induces a natural homomorphism from the

Smith sequence for Sn → RPn to itself in which all squares commute.

(b) Conclude that every odd g : Sn → Sn has odd degree.

(c) Conclude the proof of the theorem.

7. Use Borsuk-Ulam to prove that whenever there exists a map φ : Sn → Sm

which is equivariant with respect to the antipodal maps, then n ≤ m.

8. Use Borsuk-Ulam to prove the following: Given Lebesgue measurable

bounded subsets A1, . . . , Am of Rm, there exists a hyperplane H ⊂ Rm

which divides each Ai into pieces of equal measure. (This is known as the

“Ham Sandwich Theorem”.)
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