Problem set 2

1. Let R be a commutative ring and let M be an R-module. Show that for every exact sequence of R-modules $U \xrightarrow{f} V \xrightarrow{g} W \rightarrow 0$ the sequence

$$
M \otimes U \xrightarrow{\mathrm{id} \otimes f} M \otimes V \xrightarrow{\mathrm{id} \otimes g} M \otimes W \rightarrow 0
$$

is exact. Hint: To prove exactness at $M \otimes V$, construct a left-inverse for an appropriate map $M \otimes V / \mathrm{im}(\mathrm{id} \otimes f) \rightarrow M \otimes W$.
2. Let R and M be as in Problem 1 and assume additionally that M is a free R-module. Show that for every short exact sequence $0 \rightarrow U \xrightarrow{f} V \xrightarrow{g} W \rightarrow 0$ the sequence

$$
0 \rightarrow M \otimes U \xrightarrow{\mathrm{id} \otimes f} M \otimes V \xrightarrow{\mathrm{id} \otimes g} M \otimes W \rightarrow 0
$$

is exact.
3. Let $H, H^{\prime}, H^{\prime \prime}$ and G be Abelian groups and $f: H \rightarrow H^{\prime}, g: H^{\prime} \rightarrow H^{\prime \prime}$ group homomorphisms. Show that f induces a well defined homomorphism $f_{\text {Tor }}: \operatorname{Tor}(H, G) \rightarrow \operatorname{Tor}\left(H^{\prime}, G\right)$. Moreover show that $\mathrm{id}_{\text {Tor }}=\mathrm{id},(g \circ f)_{\text {Tor }}=g_{\text {Tor }} \circ f_{\text {Tor }}$ and if f is an isomorphism then $\left(f^{-1}\right)_{\text {Tor }}=\left(f_{\text {Tor }}\right)^{-1}$.
4. Prove that the sequence in the universal coefficient theorem for homology is natural with respect to chain maps. That is, given a chain map $f: C_{*} \rightarrow D_{*}$ show that the diagram

commutes.
Remark: The statement also holds for the universal coefficient theorem for cohomology.
5. Let C_{*}, D_{*} be chain complexes of free Abelian groups and assume that $f: C_{*} \rightarrow D_{*}$ is a quasi-isomorphism, i.e. a chain map such that $f_{*}: H_{*}(C) \rightarrow H_{*}(D)$ is an isomorphism. Let G be an Abelian group. Prove the following statements using naturality of the sequences in the universal coefficient theorems.
(a) $f \otimes \mathrm{id}: C_{*} \otimes G \rightarrow D_{*} \otimes G$ is a quasi-isomorphism.
(b) $f^{*}: \operatorname{Hom}\left(D_{*}, G\right) \rightarrow \operatorname{Hom}\left(C_{*}, G\right)$ is a quasi-isomorphism.
6. Show that the splitting $H^{n}(X ; G) \cong \operatorname{Ext}\left(H_{n-1}(X) ; G\right) \oplus \operatorname{Hom}\left(H_{n}(X) ; G\right)$ whose existence is asserted by the universal coefficient theorem for cohomology cannot be natural in X.
Hint: Consider the map $\phi: \mathbb{R} P^{2} \rightarrow S^{2}$ given by collapsing $\mathbb{R} P^{1} \subset \mathbb{R} P^{2}$ to a point.
7. The Klein bottle K has $H_{0}(K ; \mathbb{Z}) \cong \mathbb{Z}, H_{1}(K ; \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_{2}$ and all other homology groups vanish. Use this to compute the cohomology of K with coefficients in \mathbb{Z} and the cohomology and homology with coefficients in \mathbb{Z}_{p} for p prime.
8. Let X be a topological space and let $A, B \subset X$ be subsets. Denote by $S_{k}(A+B) \subset S_{k}(X)$ the subspace of chains which are sums of simplices entirely contained in A or B. Show that the quotient $S_{k}(X) / S_{k}(A+B)$ is free.

