Problem set 2

1. Let R be a commutative ring and let M be an R-module. Show that for every exact sequence of R-modules $U \xrightarrow{f} V \xrightarrow{g} W \to 0$ the sequence

$$M \otimes U \xrightarrow{\mathrm{id} \otimes f} M \otimes V \xrightarrow{\mathrm{id} \otimes g} M \otimes W \to 0$$

is exact. Hint: To prove exactness at $M \otimes V$, construct a left-inverse for an appropriate map $M \otimes V/\mathrm{im}(\mathrm{id} \otimes f) \to M \otimes W$.

2. Let R and M be as in Problem 1 and assume additionally that M is a free R-module. Show that for every short exact sequence $0 \to U \xrightarrow{f} V \xrightarrow{g} W \to 0$ the sequence

$$0 \to M \otimes U \xrightarrow{\mathrm{id} \otimes f} M \otimes V \xrightarrow{\mathrm{id} \otimes g} M \otimes W \to 0$$

is exact.

- 3. Let H, H', H'' and G be Abelian groups and $f: H \to H', g: H' \to H''$ group homomorphisms. Show that f induces a well defined homomorphism $f_{\text{Tor}}: \text{Tor}(H,G) \to \text{Tor}(H',G)$. Moreover show that $id_{Tor} = id$, $(g \circ f)_{Tor} = g_{Tor} \circ f_{Tor}$ and if f is an isomorphism then $(f^{-1})_{\text{Tor}} = (f_{\text{Tor}})^{-1}$.
- 4. Prove that the sequence in the universal coefficient theorem for homology is natural with respect to chain maps. That is, given a chain map $f: C_* \to D_*$ show that the diagram

$$0 \longrightarrow H_n(C) \otimes G \longrightarrow H_n(C;G) \longrightarrow \operatorname{Tor}(H_{n-1}(C),G) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow f_* \qquad \qquad \downarrow$$

$$0 \longrightarrow H_n(D) \otimes G \longrightarrow H_n(D;G) \longrightarrow \operatorname{Tor}(H_{n-1}(D),G) \longrightarrow 0$$

commutes.

Remark: The statement also holds for the universal coefficient theorem for cohomology.

- 5. Let C_*, D_* be chain complexes of free Abelian groups and assume that $f: C_* \to D_*$ is a quasi-isomorphism, i.e. a chain map such that $f_*: H_*(C) \to H_*(D)$ is an isomorphism. Let G be an Abelian group. Prove the following statements using naturality of the sequences in the universal coefficient theorems.
 - (a) $f \otimes id : C_* \otimes G \to D_* \otimes G$ is a quasi-isomorphism.
 - (b) $f^* : \text{Hom}(D_*, G) \to \text{Hom}(C_*, G)$ is a quasi-isomorphism.
- 6. Show that the splitting $H^n(X;G) \cong \operatorname{Ext}(H_{n-1}(X);G) \oplus \operatorname{Hom}(H_n(X);G)$ whose existence is asserted by the universal coefficient theorem for cohomology cannot be natural in X.

Hint: Consider the map $\phi: \mathbb{R}P^2 \to S^2$ given by collapsing $\mathbb{R}P^1 \subset \mathbb{R}P^2$ to a point.

- 7. The Klein bottle K has $H_0(K;\mathbb{Z}) \cong \mathbb{Z}$, $H_1(K;\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z}_2$ and all other homology groups vanish. Use this to compute the cohomology of K with coefficients in \mathbb{Z} and the cohomology and homology with coefficients in \mathbb{Z}_p for p prime.
- 8. Let X be a topological space and let $A, B \subset X$ be subsets. Denote by $S_k(A+B) \subset S_k(X)$ the subspace of chains which are sums of simplices entirely contained in A or B. Show that the quotient $S_k(X)/S_k(A+B)$ is free.