Problem set 4

1. Show that every covering space of an orientable manifold is an orientable manifold.
2. Show that for a connected non-orientable manifold M there is a unique orientable double cover of M.
3. Show that for any connected closed orientable n-manifold M there is a degree 1 map f : $M \rightarrow S^{n}$.
4. Let $f: M \rightarrow N$ be a map between connected closed orientable manifolds and suppose there is a ball $B \subset N$ such that $f^{-1}(B)$ is a disjoint union of open balls $B_{1}, \ldots, B_{k} \subset M$ which each get mapped homeomorphically onto B. Show that the degree of f is $\sum \varepsilon_{i}$, where ε_{i} is ± 1 according to whether $\left.f\right|_{B_{i}}: B_{i} \rightarrow B$ preserves or reverses local orientations induced from given fundamental classes $[M]$ and $[N]$.
5. Let M, N be closed connected orientable manifolds and let $f: M \rightarrow N$ a p-sheeted covering map. Show that f has degree $\pm p$.
6. Consider a pair of spaces $(X, Y)=(Q \cup R, S \cup T)$ such that $S \subset Q, T \subset R$ and such that the interiors of Q, R cover X and the interiors of S, T cover Y. Show that there is a relative Mayer-Vietoris LES
$\cdots \rightarrow H_{n}(Q \cap R, S \cap T) \rightarrow H_{n}(Q, S) \oplus H_{n}(R, T) \rightarrow H_{n}(X, Y) \rightarrow H_{n-1}(Q \cap R, S \cap T) \rightarrow \cdots$

Hint: Consider the commutative diagram

in which the horizontal maps are of the form $x \mapsto(x,-x)$ resp. $(x, y) \mapsto x+y ; S_{n}(Q+R)$ is the subgroup of $S_{n}(X)$ consisting of sums of chains in Q and R (and similarly for $S_{n}(S+T)$), and $S_{n}(Q+R, S+T)$ denotes the quotient of $S_{n}(Q+R)$ by $S_{n}(S+T)$. Show first that the third row is a chain complex. Then show it is exact by considering the diagram as a short exact sequence of chain complexes. Finally deduce the existence of the LES.

