Problem set 5

1. Show that for closed connected n-manifolds M_{1}, M_{2} there are isomorphisms $H_{i}\left(M_{1}\right) \oplus$ $H_{i}\left(M_{2}\right) \cong H_{i}\left(M_{1} \# M_{2}\right)$ for $0<i<n$ with one exception: If both M_{1} and M_{2} are nonorientable, then $H_{n-1}\left(M_{1} \# M_{2}\right)$ is obtained from $H_{n-1}\left(M_{1}\right) \oplus H_{n-1}\left(M_{2}\right)$ by replacing one the \mathbb{Z}_{2} summands by a \mathbb{Z}-summand. Hint: Euler characteristics may help in the exceptional case. (For the definition of the connected sum $M_{1} \# M_{2}$ see algebraic topology I problem set 5 ex. 5.)
2. Show that if a closed orientable manifold of dimension $2 n$ has $H_{n-1}(M)$ torsion-free then $H_{n}(M)$ is also torsion-free.
3. Compute the cup product structure of $H^{*}\left(\left(S^{2} \times S^{8}\right) \#\left(S^{4} \times S^{6}\right)\right)$, and in particular show that the only non-trivial cup products are those forced by Poincaré duality.
4. Show that if M is a compact connected non-orientable 3-manifold, $H_{1}(M)$ is infinite.
5. Prove that every map $f: \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n}$ has $\operatorname{deg} f=k^{n}$ for some $k \in \mathbb{Z}$.
6. Let $\alpha \in H^{n}\left(S^{n}\right)$ be a generator, and define $u=\alpha \times 1, v=1 \times \alpha \in H^{n}\left(S^{n} \times S^{n}\right)$. Let now $f: S^{n} \times S^{n} \rightarrow S^{n} \times S^{n}$ be a map with $\operatorname{deg} f= \pm 1$. Writing $f^{*}(u)=a u+b v, f^{*} v=c u+d v$ and assuming that n is even, prove that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
0 & \pm 1 \\
\pm 1 & 0
\end{array}\right)
$$

7. Let M be a closed connected orientable n-manifold and suppose that there exists a map $f: S^{n} \rightarrow M$ with $\operatorname{deg} f \neq 0$. Prove that $H_{*}(M ; \mathbb{Q}) \cong H_{*}\left(S^{n} ; \mathbb{Q}\right)$. If $\operatorname{deg} f= \pm 1$, prove that $H_{*}(M ; \mathbb{Z}) \cong H_{*}\left(S^{n} ; \mathbb{Z}\right)$.
8. Prove that if a closed connected orientable manifold M can be written as the union $M=$ $U \cup V$ of two acyclic subsets, then $H_{*}(M) \cong H_{*}\left(S^{n}\right)$. Hint: Use problem 3/3.
