Solutions to problem set 1

1. Consider the diagram

$$H_{n}(\Delta^{n}, \partial \Delta^{n}) \xrightarrow{\cong} \widetilde{H}_{n-1}(\partial \Delta^{n})$$

$$\downarrow \cong$$

$$H_{n}(\Delta^{n}/\partial \Delta^{n}, *)$$
(1)

The horizontal map is the boundary map from the (reduced) LES for the pair $(\Delta^n, \partial \Delta^n)$, which is an isomorphism by looking at the neighbouring terms in the LES. The vertical map is induced by the quotient map $(\Delta^n, \partial \Delta^n) \to (\Delta^n/\partial \Delta^n, *)$ and is an isomorphism since $(\Delta^n, \partial \Delta^n)$ is a good pair.

Consider now the tautological *n*-simplex $\alpha_n: \Delta^n \to \Delta^n$, which defines a class $[\alpha_n] \in H_n(\Delta^n, \partial \Delta^n)$. The image of $[\alpha_n]$ under the vertical map is $[\sigma_n] \in H_n(\Delta^n/\partial \Delta^n, *)$, while its image under the horizontal map is the class $[\beta_{n-1}] \in \widetilde{H}_{n-1}(\partial \Delta^n)$ with

$$\beta_{n-1} = \partial_n \, \alpha_n = \sum_{i=0}^n (-1)^i F_i^n \in S_{n-1}(\partial \Delta^n),$$

where $F_i^n:\Delta^{n-1}\to\partial\Delta^n$ is the *i*-th face map of the simplex Δ^n . So once we know that $[\beta_{n-1}]$ generates $\widetilde{H}_{n-1}(\partial\Delta^n)$, we can conclude from (1) that $[\sigma_n]$ generates $H_n(\Delta^n/\partial\Delta^n,*)$. It is clear that $[\beta_0]$ generates $\widetilde{H}_0(\partial\Delta^1)$, so we know that $[\sigma_1]$ generates $H_1(\Delta^1/\partial\Delta^1,*)$, which is what the problem asks us to prove for n=1. We now proceed by induction; for the inductive step, consider the map $\phi:\partial\Delta^n\to\Delta^{n-1}/\partial\Delta^{n-1}$ which collapses all except the zero-th face to a point, and the induced map $\phi_*:H_{n-1}(\partial\Delta^n)\to H_{n-1}(\Delta^{n-1}/\partial\Delta^{n-1},*)$. Observe that $\phi_*[\beta_{n-1}]=[\sigma_{n-1}]$; since $[\sigma_{n-1}]$ generates by inductive assumption, we conclude that $[\beta_{n-1}]$ generates.

2. Consider the cover of Y given by the subsets $A = \Delta_+^n$ and $B = \Delta_-^n$. Both are contractible and we have $A \cap B = \partial \Delta^n$, so that the relevant piece of the corresponding reduced MV sequence reads

$$0 \to \widetilde{H}_n(Y) \xrightarrow{\partial_*} \widetilde{H}_{n-1}(\partial \Delta^n) \to 0$$

Note that $\partial_*[\tau_+ - \tau_-] = [\partial \tau_+] = [\beta_{n-1}] \in \widetilde{H}_{n-1}(\partial \Delta^n)$ with $\beta_{n-1} \in S_{n-1}(\partial \Delta^n)$ defined as in the solution to the previous problem. Since $[\beta_{n-1}]$ generates (see the previous problem) we deduce that $[\tau_+ - \tau_-]$ generates.

We give an alternative inductive proof that $[\beta_{n-1}]$ generates $\widetilde{H}_{n-1}(\partial\Delta^n)$ using the Mayer-Vietoris sequence. For n=1 the statement is clear. For the inductive step, consider the cover of $\partial\Delta^{n+1}$ given by $A:=\operatorname{im} F_0^{n+1}$ and $B:=\partial\Delta^{n+1}\setminus\operatorname{int} A$ (the interiors don't cover all of $\partial\Delta^{n+1}$, but that can be repaired by taking small thickenings of A and B). Since both A and B are contractible, the corresponding reduced MV sequence splits into pieces of the form

$$0 \to \widetilde{H}_n(\partial \Delta^{n+1}) \xrightarrow{\cong} \widetilde{H}_{n-1}(A \cap B) \to 0$$

Note that we can identify $A \cap B = \partial A$ with $\partial \Delta^n$ via $F_0^n|_{\partial \Delta^n}$. By definition of the MV boundary map $\partial_*: \widetilde{H}_n(\partial \Delta^{n+1}) \to \widetilde{H}_{n-1}(A \cap B)$, we have $\partial_*[\beta_n] = [\partial F_0^{n+1}]$, which in our identification $A \cap B \cong \partial \Delta^n$ is $[\beta_{n-1}]$. Since ∂_* is an isomorphism and $[\beta_{n-1}]$ generates $\widetilde{H}_{n-1}(\partial \Delta^n)$ by inductive assumption, it follows that $[\beta_n]$ generates $\widetilde{H}_n(\partial \Delta^{n+1})$.

3. In the following, all homology groups have \mathbb{Z}_2 coefficients. Given that $H_k(\mathbb{R}P^n) = 0$ for k > n by assumption, the leftmost piece of the Smith sequence for the cover $p: S^n \to \mathbb{R}P^n$ looks like

$$0 \to H_n(\mathbb{R}P^n) \xrightarrow{t_*} H_n(S^n) \xrightarrow{p_*} H_n(\mathbb{R}P^n) \xrightarrow{\partial_*} H_{n-1}(\mathbb{R}P^n) \to H_{n-1}(S^n) = 0 \to \dots$$

Here t_* is induced by the map $S_*(\mathbb{R}P^n) \to S_*(S^n)$ taking a simplex $\sigma: \Delta^k \to \mathbb{R}P^k$ to $\tilde{\sigma} + \alpha \circ \tilde{\sigma}$, where $\tilde{\sigma}: \Delta^n \to S^n$ is one of the two possible lifts of σ to S^n and where $\alpha: S^n \to S^n$ denotes the antipodal map. Note that we have $t_* \circ p_* = (\mathrm{id} + \alpha_*) : H_*(S^n) \to H_*(S^n)$, which implies $t_* \circ p_* = 0$ because $\alpha_* = \mathrm{id}: H_*(S^n) \to H_*(S^n)$ (because α_* is an involution and $H_k(S^n)$ either vanishes or is \mathbb{Z}_2). This together with the fact that $t_*: H_n(\mathbb{R}P^n) \to H_n(S^n)$ is injective implies that $p_*: H_n(S^n) \to H_n(\mathbb{R}P^n)$ vanishes, and hence $t_*: H_n(\mathbb{R}P^n) \to H_n(S^n) \cong \mathbb{Z}_2$ is an isomorphism. Moreover, $p_* = 0$ implies that $\partial_*: H_n(\mathbb{R}P^n) \to H_{n-1}(\mathbb{R}P^n)$ is an isomorphism, and the same is true for $\partial: H_k(\mathbb{R}P^n) \to H_{k-1}(\mathbb{R}P^n)$ for k > 0 since $H_*(S^n) = 0$ except in degrees 0 and n. Inductively we obtain $H_k(\mathbb{R}P^n) \cong \mathbb{Z}_2$ for all $0 \le k \le n$.

4. Recall that $\pi_1(\mathbb{R}P^1) \cong \pi_1(S^1) \cong \mathbb{Z}$, $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}_2$ and $\pi_1(S^n) = 0$ for n > 1. Hence, if m = 1 the only homomorphism $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}_2 \to \pi_1(\mathbb{R}P^1) \cong \mathbb{Z}$ is the trivial homomorphism. So from now on we may assume that we have n > m > 1.

$$S^{n} - \stackrel{\tilde{f}}{-} > S^{m}$$

$$\downarrow^{p^{n}} \qquad \qquad \downarrow^{p^{m}}$$

$$\mathbb{R}P^{n} \stackrel{f}{\longrightarrow} \mathbb{R}P^{m}$$

For any n > m > 1 we have

$$f_{\#} \circ p_{\#}^{n}(\pi_{1}(S^{n})) = 0 = p_{\#}^{m}(\pi_{1}(S^{m}))$$

and $f \circ p^n : S^n \to \mathbb{R}P^m$ always lifts to a map $\tilde{f} : S^n \to S^m$.

A generator of $\pi_1(\mathbb{R}P^n)$ is represented by a loop that lifts to a path in S^n connecting two antipodal points (see also Hatcher example 1.43). The homomorphism $f_\#:\pi_1(\mathbb{R}P^n)\cong\mathbb{Z}_2\to\pi_1(\mathbb{R}P^m)\cong\mathbb{Z}_2$ can either be an isomorphism or trivial.

f induces an isomorphism $f_{\#}$ $\iff \forall \text{ path } \gamma: [0,1] \to S^n \text{ connecting antipodal points:}$ $f_{\#}([p^n \circ \gamma]) = [f \circ p^n \circ \gamma] = p_{\#}^m [\tilde{f} \circ \gamma] \in \pi_1(\mathbb{R}P^m) \setminus \{0\} \cong \mathbb{Z}_2 \setminus \{0\}$ $\iff \forall \text{ path } \gamma: [0,1] \to S^n \text{ connecting antipodal points:}$ $\tilde{f} \circ \gamma: [0,1] \to S^m \text{ connects antipodal points}$ $\iff \text{the lift } \tilde{f}: S^n \to S^m \text{ is equivariant.}$

But, since n > m, by Bredon Theorem 20.1 the map \tilde{f} cannot be equivariant. Therefore, the induced map $f_{\#}$ must be trivial.

5. Assume that $r: \mathbb{R}P^3 \to \mathbb{R}P^2$ is a retraction and denote by $i: \mathbb{R}P^2 \hookrightarrow \mathbb{R}P^3$ the inclusion. Then we have $r \circ i = \mathrm{id}_{\mathbb{R}P^2}$ and hence $(r \circ i)_\# = \mathrm{id}: \pi_1(\mathbb{R}P^2) \to \pi_1(\mathbb{R}P^2)$, which is non-zero because $\pi_1(\mathbb{R}P^2) = H_1(\mathbb{R}P^2; \mathbb{Z}) = \mathbb{Z}_2$. On the other hand, we have $(r \circ i)_\# = r_\# \circ i_\# = 0$ since $r_\# = 0$ by the previous exercise. That is a contradiction.

- 6. Cf. the proof of Borsuk-Ulam in [Hatcher, pp. 174-176]!
- 7. Let n>m and supposed that there exists an equivariant map $\phi:S^n\to S^m$, i.e., such that $\phi(-x)=-\phi(x)$ for all x. Consider the map $f:S^{m+1}\to\mathbb{R}^{m+1}$ obtained by composing the restriction of ϕ to $S^{m+1}\subseteq S^n$ with the inclusion $S^m\hookrightarrow\mathbb{R}^{m+1}$. This map satisfies f(-x)=-f(x) for all $x\in S^{m+1}$. Since $f(x)\in S^m$ and hence $f(x)\neq -f(x)$, we conclude $f(-x)\neq f(x)$ for all $x\in S^{m+1}$, which contradicts the Borsuk-Ulam theorem.
- 8. Cf. [Bredon, Corollary IV.20.4]!