Solutions to problem set 2

1. Every element of $M \otimes W$ of the form $m \otimes w$ is in the image of id $\otimes g$ because g is surjective; since every element of $M \otimes W$ is a sum of elements of this form, it follows that id $\otimes g$ is surjective. By a similar argument one sees that $\operatorname{im}(\mathrm{id} \otimes f) \subseteq \operatorname{ker}(\mathrm{id} \otimes \mathrm{g})$.
To prove $\operatorname{ker}(\mathrm{id} \otimes \mathrm{g}) \subseteq \operatorname{im}(\mathrm{id} \otimes f)=: I$, consider the map $\phi: M \otimes V / I \rightarrow M \otimes W$ induced by id $\otimes g$, which is well-defined because $I \subseteq \operatorname{ker}(\mathrm{id} \otimes \mathrm{g})$. We now define a map $\psi: M \otimes W \rightarrow$ $M \otimes V / I$ which is a left inverse for ϕ, i.e. such that $\psi \circ \phi=\mathrm{id}$; this implies injectivity of ϕ and hence that $\operatorname{ker}(\mathrm{id} \otimes g) \subseteq I$. To define ψ, consider first the map $M \times W \rightarrow M \otimes V / I$ defined as follows: It takes (m, w) to $[m \otimes v]$, where $v \in V$ is any element such that $g(v)=w$. This is well-defined and bilinear and hence descends to a map $\psi: M \otimes W \rightarrow M \otimes V / I$. We clearly have $\psi \circ \phi=\mathrm{id}$: That's obvious on elements of the form $[m \otimes v]$, and these generate.
2. In view of the previous problem, what is left to prove is the injectivity of id $\otimes f$. Freeness of M means that it has a linearly independent generating set $\left\{m_{i}\right\}_{i \in I}$. Note that every element of $M \otimes U$ can be written as a sum $\sum_{i \in I} m_{i} \otimes u_{i}$ and that there is a well-defined map $M \otimes U \rightarrow \bigoplus_{i \in I} U$ taking such an element to $\left(u_{i}\right)_{i \in I}$. It follows that $(\mathrm{id} \otimes f)\left(\sum m_{i} \otimes u_{i}\right)=$ $\sum m_{i} \otimes f\left(u_{i}\right)=0$ implies $f\left(u_{i}\right)=0$ for all i, hence $u_{i}=0$ for all i by injectivity of f, and hence $\sum m_{i} \otimes u_{i}=0$.
3. Let H, H^{\prime} be Abelian groups with free resolutions $F \rightarrow H, F^{\prime} \rightarrow H^{\prime}$. By the free resolution lemma, we can extend any given group homomorphism $f: H \rightarrow H^{\prime}$ to a chain map $\widetilde{f}: F \rightarrow$ F^{\prime}. Recall that by definition we have $\operatorname{Tor}(H, G)=H_{1}(F \otimes G)$ and $\operatorname{Tor}\left(H^{\prime}, G\right)=H_{1}\left(F^{\prime} \otimes G\right)$, and so we define the action of $\operatorname{Tor}(-, G)$ on f by

$$
f_{\mathrm{Tor}}:=(\tilde{f} \otimes \mathrm{id})_{*}: H_{1}\left(F^{\prime} \otimes G\right) \rightarrow H_{1}(F \otimes G)
$$

This is independent of the choice of lift \tilde{f} as that is unique up to chain homotopy. To see that this makes $\operatorname{Tor}(-, G)$ a functor, note that $\mathrm{id}_{\text {Tor }}=\mathrm{id}$ because we can take as a lift of id : $H \rightarrow H$ simply id of any free resolution of H. Moreover, $(f g)_{\text {Tor }}=g_{\text {Tor }} f_{\text {Tor }}$, because if \widetilde{f} lifts f and \widetilde{g} lifts g, then $\widetilde{g} \widetilde{f}$ lifts $g f$.

The case of $\operatorname{Ext}(-, G)$ is analogous. (Of course, these are are just special cases of how in general one constructs the action of derived functors on morphisms.)
4. We discuss the sequence $0 \rightarrow H_{n}(C) \rightarrow H_{n}(C \otimes G) \rightarrow \operatorname{Tor}\left(H_{n-1}(C), G\right) \rightarrow 0$ appearing in the universal coefficient theorem for homology. Recall that we constructed this as

$$
\begin{equation*}
0 \rightarrow \operatorname{coker}\left(i_{n} \otimes \mathrm{id}\right) \rightarrow H_{n}(C ; G) \rightarrow \operatorname{ker}\left(i_{n-1} \otimes \mathrm{id}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

with $i_{n}: B_{n} \rightarrow Z_{n}$ the inclusion map, and then noted that

$$
\begin{equation*}
\operatorname{coker}\left(i_{n} \otimes \mathrm{id}\right) \cong H_{n}(C) \otimes G \quad \text { and } \quad \operatorname{ker}\left(i_{n-1} \otimes \mathrm{id}\right) \cong \operatorname{Tor}\left(H_{n-1}(C), G\right) \tag{2}
\end{equation*}
$$

It is clear that a chain map $\phi: C \rightarrow C^{\prime}$ induces a morphism of short exact sequences between (1) and its counterpart for C^{\prime} (just think about how we arrived at (1)). Moreover, one checks easily that under the identifications (2) and the corresponding ones for C^{\prime}, the outer maps in this morphism of SES are $\phi_{*}: H_{n}(C) \rightarrow H_{n}\left(C^{\prime}\right)$ and $\left(\phi_{*}\right)_{\text {Tor }}$.
5. (a) Naturality of the short exact sequence in the universal coefficient theorem for homology says that the diagram

commutes. The outer two maps are isomorphisms because $f_{*}: H_{*}(C) \rightarrow H_{*}(D)$ is an isomorphism by assumption and by functoriality of $\operatorname{Tor}(-, G)$. Hence $f_{*}: H_{*}(C ; G) \rightarrow$ $H_{*}(D ; G)$ is an isomorphism by the 5 -lemma.
(b) Same argument as in (a) using the universal coefficient theorem for cohomology.
6. Consider the diagram

Note that we have $\operatorname{Ext}\left(H_{1}\left(S^{2}\right), G\right)=0$ and $\operatorname{Hom}\left(H_{2}\left(\mathbb{R} P^{2}\right), G\right)=0$ because $H_{1}\left(S^{2}\right)=0$, $H_{2}\left(\mathbb{R} P^{2}\right)=0$, and hence the map on the right vanishes for every Abelian group G. If the splitting were natural, the $\operatorname{map} \phi^{*}: H^{2}\left(S^{2} ; G\right) \rightarrow H^{2}\left(\mathbb{R} P^{2} ; G\right)$ would consequently also have to vanish for every G.

We will show, in contrast, that $\phi^{*}: H^{2}\left(S^{2} ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(\mathbb{R} P^{2} ; \mathbb{Z}_{2}\right)$ is an isomorphism. To see this, note that $\phi: \mathbb{R} P^{2} \rightarrow S^{2}$ is a cellular map with respect to the usual CW complex structures of $\mathbb{R} P^{2}$ (with one cell in each degree $0,1,2$) and S^{2} (with one cell in degree 0 and one in degree 2). The map induced by ϕ on cellular chains takes the generator corresponding to the unique 2 -cell of $\mathbb{R} P^{2}$ to the generator corresponding to the unique 2 -cell of S^{2} (recall the description of this map!). Dualizing, this implies that the map induced by ϕ on the cellular cochain complexes with coefficients in \mathbb{Z}_{2} looks as follows:

In particular, the induced map $H^{2}\left(S^{2} ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(\mathbb{R} P^{2} ; \mathbb{Z}_{2}\right)$ is an isomorphism.
7. The universal coefficient theorem for homology tells us that there is a splitting

$$
H_{n}(K ; G) \cong\left(H_{n}(K) \otimes G\right) \oplus \operatorname{Tor}\left(H_{n-1}(K), G\right)
$$

for every Abelian group G. We have $H_{0}(K) \otimes \mathbb{Z}_{p}=\mathbb{Z}_{p}$ and $H_{1}(K) \otimes \mathbb{Z}_{p}=\mathbb{Z}_{p} \oplus\left(\mathbb{Z}_{2} \otimes \mathbb{Z}_{p}\right)$; note that $\mathbb{Z}_{2} \otimes \mathbb{Z}_{2}=\mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \otimes \mathbb{Z}_{p}=0$ for odd p (which doesn't have to be prime for that; in general, $\mathbb{Z}_{q} \otimes \mathbb{Z}_{q^{\prime}}=0$ if q, q^{\prime} are coprime, as $1=q m+q^{\prime} m^{\prime}$ for certain $m, m^{\prime} \in \mathbb{Z}$, from which it follows that $1 \otimes 1=0$ in $\left.\mathbb{Z}_{q} \otimes \mathbb{Z}_{q^{\prime}}\right)$. Moreover, $\operatorname{Tor}\left(H_{0}(K), \mathbb{Z}_{p}\right)=0$ as $H_{0}(K)$ is free and $\operatorname{Tor}\left(H_{1}(K), \mathbb{Z}_{p}\right)=\operatorname{Tor}\left(\mathbb{Z}_{2}, \mathbb{Z}_{p}\right)=\operatorname{ker}\left(\mathbb{Z}_{p} \xrightarrow{2} \mathbb{Z}_{p}\right)$, which is \mathbb{Z}_{2} for $p=2$ and 0 if p is odd. Combining all that, we obtain

$$
H_{0}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}, \quad H_{1}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, \quad H_{2}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

and

$$
H_{0}\left(K ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}, \quad H_{1}\left(K ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}, \quad H_{2}\left(K ; \mathbb{Z}_{p}\right)=0
$$

for p odd. All other groups vanish.
From the universal coefficients theorem for cohomology, we obtain a splitting

$$
H^{n}(K ; G) \cong \operatorname{Ext}\left(H_{n-1}(K), G\right) \oplus \operatorname{Hom}\left(H_{n}(K) ; G\right)
$$

for every Abelian group G. We have $\operatorname{Ext}\left(H_{0}(K), G\right)=0$ as $H_{0}(K)$ is free and $\operatorname{Ext}\left(H_{1}(K) ; G\right)=$ $\operatorname{Ext}\left(\mathbb{Z}_{2}, G\right) \cong G / 2 G$, which is \mathbb{Z}_{2} for $G=\mathbb{Z}$ or $G=\mathbb{Z}_{2}$ and 0 for $G=\mathbb{Z}_{p}$ with p odd. Moreover, $\operatorname{Hom}\left(H_{0}(K) ; G\right)=G$, and $H_{1}(K)=\mathbb{Z} \oplus \mathbb{Z}_{2}$ implies that

$$
\operatorname{Hom}\left(H_{1}(K) ; G\right)= \begin{cases}\mathbb{Z} \otimes \mathbb{Z}_{2}, & G=\mathbb{Z} \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, & G=\mathbb{Z}_{2} \\ \mathbb{Z}_{p}, & G=\mathbb{Z}_{p} \text { with } p \text { odd }\end{cases}
$$

It follows that

$$
\begin{gathered}
H^{0}(K ; \mathbb{Z})=\mathbb{Z}, \quad H^{1}(K ; \mathbb{Z})=\mathbb{Z}, \quad H^{2}(K ; \mathbb{Z})=\mathbb{Z}_{2} \\
H^{0}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}, \quad H^{1}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}, \quad H^{2}\left(K ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
\end{gathered}
$$

and

$$
H^{0}\left(K ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}, \quad H^{1}\left(K ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}, \quad H^{2}\left(K ; \mathbb{Z}_{p}\right)=0
$$

for p odd. Again all other groups vanish.
8. $S_{k}(X)$ splits as $S_{k}(X)=S_{k}(A+B) \oplus S_{k}^{\perp}(A+B)$, where the second summand is generated by all simplices neither contained in A nor in B. Hence the quotient $S_{k}(X) / S_{k}(A+B)$ is isomorphic to $S_{k}^{\perp}(A+B)$, which is free.

