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Solutions to problem set 2

1. Every element of M ⊗W of the form m⊗w is in the image of id⊗ g because g is surjective;

since every element of M ⊗W is a sum of elements of this form, it follows that id ⊗ g is

surjective. By a similar argument one sees that im(id⊗ f) ⊆ ker(id⊗ g).

To prove ker(id⊗ g) ⊆ im(id⊗f) =: I, consider the map φ : M ⊗V/I →M ⊗W induced by

id ⊗ g, which is well-defined because I ⊆ ker(id⊗ g). We now define a map ψ : M ⊗W →
M ⊗ V/I which is a left inverse for φ, i.e. such that ψ ◦ φ = id; this implies injectivity of

φ and hence that ker(id⊗ g) ⊆ I. To define ψ, consider first the map M ×W → M ⊗ V/I
defined as follows: It takes (m,w) to [m⊗v], where v ∈ V is any element such that g(v) = w.

This is well-defined and bilinear and hence descends to a map ψ : M ⊗W →M ⊗ V/I. We

clearly have ψ ◦ φ = id: That’s obvious on elements of the form [m⊗ v], and these generate.

2. In view of the previous problem, what is left to prove is the injectivity of id ⊗ f . Freeness

of M means that it has a linearly independent generating set {mi}i∈I . Note that every

element of M⊗U can be written as a sum
∑
i∈I mi⊗ui and that there is a well-defined map

M ⊗ U →
⊕

i∈I U taking such an element to (ui)i∈I . It follows that (id⊗ f)(
∑
mi ⊗ ui) =∑

mi ⊗ f(ui) = 0 implies f(ui) = 0 for all i, hence ui = 0 for all i by injectivity of f , and

hence
∑
mi ⊗ ui = 0.

3. Let H,H ′ be Abelian groups with free resolutions F → H, F ′ → H ′. By the free resolution

lemma, we can extend any given group homomorphism f : H → H ′ to a chain map f̃ : F →
F ′. Recall that by definition we have Tor(H,G) = H1(F ⊗G) and Tor(H ′, G) = H1(F ′⊗G),

and so we define the action of Tor(−, G) on f by

fTor := (f̃ ⊗ id)∗ : H1(F ′ ⊗G)→ H1(F ⊗G).

This is independent of the choice of lift f̃ as that is unique up to chain homotopy. To see

that this makes Tor(−, G) a functor, note that idTor = id because we can take as a lift of

id : H → H simply id of any free resolution of H. Moreover, (fg)Tor = gTorfTor, because if

f̃ lifts f and g̃ lifts g, then g̃f̃ lifts gf .

The case of Ext(−, G) is analogous. (Of course, these are are just special cases of how in

general one constructs the action of derived functors on morphisms.)

4. We discuss the sequence 0 → Hn(C) → Hn(C ⊗ G) → Tor(Hn−1(C), G) → 0 appearing in

the universal coefficient theorem for homology. Recall that we constructed this as

0→ coker(in ⊗ id)→ Hn(C;G)→ ker(in−1 ⊗ id)→ 0 (1)

with in : Bn → Zn the inclusion map, and then noted that

coker(in ⊗ id) ∼= Hn(C)⊗G and ker(in−1 ⊗ id) ∼= Tor(Hn−1(C), G). (2)

It is clear that a chain map φ : C → C ′ induces a morphism of short exact sequences between

(1) and its counterpart for C ′ (just think about how we arrived at (1)). Moreover, one checks

easily that under the identifications (2) and the corresponding ones for C ′, the outer maps

in this morphism of SES are φ∗ : Hn(C)→ Hn(C ′) and (φ∗)Tor.
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5. (a) Naturality of the short exact sequence in the universal coefficient theorem for homology

says that the diagram

0 // Hn(C)⊗G
f∗⊗id��

// Hn(C;G)

f∗��

// Tor(Hn−1(C), G)

(f∗)Tor��

// 0

0 // Hn(D)⊗G // Hn(D;G) // Tor(Hn−1(D), G) // 0

commutes. The outer two maps are isomorphisms because f∗ : H∗(C) → H∗(D) is an

isomorphism by assumption and by functoriality of Tor(−, G). Hence f∗ : H∗(C;G) →
H∗(D;G) is an isomorphism by the 5-lemma.

(b) Same argument as in (a) using the universal coefficient theorem for cohomology.

6. Consider the diagram

H2(S2;G)

φ∗
��

// Ext(H1(S2), G)⊕Hom(H2(S2), G)

(φ∗)
Ext⊕(φ∗)∗��

H2(RP 2;G) // Ext(H1(RP 2), G)⊕Hom(H2(RP 2), G)

Note that we have Ext(H1(S2), G) = 0 and Hom(H2(RP 2), G) = 0 because H1(S2) = 0,

H2(RP 2) = 0, and hence the map on the right vanishes for every Abelian group G. If the

splitting were natural, the map φ∗ : H2(S2;G)→ H2(RP 2;G) would consequently also have

to vanish for every G.

We will show, in contrast, that φ∗ : H2(S2;Z2) → H2(RP 2;Z2) is an isomorphism. To

see this, note that φ : RP 2 → S2 is a cellular map with respect to the usual CW complex

structures of RP 2 (with one cell in each degree 0, 1, 2) and S2 (with one cell in degree 0 and

one in degree 2). The map induced by φ on cellular chains takes the generator corresponding

to the unique 2-cell of RP 2 to the generator corresponding to the unique 2-cell of S2 (recall

the description of this map!). Dualizing, this implies that the map induced by φ on the

cellular cochain complexes with coefficients in Z2 looks as follows:

0 Z2
oo Z2

0oo Z2
0oo 0oo

0 Z2
oo

∼=
OO

0oo

OO

Z2
oo

∼=
OO

0oo

In particular, the induced map H2(S2;Z2)→ H2(RP 2;Z2) is an isomorphism.

7. The universal coefficient theorem for homology tells us that there is a splitting

Hn(K;G) ∼= (Hn(K)⊗G)⊕ Tor(Hn−1(K), G)

for every Abelian group G. We have H0(K)⊗ Zp = Zp and H1(K)⊗ Zp = Zp ⊕ (Z2 ⊗ Zp);
note that Z2⊗Z2 = Z2 and Z2⊗Zp = 0 for odd p (which doesn’t have to be prime for that;

in general, Zq ⊗ Zq′ = 0 if q, q′ are coprime, as 1 = qm + q′m′ for certain m,m′ ∈ Z, from

which it follows that 1⊗ 1 = 0 in Zq ⊗Zq′). Moreover, Tor(H0(K),Zp) = 0 as H0(K) is free

and Tor(H1(K),Zp) = Tor(Z2,Zp) = ker(Zp
2−→ Zp), which is Z2 for p = 2 and 0 if p is odd.

Combining all that, we obtain

H0(K;Z2) = Z2, H1(K;Z2) = Z2 ⊕ Z2, H2(K;Z2) = Z2

and

H0(K;Zp) = Zp, H1(K;Zp) = Zp, H2(K;Zp) = 0
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for p odd. All other groups vanish.

From the universal coefficients theorem for cohomology, we obtain a splitting

Hn(K;G) ∼= Ext(Hn−1(K), G)⊕Hom(Hn(K);G)

for every Abelian groupG. We have Ext(H0(K), G) = 0 asH0(K) is free and Ext(H1(K);G) =

Ext(Z2, G) ∼= G/2G, which is Z2 for G = Z or G = Z2 and 0 for G = Zp with p odd. More-

over, Hom(H0(K);G) = G, and H1(K) = Z⊕ Z2 implies that

Hom(H1(K);G) =


Z⊗ Z2, G = Z
Z2 ⊕ Z2, G = Z2

Zp, G = Zp with p odd

It follows that

H0(K;Z) = Z, H1(K;Z) = Z, H2(K;Z) = Z2,

H0(K;Z2) = Z2, H1(K;Z2) = Z2 ⊕ Z2, H2(K;Z2) = Z2

and

H0(K;Zp) = Zp, H1(K;Zp) = Zp, H2(K;Zp) = 0

for p odd. Again all other groups vanish.

8. Sk(X) splits as Sk(X) = Sk(A+B)⊕ S⊥k (A+B), where the second summand is generated

by all simplices neither contained in A nor in B. Hence the quotient Sk(X)/Sk(A + B) is

isomorphic to S⊥k (A+B), which is free.
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