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Solutions to problem set 3

Notation. We often omit the coefficient groups or rings from the notation, but they should always

be clear from the context.

1. Notice that if φ ∈ Sk(
∐
αXα) is a cocycle that is non-zero only on chains in Xα for some

α and ψ ∈ Sk(
∐
αXα) is a cocycle that is non-zero only on chains in Xβ for some β then

φ ∪ ψ is zero if α 6= β. Moreover, if α = β then φ ∪ ψ vanishes an all chains not contained

in Xα. The relative case follows analogously.

The last isomorphism follows from the fact that H̃n(X;R) ∼= Hn(X,x0;R).

2. We have Hn(X;R) ∼= Hom(Hn(X), R) ∼= Hom(Hn(X),Z) ⊗ R ∼= Hn(X) ⊗ R as Abelian

groups, using the fact that Hn(X) is free for all n and universal coefficient theorem for

cohomology. Given a cocycle φ ∈ Sn(X) and r ∈ R, this isomorphism identifies the class

[φ] ⊗ r ∈ Hn(X) ⊗ R with the class in Hn(X;R) represented by the cocycle in Sn(X;R)

that takes a chain σ ∈ Sn(X) to φ(σ)r. That this respects the ring structures is immediate

from the definitions.

3. Consider the commutative diagram

Hk(X,A)×H`(X,B)

∼=
��

^ // Hk+`(X,A ∪B)

��
Hk(X)×H`(X)

^ // Hk+`(X)

The left vertical map is an isomorphism because A,B are acyclic and k, ` > 0, as one sees by

looking at the LES for the pairs (X,A) and (X,B); moreover, we have Hk+`(X,A∪B) = 0

as A ∪ B = X by assumption. Combining these facts, it follows that the lower horizontal

map vanishes.

If X = A1 ∪ · · · ∪An with acyclic open sets Ai, it follows in a similar way that all n-fold cup

products of classes in H∗(X) of positive dimensions vanish.

4. Denote by ai, bi, i = 1, . . . , g, the standard basis elements of H1(Σg) and by a′i, b
′
i the

standard basis elements of H1(X), where X =
∨
g T

2 (as indicated in the figure). Moreover,

let αi, βi be the elements of the dual basis of H1(Σg) ∼= Hom(H1(Σg),Z), and α′i, β
′
i the

elements of the dual basis of H1(X) ∼= Hom(H1(X),Z). We have π∗ai = a′i, π∗bi = b′i as

π : Σg → X takes curves representing the classes on T 2 to curves representing the classes on

X. Dualizing, it follows that π∗α′i = αi and π∗β′i = βi.

The isomorphism ι∗1⊕· · ·⊕ι∗g : H∗(X)→
⊕

iH
∗(T 2) induced by the inclusion maps ιi : T 2 →

X is an isomorphism of rings, where the ring structure on the right is given by componentwise
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multiplication (see Problem 1). It follows that α′i ^ α′j = α′i ^ β′j = β′i ^ β′j = 0 for i 6= j

because these classes live in different summands. Moreover, α′i ^ α′i = 0 = β′i ^ β′i and

α′i ^ β′i = (0, . . . , 0, γT 2 , 0, . . . , 0) ∈ H2(X) using that the cup product structure on H∗(T 2)

is known and denoting by γT 2 a generator of H2(T 2) (for instance, ι∗i (α
′
i ^ β′i) = α ^ β =

γT 2 ∈ H2(T 2) where now α, β denote generators of H1(T 2)).

Denote by [T 2] the generator of H2(T 2) dual to γT 2 (note H2(T 2) ∼= Hom(H2(T 2),Z)) and

by [Σg] the generator of H2(Σg) such that π∗([Σg]) = ([T 2], . . . , [T 2]) (one can see that

such a generator exists using e.g. cellular homology). Then (αi ^ βi)[Σg] = (π∗α′i ^

π∗β′i)[Σg] = (α′i ^ β′i)(π∗[Σg]) = (α′i ^ β′i)([T
2], . . . , [T 2]) = 1, and hence αi ^ βi = γΣg ,

the generator of H2(Σg) ∼= Hom(H2(Σg),Z) dual to [Σg]; by skew-commutativity, we have

βi ^ αi = −αi ^ βi = −γΣg
. All other cup products between the basis elements of H1(Σg)

vanish by the description above.

5. Let α ∈ Sk(A) and β ∈ S`(Y ) be cocycles representing a and b. Recall that δa is represented

by δα, where α ∈ Sk(X) is any extension of α to a cochain in X and where the second δ is

the coboundary homomorphism S∗(X)→ S∗+1(X). Denote by p1 : (X×Y,A×Y )→ (X,A)

and p2 : X × Y → Y the projections. With this notation, δ(a) × b is represented by the

relative cocycle p∗1(δα) ^ p∗2(β). On the other hand, δ′(a× b) is represented by the relative

cocycle δ′(p∗1α ^ p∗2β) = p∗1(δα) ^ p∗2(β)± p∗1(α) ^ p∗2(δβ) = p∗1(δα) ^ p∗2(β); here we use

that p∗1α ^ p∗2β ∈ Sk+`(X × Y ) is an extension of p∗1α ^ p∗2β ∈ Sk+`(A × Y ) and the fact

that β ∈ S`(Y ) is a cocycle.

6. Consider the LES in cohomology for the pair (I × Y, ∂I × Y ). Since the maps i∗ : Hn(I ×
Y ) → Hn(Y × ∂I) are injective (given by i∗(a) = (a, a) in the obvious identifications

H∗(I × Y ) ∼= H∗(Y ) and H∗(∂I × Y ) ∼= H∗(Y ) ⊕H∗(Y )), the LES splits into SESs of the

form

0→ Hn(I × Y )
i∗−→ Hn(∂I × Y )

δ′−→ Hn+1(I × Y, ∂I × Y )→ 0

which split as i∗ has a left inverse (e.g. (a, b) 7→ a). Define 10 ∈ H0(∂I) to be the class

represented by the cocycle ϕ0 with ϕ0(0) = 1 and ϕ0(1) = 0, and similarly define 11 ∈
H0(∂I). One checks easily that the composition Hn(Y ) ∼= Hn(I × Y )

i∗−→ Hn(∂I × Y ) is

given by b 7→ 10 × b + 11 × b, so the subspace Q := {10 × b | b ∈ Hn(Y )} ⊂ Hn(∂I × Y ) is

complementary to the image of i∗. Hence δ′|Q : Q→ Hn+1(I×Y, ∂I×Y ) is an isomorphism;

since by the previous problem we have δ′(10 × b) = δ(10) × b, it follows that Hn(Y ) →
Hn+1(I × Y, ∂I × Y ), b 7→ δ(10) × b, is an isomorphism. This is what we need to prove in

case µ0 = δ(10); any other generator µ0 ∈ H1(I, ∂I) is of the form µ0 = δ(10) · r for some

invertible r ∈ R, and thus b 7→ µ0 × b is also an isomorphism in this case.

7. The Z2-cohomology ring of RP 3 is H∗(RP 3;Z2) ∼= Z2[α]/(α4) with |α| = 1, whereas that

of RP 2 ∨ S3 is H∗(RP 2 ∨ S3;Z2) ∼= Z2[β]/(β3)⊕ Z2[γ]/(γ2) with |β| = 1 and |γ| = 3 using

the result of the Problem 1. These are isomorphic as Z2-vector spaces but not as rings (e.g.

because the generator of H1 squares to zero in the second but not in the first case).

8. Using cellular homology, one computes

Hi(X;Z), Hi(Y ;Z) =



Z i = 0

0 i = 1

Zp i = 2

0 i = 3

Z i = 4
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Using the universal coefficients theorem for cohomology it follows that

Hi(X;Z), Hi(Y ;Z) =



Z i = 0

0 i = 1

0 i = 2

Zp i = 3

Z i = 4

and Hi(X;Zp), Hi(Y ;Zp) =



Zp i = 0

0 i = 1

Zp i = 2

Zp i = 3

Zp i = 4

The cohomology rings with Z-coefficients are clearly isomorphic (the only non-vanishing cup

products are multiplication with multiples of the unit in H0).

We now compare the cohomology rings with Zp-coefficients: Let α ∈ H2(X;Zp) be a

generator; using the cellular description of induced maps, one sees that the map i∗ :

H2(X;Zp) → H2(CP 2;Zp) induced by the inclusion i : CP 2 → X takes α to a genera-

tor f∗(α) of H2(CP 2;Zp). Using the known description of the ring structure of H∗(CP 2)

and the fact that H∗(CP 2;Zp) ∼= H∗(CP 2;Z)⊗ Zp as rings (see Problem 2), it follows that

f∗(α ^ α) = f∗(α) ^ f∗(α) 6= 0.

In contrast to that, if β ∈ H2(Y ;Zp) is a generator, we have β ^ β = 0. To see that, recall

the ring isomorphism H̃∗(Y ;Zp) ∼= H̃∗(M(Zp; 2);Zp) ⊕ H̃∗(S4;Zp) from Problem 1. The

class β lives in the first factor of this splitting which vanishes in dimension 4.

3


