Solutions to problem set 3

Notation. We often omit the coefficient groups or rings from the notation, but they should always be clear from the context.

1. Notice that if $\phi \in S^{k}\left(\coprod_{\alpha} X_{\alpha}\right)$ is a cocycle that is non-zero only on chains in X_{α} for some α and $\psi \in S^{k}\left(\coprod_{\alpha} X_{\alpha}\right)$ is a cocycle that is non-zero only on chains in X_{β} for some β then $\phi \cup \psi$ is zero if $\alpha \neq \beta$. Moreover, if $\alpha=\beta$ then $\phi \cup \psi$ vanishes an all chains not contained in X_{α}. The relative case follows analogously.
The last isomorphism follows from the fact that $\tilde{H}^{n}(X ; R) \cong H^{n}\left(X, x_{0} ; R\right)$.
2. We have $H^{n}(X ; R) \cong \operatorname{Hom}\left(H_{n}(X), R\right) \cong \operatorname{Hom}\left(H_{n}(X), \mathbb{Z}\right) \otimes R \cong H^{n}(X) \otimes R$ as Abelian groups, using the fact that $H_{n}(X)$ is free for all n and universal coefficient theorem for cohomology. Given a cocycle $\phi \in S^{n}(X)$ and $r \in R$, this isomorphism identifies the class $[\phi] \otimes r \in H^{n}(X) \otimes R$ with the class in $H^{n}(X ; R)$ represented by the cocycle in $S^{n}(X ; R)$ that takes a chain $\sigma \in S_{n}(X)$ to $\phi(\sigma) r$. That this respects the ring structures is immediate from the definitions.
3. Consider the commutative diagram

The left vertical map is an isomorphism because A, B are acyclic and $k, \ell>0$, as one sees by looking at the LES for the pairs (X, A) and (X, B); moreover, we have $H^{k+\ell}(X, A \cup B)=0$ as $A \cup B=X$ by assumption. Combining these facts, it follows that the lower horizontal map vanishes.
If $X=A_{1} \cup \cdots \cup A_{n}$ with acyclic open sets A_{i}, it follows in a similar way that all n-fold cup products of classes in $H^{*}(X)$ of positive dimensions vanish.
4. Denote by $a_{i}, b_{i}, i=1, \ldots, g$, the standard basis elements of $H_{1}\left(\Sigma_{g}\right)$ and by $a_{i}^{\prime}, b_{i}^{\prime}$ the standard basis elements of $H_{1}(X)$, where $X=\bigvee_{g} T^{2}$ (as indicated in the figure). Moreover, let α_{i}, β_{i} be the elements of the dual basis of $H^{1}\left(\Sigma_{g}\right) \cong \operatorname{Hom}\left(H_{1}\left(\Sigma_{g}\right), \mathbb{Z}\right)$, and α_{i}^{\prime}, β_{i}^{\prime} the elements of the dual basis of $H^{1}(X) \cong \operatorname{Hom}\left(H_{1}(X), \mathbb{Z}\right)$. We have $\pi_{*} a_{i}=a_{i}^{\prime}, \pi_{*} b_{i}=b_{i}^{\prime}$ as

$\pi: \Sigma_{g} \rightarrow X$ takes curves representing the classes on T^{2} to curves representing the classes on X. Dualizing, it follows that $\pi^{*} \alpha_{i}^{\prime}=\alpha_{i}$ and $\pi^{*} \beta_{i}^{\prime}=\beta_{i}$.
The isomorphism $\iota_{1}^{*} \oplus \cdots \oplus \iota_{g}^{*}: H^{*}(X) \rightarrow \bigoplus_{i} H^{*}\left(T^{2}\right)$ induced by the inclusion maps $\iota_{i}: T^{2} \rightarrow$ X is an isomorphism of rings, where the ring structure on the right is given by componentwise
multiplication (see Problem 1). It follows that $\alpha_{i}^{\prime} \smile \alpha_{j}^{\prime}=\alpha_{i}^{\prime} \smile \beta_{j}^{\prime}=\beta_{i}^{\prime} \smile \beta_{j}^{\prime}=0$ for $i \neq j$ because these classes live in different summands. Moreover, $\alpha_{i}^{\prime} \smile \alpha_{i}^{\prime}=0=\beta_{i}^{\prime} \smile \beta_{i}^{\prime}$ and $\alpha_{i}^{\prime} \smile \beta_{i}^{\prime}=\left(0, \ldots, 0, \gamma_{T^{2}}, 0, \ldots, 0\right) \in H^{2}(X)$ using that the cup product structure on $H^{*}\left(T^{2}\right)$ is known and denoting by $\gamma_{T^{2}}$ a generator of $H^{2}\left(T^{2}\right)$ (for instance, $\iota_{i}^{*}\left(\alpha_{i}^{\prime} \smile \beta_{i}^{\prime}\right)=\alpha \smile \beta=$ $\gamma_{T^{2}} \in H^{2}\left(T^{2}\right)$ where now α, β denote generators of $\left.H^{1}\left(T^{2}\right)\right)$.
Denote by $\left[T^{2}\right]$ the generator of $H_{2}\left(T^{2}\right)$ dual to $\gamma_{T^{2}}\left(\right.$ note $\left.H^{2}\left(T^{2}\right) \cong \operatorname{Hom}\left(H_{2}\left(T^{2}\right), \mathbb{Z}\right)\right)$ and by $\left[\Sigma_{g}\right]$ the generator of $H_{2}\left(\Sigma_{g}\right)$ such that $\pi_{*}\left(\left[\Sigma_{g}\right]\right)=\left(\left[T^{2}\right], \ldots,\left[T^{2}\right]\right)$ (one can see that such a generator exists using e.g. cellular homology). Then $\left(\alpha_{i} \smile \beta_{i}\right)\left[\Sigma_{g}\right]=\left(\pi^{*} \alpha_{i}^{\prime} \smile\right.$ $\left.\pi^{*} \beta_{i}^{\prime}\right)\left[\Sigma_{g}\right]=\left(\alpha_{i}^{\prime} \smile \beta_{i}^{\prime}\right)\left(\pi_{*}\left[\Sigma_{g}\right]\right)=\left(\alpha_{i}^{\prime} \smile \beta_{i}^{\prime}\right)\left(\left[T^{2}\right], \ldots,\left[T^{2}\right]\right)=1$, and hence $\alpha_{i} \smile \beta_{i}=\gamma_{\Sigma_{g}}$, the generator of $H^{2}\left(\Sigma_{g}\right) \cong \operatorname{Hom}\left(H_{2}\left(\Sigma_{g}\right), \mathbb{Z}\right)$ dual to [Σ_{g}]; by skew-commutativity, we have $\beta_{i} \smile \alpha_{i}=-\alpha_{i} \smile \beta_{i}=-\gamma_{\Sigma_{g}}$. All other cup products between the basis elements of $H^{1}\left(\Sigma_{g}\right)$ vanish by the description above.
5. Let $\alpha \in S^{k}(A)$ and $\beta \in S^{\ell}(Y)$ be cocycles representing a and b. Recall that δa is represented by $\delta \bar{\alpha}$, where $\bar{\alpha} \in S^{k}(X)$ is any extension of α to a cochain in X and where the second δ is the coboundary homomorphism $S^{*}(X) \rightarrow S^{*+1}(X)$. Denote by $p_{1}:(X \times Y, A \times Y) \rightarrow(X, A)$ and $p_{2}: X \times Y \rightarrow Y$ the projections. With this notation, $\delta(a) \times b$ is represented by the relative cocycle $p_{1}^{*}(\delta \bar{\alpha}) \smile p_{2}^{*}(\beta)$. On the other hand, $\delta^{\prime}(a \times b)$ is represented by the relative cocycle $\delta^{\prime}\left(p_{1}^{*} \bar{\alpha} \smile p_{2}^{*} \beta\right)=p_{1}^{*}(\delta \bar{\alpha}) \smile p_{2}^{*}(\beta) \pm p_{1}^{*}(\bar{\alpha}) \smile p_{2}^{*}(\delta \beta)=p_{1}^{*}(\delta \bar{\alpha}) \smile p_{2}^{*}(\beta)$; here we use that $p_{1}^{*} \bar{\alpha} \smile p_{2}^{*} \beta \in S^{k+\ell}(X \times Y)$ is an extension of $p_{1}^{*} \alpha \smile p_{2}^{*} \beta \in S^{k+\ell}(A \times Y)$ and the fact that $\beta \in S^{\ell}(Y)$ is a cocycle.
6. Consider the LES in cohomology for the pair $(I \times Y, \partial I \times Y)$. Since the maps $i^{*}: H^{n}(I \times$ $Y) \rightarrow H^{n}(Y \times \partial I)$ are injective (given by $i^{*}(a)=(a, a)$ in the obvious identifications $H^{*}(I \times Y) \cong H^{*}(Y)$ and $\left.H^{*}(\partial I \times Y) \cong H^{*}(Y) \oplus H^{*}(Y)\right)$, the LES splits into SESs of the form

$$
0 \rightarrow H^{n}(I \times Y) \xrightarrow{i^{*}} H^{n}(\partial I \times Y) \xrightarrow{\delta^{\prime}} H^{n+1}(I \times Y, \partial I \times Y) \rightarrow 0
$$

which split as i^{*} has a left inverse (e.g. $\left.(a, b) \mapsto a\right)$. Define $1_{0} \in H^{0}(\partial I)$ to be the class represented by the cocycle φ_{0} with $\varphi_{0}(0)=1$ and $\varphi_{0}(1)=0$, and similarly define $1_{1} \in$ $H^{0}(\partial I)$. One checks easily that the composition $H^{n}(Y) \cong H^{n}(I \times Y) \xrightarrow{i^{*}} H^{n}(\partial I \times Y)$ is given by $b \mapsto 1_{0} \times b+1_{1} \times b$, so the subspace $Q:=\left\{1_{0} \times b \mid b \in H^{n}(Y)\right\} \subset H^{n}(\partial I \times Y)$ is complementary to the image of i^{*}. Hence $\left.\delta^{\prime}\right|_{Q}: Q \rightarrow H^{n+1}(I \times Y, \partial I \times Y)$ is an isomorphism; since by the previous problem we have $\delta^{\prime}\left(1_{0} \times b\right)=\delta\left(1_{0}\right) \times b$, it follows that $H^{n}(Y) \rightarrow$ $H^{n+1}(I \times Y, \partial I \times Y), b \mapsto \delta\left(1_{0}\right) \times b$, is an isomorphism. This is what we need to prove in case $\mu_{0}=\delta\left(1_{0}\right)$; any other generator $\mu_{0} \in H^{1}(I, \partial I)$ is of the form $\mu_{0}=\delta\left(1_{0}\right) \cdot r$ for some invertible $r \in R$, and thus $b \mapsto \mu_{0} \times b$ is also an isomorphism in this case.
7. The \mathbb{Z}_{2}-cohomology ring of $\mathbb{R} P^{3}$ is $H^{*}\left(\mathbb{R} P^{3} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[\alpha] /\left(\alpha^{4}\right)$ with $|\alpha|=1$, whereas that of $\mathbb{R} P^{2} \vee S^{3}$ is $H^{*}\left(\mathbb{R} P^{2} \vee S^{3} ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}[\beta] /\left(\beta^{3}\right) \oplus \mathbb{Z}_{2}[\gamma] /\left(\gamma^{2}\right)$ with $|\beta|=1$ and $|\gamma|=3$ using the result of the Problem 1. These are isomorphic as \mathbb{Z}_{2}-vector spaces but not as rings (e.g. because the generator of H^{1} squares to zero in the second but not in the first case).
8. Using cellular homology, one computes

$$
H_{i}(X ; \mathbb{Z}), H_{i}(Y ; \mathbb{Z})= \begin{cases}\mathbb{Z} & i=0 \\ 0 & i=1 \\ \mathbb{Z}_{p} & i=2 \\ 0 & i=3 \\ \mathbb{Z} & i=4\end{cases}
$$

Using the universal coefficients theorem for cohomology it follows that

$$
H^{i}(X ; \mathbb{Z}), H^{i}(Y ; \mathbb{Z})=\left\{\begin{array}{ll}
\mathbb{Z} & i=0 \\
0 & i=1 \\
0 & i=2 \\
\mathbb{Z}_{p} & i=3 \\
\mathbb{Z} & i=4
\end{array} \quad \text { and } \quad H^{i}\left(X ; \mathbb{Z}_{p}\right), H^{i}\left(Y ; \mathbb{Z}_{p}\right)= \begin{cases}\mathbb{Z}_{p} & i=0 \\
0 & i=1 \\
\mathbb{Z}_{p} & i=2 \\
\mathbb{Z}_{p} & i=3 \\
\mathbb{Z}_{p} & i=4\end{cases}\right.
$$

The cohomology rings with \mathbb{Z}-coefficients are clearly isomorphic (the only non-vanishing cup products are multiplication with multiples of the unit in H^{0}).

We now compare the cohomology rings with \mathbb{Z}_{p}-coefficients: Let $\alpha \in H^{2}\left(X ; \mathbb{Z}_{p}\right)$ be a generator; using the cellular description of induced maps, one sees that the map i^{*} : $H^{2}\left(X ; \mathbb{Z}_{p}\right) \rightarrow H^{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}_{p}\right)$ induced by the inclusion $i: \mathbb{C} P^{2} \rightarrow X$ takes α to a generator $f^{*}(\alpha)$ of $H^{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}_{p}\right)$. Using the known description of the ring structure of $H^{*}\left(\mathbb{C} P^{2}\right)$ and the fact that $H^{*}\left(\mathbb{C} P^{2} ; \mathbb{Z}_{p}\right) \cong H^{*}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right) \otimes \mathbb{Z}_{p}$ as rings (see Problem 2), it follows that $f^{*}(\alpha \smile \alpha)=f^{*}(\alpha) \smile f^{*}(\alpha) \neq 0$.
In contrast to that, if $\beta \in H^{2}\left(Y ; \mathbb{Z}_{p}\right)$ is a generator, we have $\beta \smile \beta=0$. To see that, recall the ring isomorphism $\widetilde{H}^{*}\left(Y ; \mathbb{Z}_{p}\right) \cong \widetilde{H}^{*}\left(M\left(\mathbb{Z}_{p} ; 2\right) ; \mathbb{Z}_{p}\right) \oplus \widetilde{H}^{*}\left(S^{4} ; \mathbb{Z}_{p}\right)$ from Problem 1. The class β lives in the first factor of this splitting which vanishes in dimension 4.

