Prof. Paul Biran ETH Zürich Algebraic Topology II

Solutions to problem set 3

Notation. We often omit the coefficient groups or rings from the notation, but they should always be clear from the context.

1. Notice that if $\phi \in S^k(\coprod_{\alpha} X_{\alpha})$ is a cocycle that is non-zero only on chains in X_{α} for some α and $\psi \in S^k(\coprod_{\alpha} X_{\alpha})$ is a cocycle that is non-zero only on chains in X_{β} for some β then $\phi \cup \psi$ is zero if $\alpha \neq \beta$. Moreover, if $\alpha = \beta$ then $\phi \cup \psi$ vanishes an all chains not contained in X_{α} . The relative case follows analogously.

The last isomorphism follows from the fact that $\tilde{H}^n(X; R) \cong H^n(X, x_0; R)$.

- 2. We have $H^n(X; R) \cong \operatorname{Hom}(H_n(X), R) \cong \operatorname{Hom}(H_n(X), \mathbb{Z}) \otimes R \cong H^n(X) \otimes R$ as Abelian groups, using the fact that $H_n(X)$ is free for all n and universal coefficient theorem for cohomology. Given a cocycle $\phi \in S^n(X)$ and $r \in R$, this isomorphism identifies the class $[\phi] \otimes r \in H^n(X) \otimes R$ with the class in $H^n(X; R)$ represented by the cocycle in $S^n(X; R)$ that takes a chain $\sigma \in S_n(X)$ to $\phi(\sigma)r$. That this respects the ring structures is immediate from the definitions.
- 3. Consider the commutative diagram

$$\begin{array}{c} H^{k}(X,A) \times H^{\ell}(X,B) \xrightarrow{\smile} H^{k+\ell}(X,A \cup B) \\ \cong & \downarrow \\ H^{k}(X) \times H^{\ell}(X) \xrightarrow{\smile} H^{k+\ell}(X) \end{array}$$

The left vertical map is an isomorphism because A, B are acyclic and $k, \ell > 0$, as one sees by looking at the LES for the pairs (X, A) and (X, B); moreover, we have $H^{k+\ell}(X, A \cup B) = 0$ as $A \cup B = X$ by assumption. Combining these facts, it follows that the lower horizontal map vanishes.

If $X = A_1 \cup \cdots \cup A_n$ with acyclic open sets A_i , it follows in a similar way that all *n*-fold cup products of classes in $H^*(X)$ of positive dimensions vanish.

4. Denote by $a_i, b_i, i = 1, \ldots, g$, the standard basis elements of $H_1(\Sigma_g)$ and by a'_i, b'_i the standard basis elements of $H_1(X)$, where $X = \bigvee_g T^2$ (as indicated in the figure). Moreover, let α_i, β_i be the elements of the dual basis of $H^1(\Sigma_g) \cong \operatorname{Hom}(H_1(\Sigma_g), \mathbb{Z})$, and α'_i, β'_i the elements of the dual basis of $H^1(X) \cong \operatorname{Hom}(H_1(X), \mathbb{Z})$. We have $\pi_* a_i = a'_i, \pi_* b_i = b'_i$ as

 $\pi: \Sigma_g \to X$ takes curves representing the classes on T^2 to curves representing the classes on X. Dualizing, it follows that $\pi^* \alpha'_i = \alpha_i$ and $\pi^* \beta'_i = \beta_i$.

The isomorphism $\iota_1^* \oplus \cdots \oplus \iota_g^* : H^*(X) \to \bigoplus_i H^*(T^2)$ induced by the inclusion maps $\iota_i : T^2 \to X$ is an isomorphism of rings, where the ring structure on the right is given by componentwise

multiplication (see Problem 1). It follows that $\alpha'_i \smile \alpha'_j = \alpha'_i \smile \beta'_j = \beta'_i \smile \beta'_j = 0$ for $i \neq j$ because these classes live in different summands. Moreover, $\alpha'_i \smile \alpha'_i = 0 = \beta'_i \smile \beta'_i$ and $\alpha'_i \smile \beta'_i = (0, \ldots, 0, \gamma_{T^2}, 0, \ldots, 0) \in H^2(X)$ using that the cup product structure on $H^*(T^2)$ is known and denoting by γ_{T^2} a generator of $H^2(T^2)$ (for instance, $\iota^*_i(\alpha'_i \smile \beta'_i) = \alpha \smile \beta = \gamma_{T^2} \in H^2(T^2)$ where now α, β denote generators of $H^1(T^2)$).

Denote by $[T^2]$ the generator of $H_2(T^2)$ dual to γ_{T^2} (note $H^2(T^2) \cong \operatorname{Hom}(H_2(T^2), \mathbb{Z})$) and by $[\Sigma_g]$ the generator of $H_2(\Sigma_g)$ such that $\pi_*([\Sigma_g]) = ([T^2], \ldots, [T^2])$ (one can see that such a generator exists using e.g. cellular homology). Then $(\alpha_i \smile \beta_i)[\Sigma_g] = (\pi^* \alpha'_i \smile \pi^* \beta'_i)[\Sigma_g] = (\alpha'_i \smile \beta'_i)(\pi_*[\Sigma_g]) = (\alpha'_i \smile \beta'_i)([T^2], \ldots, [T^2]) = 1$, and hence $\alpha_i \smile \beta_i = \gamma_{\Sigma_g}$, the generator of $H^2(\Sigma_g) \cong \operatorname{Hom}(H_2(\Sigma_g), \mathbb{Z})$ dual to $[\Sigma_g]$; by skew-commutativity, we have $\beta_i \smile \alpha_i = -\alpha_i \smile \beta_i = -\gamma_{\Sigma_g}$. All other cup products between the basis elements of $H^1(\Sigma_g)$ vanish by the description above.

- 5. Let $\alpha \in S^k(A)$ and $\beta \in S^\ell(Y)$ be cocycles representing a and b. Recall that δa is represented by $\delta \overline{\alpha}$, where $\overline{\alpha} \in S^k(X)$ is any extension of α to a cochain in X and where the second δ is the coboundary homomorphism $S^*(X) \to S^{*+1}(X)$. Denote by $p_1 : (X \times Y, A \times Y) \to (X, A)$ and $p_2 : X \times Y \to Y$ the projections. With this notation, $\delta(a) \times b$ is represented by the relative cocycle $p_1^*(\delta \overline{\alpha}) \smile p_2^*(\beta)$. On the other hand, $\delta'(a \times b)$ is represented by the relative cocycle $\delta'(p_1^*\overline{\alpha} \smile p_2^*\beta) = p_1^*(\delta \overline{\alpha}) \smile p_2^*(\beta) \pm p_1^*(\overline{\alpha}) \smile p_2^*(\delta \beta) = p_1^*(\delta \overline{\alpha}) \smile p_2^*(\beta)$; here we use that $p_1^*\overline{\alpha} \smile p_2^*\beta \in S^{k+\ell}(X \times Y)$ is an extension of $p_1^*\alpha \smile p_2^*\beta \in S^{k+\ell}(A \times Y)$ and the fact that $\beta \in S^\ell(Y)$ is a cocycle.
- 6. Consider the LES in cohomology for the pair $(I \times Y, \partial I \times Y)$. Since the maps $i^* : H^n(I \times Y) \to H^n(Y \times \partial I)$ are injective (given by $i^*(a) = (a, a)$ in the obvious identifications $H^*(I \times Y) \cong H^*(Y)$ and $H^*(\partial I \times Y) \cong H^*(Y) \oplus H^*(Y)$), the LES splits into SESs of the form

$$0 \to H^n(I \times Y) \xrightarrow{i^*} H^n(\partial I \times Y) \xrightarrow{\delta'} H^{n+1}(I \times Y, \partial I \times Y) \to 0$$

which split as i^* has a left inverse (e.g. $(a,b) \mapsto a$). Define $1_0 \in H^0(\partial I)$ to be the class represented by the cocycle φ_0 with $\varphi_0(0) = 1$ and $\varphi_0(1) = 0$, and similarly define $1_1 \in$ $H^0(\partial I)$. One checks easily that the composition $H^n(Y) \cong H^n(I \times Y) \xrightarrow{i^*} H^n(\partial I \times Y)$ is given by $b \mapsto 1_0 \times b + 1_1 \times b$, so the subspace $Q := \{1_0 \times b \mid b \in H^n(Y)\} \subset H^n(\partial I \times Y)$ is complementary to the image of i^* . Hence $\delta'|_Q : Q \to H^{n+1}(I \times Y, \partial I \times Y)$ is an isomorphism; since by the previous problem we have $\delta'(1_0 \times b) = \delta(1_0) \times b$, it follows that $H^n(Y) \to$ $H^{n+1}(I \times Y, \partial I \times Y), b \mapsto \delta(1_0) \times b$, is an isomorphism. This is what we need to prove in case $\mu_0 = \delta(1_0)$; any other generator $\mu_0 \in H^1(I, \partial I)$ is of the form $\mu_0 = \delta(1_0) \cdot r$ for some invertible $r \in R$, and thus $b \mapsto \mu_0 \times b$ is also an isomorphism in this case.

- 7. The \mathbb{Z}_2 -cohomology ring of $\mathbb{R}P^3$ is $H^*(\mathbb{R}P^3;\mathbb{Z}_2) \cong \mathbb{Z}_2[\alpha]/(\alpha^4)$ with $|\alpha| = 1$, whereas that of $\mathbb{R}P^2 \vee S^3$ is $H^*(\mathbb{R}P^2 \vee S^3;\mathbb{Z}_2) \cong \mathbb{Z}_2[\beta]/(\beta^3) \oplus \mathbb{Z}_2[\gamma]/(\gamma^2)$ with $|\beta| = 1$ and $|\gamma| = 3$ using the result of the Problem 1. These are isomorphic as \mathbb{Z}_2 -vector spaces but not as rings (e.g. because the generator of H^1 squares to zero in the second but not in the first case).
- 8. Using cellular homology, one computes

$$H_{i}(X;\mathbb{Z}), H_{i}(Y;\mathbb{Z}) = \begin{cases} \mathbb{Z} & i = 0\\ 0 & i = 1\\ \mathbb{Z}_{p} & i = 2\\ 0 & i = 3\\ \mathbb{Z} & i = 4 \end{cases}$$

Using the universal coefficients theorem for cohomology it follows that

$$H^{i}(X;\mathbb{Z}), H^{i}(Y;\mathbb{Z}) = \begin{cases} \mathbb{Z} & i = 0 \\ 0 & i = 1 \\ 0 & i = 2 \\ \mathbb{Z}_{p} & i = 3 \\ \mathbb{Z} & i = 4 \end{cases} \quad H^{i}(X;\mathbb{Z}_{p}), H^{i}(Y;\mathbb{Z}_{p}) = \begin{cases} \mathbb{Z}_{p} & i = 0 \\ 0 & i = 1 \\ \mathbb{Z}_{p} & i = 2 \\ \mathbb{Z}_{p} & i = 2 \\ \mathbb{Z}_{p} & i = 3 \\ \mathbb{Z}_{p} & i = 4 \end{cases}$$

The cohomology rings with \mathbb{Z} -coefficients are clearly isomorphic (the only non-vanishing cup products are multiplication with multiples of the unit in H^0).

We now compare the cohomology rings with \mathbb{Z}_p -coefficients: Let $\alpha \in H^2(X; \mathbb{Z}_p)$ be a generator; using the cellular description of induced maps, one sees that the map i^* : $H^2(X; \mathbb{Z}_p) \to H^2(\mathbb{C}P^2; \mathbb{Z}_p)$ induced by the inclusion $i : \mathbb{C}P^2 \to X$ takes α to a generator $f^*(\alpha)$ of $H^2(\mathbb{C}P^2; \mathbb{Z}_p)$. Using the known description of the ring structure of $H^*(\mathbb{C}P^2)$ and the fact that $H^*(\mathbb{C}P^2; \mathbb{Z}_p) \cong H^*(\mathbb{C}P^2; \mathbb{Z}) \otimes \mathbb{Z}_p$ as rings (see Problem 2), it follows that $f^*(\alpha \smile \alpha) = f^*(\alpha) \smile f^*(\alpha) \neq 0$.

In contrast to that, if $\beta \in H^2(Y; \mathbb{Z}_p)$ is a generator, we have $\beta \smile \beta = 0$. To see that, recall the ring isomorphism $\widetilde{H}^*(Y; \mathbb{Z}_p) \cong \widetilde{H}^*(M(\mathbb{Z}_p; 2); \mathbb{Z}_p) \oplus \widetilde{H}^*(S^4; \mathbb{Z}_p)$ from Problem 1. The class β lives in the first factor of this splitting which vanishes in dimension 4.