Solutions to problem set 5

1. Given a closed manifold M, we set $M^{\prime}:=M \backslash \mathrm{pt}$. Using the Mayer-Vietoris sequence for the cover of M given by M^{\prime} and a ball, one sees that $H_{i}\left(M^{\prime}\right)=H_{i}(M)$ for $i<n-1$. We also know that $H_{n}\left(M^{\prime}\right)=0$ as M^{\prime} is non-compact, and hence the top end of the MV sequence is

$$
\begin{equation*}
0 \rightarrow H_{n}(M) \rightarrow H_{n-1}\left(S^{n-1}\right) \rightarrow H_{n-1}\left(M^{\prime}\right) \rightarrow H_{n-1}(M) \rightarrow 0 \tag{1}
\end{equation*}
$$

If M is orientable $\left(\Leftrightarrow H_{n}(M) \cong \mathbb{Z}\right)$, the first map is an isomorphism so that we get $H_{n-1}\left(M^{\prime}\right)=H_{n-1}(M)$ in this case, whereas if M is non-orientable $\left(\Leftrightarrow H_{n}(M)=0\right)$, we end up with a short exact sequence

$$
\begin{equation*}
0 \rightarrow H_{n-1}\left(S^{n-1}\right) \rightarrow H_{n-1}\left(M^{\prime}\right) \rightarrow H_{n-1}(M) \rightarrow 0 \tag{2}
\end{equation*}
$$

Note in particular that $b_{n-1}\left(M^{\prime}\right)=b_{n-1}(M)+1$ in this case.
To compute $H_{*}\left(M_{1} \# M_{2}\right)$, consider the cover of $M_{1} \# M_{2}$ given by two sets $A_{1} \approx M_{1}^{\prime}, A_{2} \approx$ M_{2}^{\prime} with $A_{1} \cap A_{2} \simeq S^{n-1}$. From the resulting Mayer-Vietoris sequence we see immediately that $H_{i}\left(M_{1} \# M_{2}\right) \cong H_{i}\left(M_{1}^{\prime}\right) \oplus H_{i}\left(M_{2}^{\prime}\right) \cong H_{i}\left(M_{1}\right) \oplus H_{i}\left(M_{2}\right)$ for $0<i<n-1$. The top end of the MV sequence looks as follows:

$$
\begin{equation*}
0 \rightarrow H_{n}\left(M_{1} \# M_{2}\right) \rightarrow H_{n-1}\left(S^{n-1}\right) \xrightarrow{\phi} H_{n-1}\left(M_{1}^{\prime}\right) \oplus H_{n-1}\left(M_{2}^{\prime}\right) \rightarrow H_{n-1}\left(M_{1} \# M_{2}\right) \rightarrow 0 \tag{3}
\end{equation*}
$$

Writing $\phi=\left(\phi_{1}, \phi_{2}\right)$, note that the maps $\phi_{i}: H_{n-1}\left(S^{n-1}\right) \rightarrow H_{n-1}\left(M_{i}^{\prime}\right)$ are precisely those also appearing in (1) with $M=M_{i}$. So if both M_{1} and M_{2} are orientable, ϕ vanishes and we obtain $H_{n-1}\left(M_{1} \# M_{2}\right) \cong H_{n-1}\left(M_{1}\right) \oplus H_{n-1}\left(M_{2}\right)$; we also see that $H_{n}\left(M_{1} \# M_{2}\right) \cong \mathbb{Z}$, so $M_{1} \# M_{2}$ is orientable. If at least one of the M_{i} is non-orientable, ϕ is injective and we obtain from (3) a SES

$$
\begin{equation*}
0 \rightarrow H_{n-1}\left(S^{n-1}\right) \xrightarrow{\phi} H_{n-1}\left(M_{1}^{\prime}\right) \oplus H_{n-1}\left(M_{2}^{\prime}\right) \rightarrow H_{n-1}\left(M_{1} \# M_{2}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

(and $H_{n}\left(M_{1} \# M_{2}\right)=0$, so $M_{1} \# M_{2}$ is non-orientable). If precisely one of the M_{i} (say M_{2}) is non-orientable, this yields $H_{n-1}\left(M_{1} \# M_{2}\right) \cong \operatorname{coker} \phi \cong H_{n-1}\left(M_{1}\right) \oplus H_{n-1}\left(M_{2}\right)$ because $\phi_{1}=0$ and coker $\phi_{2} \cong H_{n-1}\left(M_{2}\right)$ using the SES (2) with $M=M_{2}$. If both M_{1} and M_{2} are non-orientable, we obtain $1-b_{n-1}\left(M_{1}^{\prime}\right)-b_{n-1}\left(M_{2}^{\prime}\right)+b_{n-1}\left(M_{1} \# M_{2}\right)=0$ by exactness of (4), hence $b_{n-1}\left(M_{1} \# M_{2}\right)=b_{n-1}\left(M_{1}\right)+b_{n-1}\left(M_{2}\right)+1$ (using $\left.b_{n-1}\left(M_{i}^{\prime}\right)=b_{n-1}\left(M_{i}\right)+1\right)$. Combining this with what we know from Problem 1, we conclude that $H_{n-1}\left(M_{1} \# M_{2}\right)$ is obtained by replacing one \mathbb{Z}_{2}-summand in $H_{n-1}\left(M_{1}\right) \oplus H_{n-1}\left(M_{2}\right)$ by a \mathbb{Z}-summand.
2. Poincaré duality tells us that $H_{n-1}(M) \cong H^{n+1}(M)$, and $H^{n+1}(M) \cong \operatorname{Hom}\left(H_{n+1}, \mathbb{Z}\right) \oplus$ $\operatorname{Ext}\left(H_{n}(M), Z\right)$ by the universal coefficient theorem. Recall that $\operatorname{Ext}(G, \mathbb{Z})$ is isomorphic to the torsion subgroup of G for any finitely generated Abelian group G (which the $H_{i}(M)$ are as M is a compact manifold). So if $H_{n}(M)$ has torsion, then also $H^{n+1}(M)$ and $H_{n-1}(M)$ have torsion.
3. Consider the maps $p:\left(S^{2} \times S^{8}\right) \#\left(S^{4} \times S^{6}\right) \rightarrow S^{2} \times S^{8}$ and $q:\left(S^{2} \times S^{8}\right) \#\left(S^{4} \times S^{6}\right) \rightarrow S^{4} \times S^{6}$ given by collapsing one of the two summands. It follows from the result of problem 1 that $p^{*} \oplus q^{*}: H^{i}\left(S^{2} \times S^{8}\right) \oplus H^{i}\left(S^{4} \times S^{6}\right) \rightarrow H^{i}\left(S^{2} \times S^{8} \# S^{4} \times S^{6}\right)$ is an isomorphism in degrees $0<i<10$ (check that our $p^{*} \oplus q^{*}$ is just the dual of the isomorphism $H_{i}\left(S^{2} \times S^{8} \# S^{4} \times S^{6}\right) \cong$
$H_{i}\left(S^{4} \times S^{6}\right) \oplus H_{i}\left(S^{2} \# S^{8}\right)$ from problem 1!). The fact that this is a ring homomorphism shows that the only non-trivial cup products are those between elements of complementary degrees, i.e. those forced by Poincaré duality.
4. Recall from class that every odd-dimensional manifold has vanishing Euler characteristic, so $0=\chi(M)=b_{0}-b_{1}+b_{2}-b_{3}$. We have $b_{0}=1$, and $b_{3}=0$ since M is non-orientable. Hence $b_{1}>0$ and thus $H_{1}(M)$ is infinite.
5. Denoting by $\alpha \in H^{2}\left(\mathbb{C} P^{n}\right)$ a generator, α^{n} generates $H^{2 n}\left(\mathbb{C} P^{n}\right)$ and we have $\alpha^{n} \frown\left[\mathbb{C} P^{n}\right]=$ 1 for one choice of fundamental class $\left[\mathbb{C} P^{n}\right] \in H_{2 n}\left(\mathbb{C} P^{n}\right)$. Take $k \in \mathbb{Z}$ such that $f^{*}(\alpha)=k \alpha$. Then $f^{*}\left(\alpha^{n}\right)=\left(f^{*}(\alpha)\right)^{n}=k^{n} \alpha^{n}$ and hence $\alpha^{n} \frown f_{*}\left(\left[\mathbb{C} P^{n}\right]\right)=f^{*}\left(\alpha^{n}\right) \frown\left[\mathbb{C} P^{n}\right]=k^{n} \alpha^{n} \frown$ $\left[\mathbb{C} P^{n}\right]=k^{n}$. It follows that $f_{*}\left(\left[\mathbb{C} P^{n}\right]\right)=k^{n}\left[\mathbb{C} P^{n}\right]$, i.e. f has degree k^{n}.
6. The map $H^{n}\left(S^{n}\right) \oplus H^{n}\left(S^{n}\right) \cong H^{n}\left(S^{n} \times S^{n}\right),(k \alpha, \ell \alpha) \mapsto k(\alpha \times 1)+\ell(1 \times \alpha)=k u+\ell v$, is an isomorphism by Künneth. Being a product of orientable manifolds, $S^{n} \times S^{n}$ is orientable and thus the cup product pairing is non-singular, which implies that there exists some $u^{\prime} \in H^{n}\left(S^{n} \times S^{n}\right)$ such that $u \smile u^{\prime}$ generates $H^{2 n}\left(S^{n} \times S^{n}\right)$. Since $u \smile u=\left(p_{0}^{*} \alpha \smile\right.$ $\left.p_{1}^{*} 1\right) \smile\left(p_{0}^{*} \alpha \smile p_{1}^{*} 1\right)=p_{0}^{*}(\alpha \smile \alpha) \smile p_{1}^{*}(1 \smile 1)=0$ as $\alpha \smile \alpha=0\left(\right.$ where $p_{i}: S^{n} \times S^{n} \rightarrow S^{n}$ denote the projections to the factors), we can choose $u^{\prime}=v$.
So $u \smile v$ generates $H^{2 n}\left(S^{n} \times S^{n}\right)$, and thus by Poincaré duality we know that $(u \smile v) \frown$ $\left[S^{n} \times S^{n}\right]= \pm 1$, where $\left[S^{n} \times S^{n}\right]$ is a fundamental class. It follows that $f^{*}(u \smile v)= \pm u \smile v$, using that $f^{*}(u \smile v) \frown\left[S^{n} \times S^{n}\right]=(u \smile v) \frown f_{*}\left[S^{n} \times S^{n}\right]= \pm 1$ by the assumption that $\operatorname{deg} f= \pm 1$. Note that $u \smile v=v \smile u$ a n is even; using that and $u \smile u=0=v \smile v$, we obtain

$$
\begin{aligned}
f^{*}(u \smile v)=f^{*}(u) & \smile f^{*}(v)=(a u+b v) \smile(c u+d v)=(a d+b c) u \smile v, \\
f^{*}(u \smile u) & =(a u+b v) \smile(a u+b v)=2 a b(u \smile v)=0 \\
f^{*}(v \smile v) & =(c u+d v) \smile(c u+d v)=2 c d(u \smile v)=0
\end{aligned}
$$

So $a d+b c= \pm 1$ and $a b=0=c d$, which is equivalent to what we need to prove.
7. Let $\left[S^{n}\right] \in H_{n}\left(S^{n} ; \mathbb{Q}\right)$ and $[M] \in H_{n}(M ; \mathbb{Q})$ be fundamental classes. Writing $k=\operatorname{deg} f$, we have $f_{*}\left[S^{n}\right]=k[M]$. Fix now $0<i<n$ and let $\sigma \in H_{i}(M ; \mathbb{Q})$ be any class with Poincaré dual $\alpha \in H^{n-i}(M ; \mathbb{Q})$, i.e. $\sigma=\alpha \frown[M]$. Then $k \sigma=k \alpha \frown[M]=\alpha \frown$ $f_{*}\left[S^{n}\right]=f^{*} \alpha \frown\left[S^{n}\right]=0$ because $f^{*} \alpha \in H^{n-i}\left(S^{n}\right)$ vanishes for degree reasons. Since we are working over \mathbb{Q}, it follows that $\sigma=0$. So $H_{i}(M ; \mathbb{Q})=0$ for $0<i<n$ and we conclude $H_{*}(M ; \mathbb{Q}) \cong H_{*}\left(S^{n} ; \mathbb{Q}\right)$ (in degrees 0 and n this is clear as M is closed connected orientable). If we replace \mathbb{Q} by \mathbb{Z}, the same argument shows that every $\sigma \in H_{k}(M)$ is k torsion; in particular, if we assume $k= \pm 1$ we obtain $H_{i}(M)=0$ for $0<i<n$ and thus $H_{*}(M) \cong H_{*}\left(S^{n}\right)$.
8. Suppose that $H_{i}(M) \neq 0$ for some $0<i<n$. If $H_{i}(M)$ contains a non-torsion element σ, consider its Poincaré dual $\alpha \in H^{n-i}(M)$; by the non-singularity of the cup product pairing there exists some $\beta \in H^{i}(M)$ such that $\alpha \smile \beta$ generates $H^{n}(M)$. Otherwise there is a non-zero σ that is p-torsion for some prime p and the universal coefficient theorem for homology implies that there exists a non-zero element $\sigma^{\prime} \in H_{i}\left(M ; \mathbb{Z}_{p}\right)$ with Poincaré dual $\alpha^{\prime} \in H^{n-i}\left(M ; \mathbb{Z}_{p}\right)$; by the non-singularity of the cup product pairing (now over the field \mathbb{Z}_{p}) there exists some $\beta^{\prime} \in H^{i}\left(M ; \mathbb{Z}_{p}\right)$ such that $\alpha^{\prime} \smile \beta^{\prime}$ generates $H^{n}\left(M ; \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}$.
On the other hand, the assumption that $M=U \cup V$ with acyclic U, V implies that all cup products of classes of positive degree in $H^{*}(M)$ resp. $H^{*}\left(M ; \mathbb{Z}_{p}\right)$ vanish (see Problem 3/3).
This contradiction shows that $H_{i}(M)=0$ for $0<i<n$ and hence $H_{*}(M) \cong H_{*}\left(S^{n}\right)$.

