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Solutions to problem set 5

1. Given a closed manifold M , we set M ′ := M \pt. Using the Mayer-Vietoris sequence for the

cover of M given by M ′ and a ball, one sees that Hi(M
′) = Hi(M) for i < n − 1. We also

know that Hn(M ′) = 0 as M ′ is non-compact, and hence the top end of the MV sequence is

0→ Hn(M)→ Hn−1(Sn−1)→ Hn−1(M ′)→ Hn−1(M)→ 0 (1)

If M is orientable (⇔ Hn(M) ∼= Z), the first map is an isomorphism so that we get

Hn−1(M ′) = Hn−1(M) in this case, whereas if M is non-orientable (⇔ Hn(M) = 0), we end

up with a short exact sequence

0→ Hn−1(Sn−1)→ Hn−1(M ′)→ Hn−1(M)→ 0 (2)

Note in particular that bn−1(M ′) = bn−1(M) + 1 in this case.

To compute H∗(M1#M2), consider the cover of M1#M2 given by two sets A1 ≈M ′1, A2 ≈
M ′2 with A1 ∩ A2 ' Sn−1. From the resulting Mayer-Vietoris sequence we see immediately

that Hi(M1#M2) ∼= Hi(M
′
1)⊕Hi(M

′
2) ∼= Hi(M1)⊕Hi(M2) for 0 < i < n− 1. The top end

of the MV sequence looks as follows:

0→ Hn(M1#M2)→ Hn−1(Sn−1)
φ−→ Hn−1(M ′1)⊕Hn−1(M ′2)→ Hn−1(M1#M2)→ 0 (3)

Writing φ = (φ1, φ2), note that the maps φi : Hn−1(Sn−1)→ Hn−1(M ′i) are precisely those

also appearing in (1) with M = Mi. So if both M1 and M2 are orientable, φ vanishes and

we obtain Hn−1(M1#M2) ∼= Hn−1(M1) ⊕ Hn−1(M2); we also see that Hn(M1#M2) ∼= Z,

so M1#M2 is orientable. If at least one of the Mi is non-orientable, φ is injective and we

obtain from (3) a SES

0→ Hn−1(Sn−1)
φ−→ Hn−1(M ′1)⊕Hn−1(M ′2)→ Hn−1(M1#M2)→ 0 (4)

(and Hn(M1#M2) = 0, so M1#M2 is non-orientable). If precisely one of the Mi (say M2)

is non-orientable, this yields Hn−1(M1#M2) ∼= cokerφ ∼= Hn−1(M1) ⊕ Hn−1(M2) because

φ1 = 0 and cokerφ2 ∼= Hn−1(M2) using the SES (2) with M = M2. If both M1 and M2

are non-orientable, we obtain 1− bn−1(M ′1)− bn−1(M ′2) + bn−1(M1#M2) = 0 by exactness

of (4), hence bn−1(M1#M2) = bn−1(M1) + bn−1(M2) + 1 (using bn−1(M ′i) = bn−1(Mi) + 1).

Combining this with what we know from Problem 1, we conclude that Hn−1(M1#M2) is

obtained by replacing one Z2-summand in Hn−1(M1)⊕Hn−1(M2) by a Z-summand.

2. Poincaré duality tells us that Hn−1(M) ∼= Hn+1(M), and Hn+1(M) ∼= Hom(Hn+1,Z) ⊕
Ext(Hn(M), Z) by the universal coefficient theorem. Recall that Ext(G,Z) is isomorphic to

the torsion subgroup of G for any finitely generated Abelian group G (which the Hi(M) are

as M is a compact manifold). So if Hn(M) has torsion, then also Hn+1(M) and Hn−1(M)

have torsion.

3. Consider the maps p : (S2×S8)#(S4×S6)→ S2×S8 and q : (S2×S8)#(S4×S6)→ S4×S6

given by collapsing one of the two summands. It follows from the result of problem 1 that

p∗ ⊕ q∗ : Hi(S2 × S8)⊕Hi(S4 × S6)→ Hi(S2 × S8#S4 × S6) is an isomorphism in degrees

0 < i < 10 (check that our p∗⊕q∗ is just the dual of the isomorphism Hi(S
2×S8#S4×S6) ∼=

1



Hi(S
4 × S6) ⊕ Hi(S

2#S8) from problem 1!). The fact that this is a ring homomorphism

shows that the only non-trivial cup products are those between elements of complementary

degrees, i.e. those forced by Poincaré duality.

4. Recall from class that every odd-dimensional manifold has vanishing Euler characteristic, so

0 = χ(M) = b0− b1 + b2− b3. We have b0 = 1, and b3 = 0 since M is non-orientable. Hence

b1 > 0 and thus H1(M) is infinite.

5. Denoting by α ∈ H2(CPn) a generator, αn generates H2n(CPn) and we have αn _ [CPn] =

1 for one choice of fundamental class [CPn] ∈ H2n(CPn). Take k ∈ Z such that f∗(α) = kα.

Then f∗(αn) = (f∗(α))n = knαn and hence αn _ f∗([CPn]) = f∗(αn) _ [CPn] = knαn _

[CPn] = kn. It follows that f∗([CPn]) = kn[CPn], i.e. f has degree kn.

6. The map Hn(Sn)⊕Hn(Sn) ∼= Hn(Sn × Sn), (kα, `α) 7→ k(α × 1) + `(1× α) = ku+ `v, is

an isomorphism by Künneth. Being a product of orientable manifolds, Sn×Sn is orientable

and thus the cup product pairing is non-singular, which implies that there exists some

u′ ∈ Hn(Sn × Sn) such that u ^ u′ generates H2n(Sn × Sn). Since u ^ u = (p∗0α ^

p∗11) ^ (p∗0α ^ p∗11) = p∗0(α ^ α) ^ p∗1(1 ^ 1) = 0 as α ^ α = 0 (where pi : Sn×Sn → Sn

denote the projections to the factors), we can choose u′ = v.

So u ^ v generates H2n(Sn × Sn), and thus by Poincaré duality we know that (u ^ v) _

[Sn×Sn] = ±1, where [Sn×Sn] is a fundamental class. It follows that f∗(u ^ v) = ±u ^ v,

using that f∗(u ^ v) _ [Sn × Sn] = (u ^ v) _ f∗[S
n × Sn] = ±1 by the assumption that

deg f = ±1. Note that u ^ v = v ^ u a n is even; using that and u ^ u = 0 = v ^ v, we

obtain

f∗(u ^ v) = f∗(u) ^ f∗(v) = (au+ bv) ^ (cu+ dv) = (ad+ bc)u ^ v,

f∗(u ^ u) = (au+ bv) ^ (au+ bv) = 2ab(u ^ v) = 0,

f∗(v ^ v) = (cu+ dv) ^ (cu+ dv) = 2cd(u ^ v) = 0.

So ad+ bc = ±1 and ab = 0 = cd, which is equivalent to what we need to prove.

7. Let [Sn] ∈ Hn(Sn;Q) and [M ] ∈ Hn(M ;Q) be fundamental classes. Writing k = deg f ,

we have f∗[S
n] = k[M ] . Fix now 0 < i < n and let σ ∈ Hi(M ;Q) be any class with

Poincaré dual α ∈ Hn−i(M ;Q), i.e. σ = α _ [M ]. Then kσ = kα _ [M ] = α _

f∗[S
n] = f∗α _ [Sn] = 0 because f∗α ∈ Hn−i(Sn) vanishes for degree reasons. Since

we are working over Q, it follows that σ = 0. So Hi(M ;Q) = 0 for 0 < i < n and we

conclude H∗(M ;Q) ∼= H∗(S
n;Q) (in degrees 0 and n this is clear as M is closed connected

orientable). If we replace Q by Z, the same argument shows that every σ ∈ Hk(M) is k-

torsion; in particular, if we assume k = ±1 we obtain Hi(M) = 0 for 0 < i < n and thus

H∗(M) ∼= H∗(S
n).

8. Suppose that Hi(M) 6= 0 for some 0 < i < n. If Hi(M) contains a non-torsion element

σ, consider its Poincaré dual α ∈ Hn−i(M); by the non-singularity of the cup product

pairing there exists some β ∈ Hi(M) such that α ^ β generates Hn(M). Otherwise there

is a non-zero σ that is p-torsion for some prime p and the universal coefficient theorem for

homology implies that there exists a non-zero element σ′ ∈ Hi(M ;Zp) with Poincaré dual

α′ ∈ Hn−i(M ;Zp); by the non-singularity of the cup product pairing (now over the field Zp)
there exists some β′ ∈ Hi(M ;Zp) such that α′ ^ β′ generates Hn(M ;Zp) ∼= Zp.
On the other hand, the assumption that M = U ∪ V with acyclic U, V implies that all cup

products of classes of positive degree in H∗(M) resp. H∗(M ;Zp) vanish (see Problem 3/3).

This contradiction shows that Hi(M) = 0 for 0 < i < n and hence H∗(M) ∼= H∗(S
n).
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