D-MATH
Prof. Emmanuel Kowalski

Algebraic Geometry
FS 2019

Exercise Sheet 1

Classical Varieties

Let K be an algebraically closed field. All algebraic sets below are defined over K, unless specified otherwise.

1. Describe the Zariski topology on $Z(X Y) \subset \mathbb{A}^{2}$.
2. Assume that char $(K) \neq 2,3$. Show that the polynomial $Y^{2}-X^{3}-X \in K[X, Y]$ is irreducible. Describe the Zariski topology on $Z\left(Y^{2}-X^{3}-X\right) \subset \mathbb{A}^{2}$.
3. Let Y be the algebraic set of \mathbb{A}_{K}^{3} defined by the two polynomials $X^{2}-Y Z$ and $X Z-X$. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.
4. Let $A \subset \mathbb{A}^{n}$ and $B \subset \mathbb{A}^{m}$ be two algebraic sets. Prove that their product set $A \times B \subset \mathbb{A}^{n+m}$ is algebraic, too.
5. Let K be a field. An algebraic subset of $K^{n^{2}}=\mathcal{M}_{n \times n}(K)$ that is a subgroup of $\mathrm{GL}_{n}(K)$ is called a linear algebraic group.
(a) Show that the following are linear algebraic group

$$
\mathrm{SL}_{n}(K), \quad\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right\}, \quad\left\{\left(\begin{array}{ccc}
1 & & * \\
& \ddots & \\
& & 1
\end{array}\right)\right\} .
$$

(b) Show that if $H \subset \mathrm{SL}_{n}(K)$ is any subgroup then the Zariski closure is a linear algebraic group.
(c) Let $K=\mathbb{C}$ and $n=2$. Compute the Zariski closure of $H=\mathrm{SL}_{2}(\mathbb{Z})$.
6. Determine the Zariski closure for the following subsets:
(a) $\{(x, \sin (x)) \mid x \in \mathbb{C}\} \subset \mathbb{A}_{\mathbb{C}}^{2}$
(b) $\left\{\left(a^{2}-b^{2}, 2 a b, a^{2}+b^{2}\right) \mid a, b \in \mathbb{Z}\right\} \subset \mathbb{A}_{\mathbb{C}}^{3}$.
7. Let $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ be defined by $t \mapsto\left(t^{2}, t^{3}\right)$. Show that φ defines a bijective bicontinuous morphism of \mathbb{A}^{1} onto the curve $y^{2}=x^{3}$, but that φ is not an isomorphism. This shows that not every morphism whose underlying map of topological spaces is a homeomorphism needs to be an isomorphism.
8. Let $Y \subset \mathbb{A}^{3}$ be the set $Y:=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in K\right\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal $I(Y)$ and prove that the coordinate ring $\mathcal{O}(Y)$ is isomorphic to a polynomial ring in one variable over K.
9. (a) Show that there are not non-constant rational functions $f, g \in \mathbb{C}(X)$, such that

$$
f^{2}=g^{3}-g
$$

(b) Show that there exist non-constant rational functions $f, g \in \mathbb{C}(X)$, such that

$$
f^{2}=g^{3} .
$$

10. Let $Y \subset \mathbb{A}_{K}^{3}$ be the curve given parametrically by $x=t^{3}, y=t^{4}, z=t^{5}$. Show that $I(Y)$ is a prime ideal of height 2 in $K[X, Y, Z]$ which cannot be generated by 2 elements. We say that Y is not a local complete intersection. Proceed as follows:
(a) Show that the closed subsets of Y are given by

$$
\{Y\} \cup\{C \subset Y:|C|<\infty\}
$$

Conclude that Y is irreducible and that $\operatorname{dim} Y=1$.
(b) Let $f \in \subset K[X, Y, Z]$, then we can write

$$
f(X, Y, Z)=\sum_{n_{1}, n_{2}, n_{3}} c_{n_{1}, n_{2}, n_{3}} X^{n_{1}} Y^{n_{2}} Z^{n_{3}} .
$$

Show that if $f \in I(Y)$, then

$$
\sum_{\substack{n_{1}, n_{2}, n_{3} \\ 3 n_{1}+4 n_{2}+5 n_{3}=n}} c_{n_{1}, n_{2}, n_{3}}=0,
$$

for any $n \geqslant 0$. Use this to show that

$$
Y^{2}-X Z, \quad X^{3}-Y Z, \quad X^{2} Y-Z^{2} \in I(Y)
$$

and deduce that Y is an affine variety.
(c) Conclude the exercise.
11. The Segre Embedding. Let $\psi: \mathbb{P}^{r} \times \mathbb{P}^{s} \rightarrow \mathbb{P}^{N}$ be the map defined by sending the ordered pair $\left(a_{0}, \ldots, a_{r}\right) \times\left(b_{0}, \ldots, b_{s}\right)$ to $\left(\ldots, a_{i} b_{j}, \ldots\right)$ in lexicographic order, where $N=r s+r+s$. Show that ψ is well-defined and injective. It is called the Segre embedding. Prove that the image of ψ is a projective algebraic set in \mathbb{P}^{N}.
12. Consider the surface Q (i.e. variety of dimension 2) in \mathbb{P}^{3} defined by the equation $x y-z w$.
(a) Show that Q is equal to the image of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3}, for suitable choice of coordinates.
(b) Show that Q contains two families of lines (i.e. linear varieties of dimension 1) $\left\{L_{t}\right\},\left\{M_{t}\right\}$, each parametrized by $t \in \mathbb{P}^{1}$, with the property that if $L_{t} \neq L_{u}$, then $L_{t} \cap L_{u}=\varnothing$; if $M_{t} \neq M_{u}$ then $M_{t} \cap M_{u}=\varnothing$ and for all t, u we have $L_{t} \cap M_{u}=$ one point.
(c) Show that Q contains other curves besides these lines and deduce that the Zariski topology on Q is not homeomorphic via the Segre embedding to the product topology on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
13. Let $n, d>0$ be integers. We denote by M_{0}, \ldots, M_{N} all monomials of degree d in the $n+1$ variables x_{0}, \ldots, x_{n}, where $N:=\binom{n+d}{n}-1$. We define the d uple embedding as the map $\rho_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ sending the point $a=\left(a_{0}, \ldots, a_{n}\right)$ to the point $\left(M_{0}(a), \ldots, M_{N}(a)\right)$. Show that the d-uple embedding of \mathbb{P}^{n} is an isomorphism onto its image.
[Hint: Look at the inverse map.]

