D-MATH Prof. Emmanuel Kowalski Algebraic Geometry

Exercise Sheet 1

CLASSICAL VARIETIES

Let K be an algebraically closed field. All algebraic sets below are defined over K, unless specified otherwise.

- 1. Describe the Zariski topology on $Z(XY) \subset \mathbb{A}^2$.
- 2. Assume that $\operatorname{char}(K) \neq 2, 3$. Show that the polynomial $Y^2 X^3 X \in K[X, Y]$ is irreducible. Describe the Zariski topology on $Z(Y^2 X^3 X) \subset \mathbb{A}^2$.
- 3. Let Y be the algebraic set of \mathbb{A}^3_K defined by the two polynomials $X^2 YZ$ and XZ X. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.
- 4. Let $A \subset \mathbb{A}^n$ and $B \subset \mathbb{A}^m$ be two algebraic sets. Prove that their product set $A \times B \subset \mathbb{A}^{n+m}$ is algebraic, too.
- 5. Let K be a field. An algebraic subset of $K^{n^2} = \mathcal{M}_{n \times n}(K)$ that is a subgroup of $\operatorname{GL}_n(K)$ is called a *linear algebraic group*.
 - (a) Show that the following are linear algebraic group

$$\operatorname{SL}_n(K), \quad \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| \quad a^2 + b^2 = 1 \right\}, \quad \left\{ \begin{pmatrix} 1 & & * \\ & \ddots & \\ & & 1 \end{pmatrix} \right\}.$$

- (b) Show that if $H \subset SL_n(K)$ is any subgroup then the Zariski closure is a linear algebraic group.
- (c) Let $K = \mathbb{C}$ and n = 2. Compute the Zariski closure of $H = \mathrm{SL}_2(\mathbb{Z})$.
- 6. Determine the Zariski closure for the following subsets:
 - (a) $\{(x, \sin(x)) \mid x \in \mathbb{C}\} \subset \mathbb{A}^2_{\mathbb{C}}$
 - (b) $\{(a^2 b^2, 2ab, a^2 + b^2) \mid a, b \in \mathbb{Z}\} \subset \mathbb{A}^3_{\mathbb{C}}$.
- 7. Let $\varphi : \mathbb{A}^1 \to \mathbb{A}^2$ be defined by $t \mapsto (t^2, t^3)$. Show that φ defines a bijective bicontinuous morphism of \mathbb{A}^1 onto the curve $y^2 = x^3$, but that φ is not an isomorphism. This shows that not every morphism whose underlying map of topological spaces is a homeomorphism needs to be an isomorphism.

- 8. Let $Y \subset \mathbb{A}^3$ be the set $Y := \{(t, t^2, t^3) \mid t \in K\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y) and prove that the coordinate ring $\mathcal{O}(Y)$ is isomorphic to a polynomial ring in one variable over K.
- 9. (a) Show that there are not non-constant rational functions $f, g \in \mathbb{C}(X)$, such that

$$f^2 = g^3 - g$$

(b) Show that there exist non-constant rational functions $f, g \in \mathbb{C}(X)$, such that

$$f^2 = g^3.$$

- 10. Let $Y \subset \mathbb{A}^3_K$ be the curve given parametrically by $x = t^3$, $y = t^4$, $z = t^5$. Show that I(Y) is a prime ideal of height 2 in K[X, Y, Z] which cannot be generated by 2 elements. We say that Y is not a local complete intersection. Proceed as follows:
 - (a) Show that the closed subsets of Y are given by

$$\{Y\} \cup \{C \subset Y : |C| < \infty\}.$$

Conclude that Y is irreducible and that $\dim Y = 1$.

(b) Let $f \in \subset K[X, Y, Z]$, then we can write

$$f(X, Y, Z) = \sum_{n_1, n_2, n_3} c_{n_1, n_2, n_3} X^{n_1} Y^{n_2} Z^{n_3}.$$

Show that if $f \in I(Y)$, then

$$\sum_{\substack{n_1, n_2, n_3\\3n_1+4n_2+5n_3=n}} c_{n_1, n_2, n_3} = 0,$$

for any $n \ge 0$. Use this to show that

$$Y^2 - XZ, \quad X^3 - YZ, \quad X^2Y - Z^2 \in I(Y),$$

and deduce that Y is an affine variety.

- (c) Conclude the exercise.
- 11. The Segre Embedding. Let $\psi : \mathbb{P}^r \times \mathbb{P}^s \to \mathbb{P}^N$ be the map defined by sending the ordered pair $(a_0, \ldots, a_r) \times (b_0, \ldots, b_s)$ to $(\ldots, a_i b_j, \ldots)$ in lexicographic order, where N = rs + r + s. Show that ψ is well-defined and injective. It is called the Segre embedding. Prove that the image of ψ is a projective algebraic set in \mathbb{P}^N .
- 12. Consider the surface Q (i.e. variety of dimension 2) in \mathbb{P}^3 defined by the equation xy zw.

- (a) Show that Q is equal to the image of the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 , for suitable choice of coordinates.
- (b) Show that Q contains two families of lines (i.e. linear varieties of dimension 1) $\{L_t\}, \{M_t\}$, each parametrized by $t \in \mathbb{P}^1$, with the property that if $L_t \neq L_u$, then $L_t \cap L_u = \emptyset$; if $M_t \neq M_u$ then $M_t \cap M_u = \emptyset$ and for all t, u we have $L_t \cap M_u =$ one point.
- (c) Show that Q contains other curves besides these lines and deduce that the Zariski topology on Q is not homeomorphic via the Segre embedding to the product topology on $\mathbb{P}^1 \times \mathbb{P}^1$.
- 13. Let n, d > 0 be integers. We denote by M_0, \ldots, M_N all monomials of degree d in the n + 1 variables x_0, \ldots, x_n , where $N := \binom{n+d}{n} 1$. We define the d-uple embedding as the map $\rho_d : \mathbb{P}^n \to \mathbb{P}^N$ sending the point $a = (a_0, \ldots, a_n)$ to the point $(M_0(a), \ldots, M_N(a))$. Show that the d-uple embedding of \mathbb{P}^n is an isomorphism onto its image.

[Hint: Look at the inverse map.]