D-MATH
Prof. Emmanuel Kowalski

Algebraic Geometry
FS 2019

Exercise Sheet 2

Classical Varietes, Rational Maps, Blowups, Spectrum

Let K be an algebraically closed field. All algebraic sets and varieties below are defined over K, unless specified otherwise.

1. Consider the set $M:=\operatorname{Mat}_{m, n}(K)$ of $m \times n$-matrices. It can be identified with the affine algebraic variety $\mathbb{A}^{n m}$. Determine if S is open/closed/dense in M :
(a) $S:=\left\{A \in M \mid A^{t} A\right.$ has an eigenvalue 1$\}$
(b) $S:=\{A \in M \mid \operatorname{rank}(A)=\min \{m, n\}\}$
(c) for $m=n, S:=\{A \in M \mid A$ is diagonalisable $\}$
2. Show that a commutative K-algebra, A, is of the form $\mathcal{O}(Y)$ for some algebraic set Y if and only if it is finitely generated and it does not contains non-zero nilpotent elements.

3 . Let $n \geqslant 1$ be an integer and $1 \leqslant k \leqslant n$. Let

$$
G_{n, k}:=\left\{V \subset K^{n}: V \text { is a } K \text {-vector space of dimension } k\right\} .
$$

Moreover, for a K-vector space, W, we denote by

$$
\mathbb{P}(W):=\{\text { lines in } W\} .
$$

(a) Let $V \in G_{n, k}$, show that for any basis $\left(e_{1}, \ldots, e_{k}\right)$ of V the element

$$
e_{1} \wedge \cdots \wedge e_{k} \in \Lambda^{k} K^{n}
$$

is non zero, and generates a line $\lambda(V) \in \mathbb{P}\left(\Lambda^{k} K^{n}\right)$ independent of the choice of the basis.
(b) Show that the map

$$
\begin{array}{clc}
G_{n, k} & \xrightarrow{\psi} & \mathbb{P}\left(\Lambda^{k} K^{n}\right) \\
V & \mapsto & \lambda(V),
\end{array}
$$

is an injection.
(c) Let $w \in \Lambda^{k} K^{n}$ with $w \neq 0$. Show that w is of the form

$$
v_{1} \wedge \cdots \wedge v_{k}
$$

for $v_{i} \in K^{n}$ if and only if the linear map

$$
\varphi_{w}: \begin{array}{ccc}
K^{n} & \rightarrow \mathbb{P}\left(\Lambda^{k+1} K^{n}\right) \\
v & \mapsto & w \wedge v
\end{array}
$$

has rank $n-k$.
(d) Deduce that the image of ψ is a projective subset of $\mathbb{P}\left(\Lambda^{k} K^{n}\right)$. It is called the grassmannians of k-spaces in K^{n}.
4. Let $n \geqslant 1$ be an integer
(a) Let $0 \leqslant k \leqslant n$ and $x_{1}, \ldots, x_{k} \in \mathbb{P}^{n}$. Show that the set of lines contained in the subspace V of K^{n+1} generated by x_{1}, \ldots, x_{k} is a projective set in \mathbb{P}^{n}. Show that it is isomorphic to \mathbb{P}^{d-1}, where $d=\operatorname{dim}(V)$. It is denoted $\mathbb{P}\left(x_{1}, \ldots, x_{k}\right)$.
(b) Show that a closed projective set Y in \mathbb{P}^{n} is isomorphic to a set of the form $\mathbb{P}\left(x_{1}, \ldots, x_{k}\right)$ for some k and some $\left(x_{i}\right)$ if and only if it is the zero set of a family of homogeneous polynomials of degree $\leqslant 1$.
(c) Let $H=\mathbb{P}^{n} \backslash \mathbb{A}_{x_{n}}^{n}$ and $x \in \mathbb{A}_{x_{n}}^{n}$ fixed. For $y \in \mathbb{P}^{n} \backslash\{x\}$, show that there is a unique point $\zeta \in H$ such that $\zeta \in \mathbb{P}(x, y)$.
(d) Show that the map

$$
\begin{array}{ccc}
\mathbb{P}^{n} \backslash\{x\} & \rightarrow H \\
y & \mapsto \zeta,
\end{array}
$$

is a morphism.
5. Recall the quadric surface Q given by $x y-z w$ in \mathbb{P}^{3} of exercise 12 , sheet 1 . Prove that Q is birationally equivalent to \mathbb{P}^{2}.
6. A birational map of \mathbb{P}^{2} into itself is called a plane Cremona transformation. Define the rational map $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ as $\left[a_{0}: a_{1}: a_{2}\right] \mapsto\left[a_{1} a_{2}: a_{0} a_{2}: a_{0} a_{1}\right]$.
(a) Show that φ is birational, and its own inverse.
(b) Find open sets $U, V \subset \mathbb{P}^{2}$ such that $\varphi: U \rightarrow V$ is an isomorphism.
(c) Find the open sets where φ and φ^{-1} are defined, and describe the corresponding morphisms.
7. Blowing-up. We define the Blowing-up of \mathbb{A}^{2} at the point 0 to be the subset $B:=\{((x, y),[t: u]) \mid x u=t y\} \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$. Let $\varphi: B \rightarrow \mathbb{A}^{2}$ be the restriction to B of the projection onto the first component (see Figure 1). Prove that:
(a) The map φ is birational and restricts to an isomorphism $B \backslash \varphi^{-1}(0) \cong \mathbb{A}^{2} \backslash 0$.
(b) We have $\varphi^{-1}(0) \cong \mathbb{P}^{1}$.
(c) The points in $\varphi^{-1}(0)$ are in 1-to-1-correspondence with lines ℓ in \mathbb{A}^{2} through the point 0 . [Hint: Look at $\varphi^{-1}(\ell \backslash 0)$ and its closure.]

$t \neq 0$
Figure 1: Blowing-up, figure taken from Hartshorne.

