Algebraic Geometry

Exercise Sheet 2

CLASSICAL VARIETES, RATIONAL MAPS, BLOWUPS, SPECTRUM

Let K be an algebraically closed field. All algebraic sets and varieties below are defined over K, unless specified otherwise.

- 1. Consider the set $M := \operatorname{Mat}_{m,n}(K)$ of $m \times n$ -matrices. It can be identified with the affine algebraic variety \mathbb{A}^{nm} . Determine if S is open/closed/dense in M:
 - (a) $S := \{A \in M \mid A^t A \text{ has an eigenvalue } 1\}$
 - (b) $S := \{A \in M \mid \operatorname{rank}(A) = \min\{m, n\}\}$
 - (c) for m = n, $S := \{A \in M \mid A \text{ is diagonalisable}\}$
- 2. Show that a commutative K-algebra, A, is of the form $\mathcal{O}(Y)$ for some algebraic set Y if and only if it is finitely generated and it does not contains non-zero nilpotent elements.
- 3. Let $n \ge 1$ be an integer and $1 \le k \le n$. Let

 $G_{n,k} := \{ V \subset K^n : V \text{ is a } K \text{-vector space of dimension } k \}.$

Moreover, for a K-vector space, W, we denote by

 $\mathbb{P}(W) := \{ \text{lines in } W \}.$

(a) Let $V \in G_{n,k}$, show that for any basis $(e_1, ..., e_k)$ of V the element

$$e_1 \wedge \dots \wedge e_k \in \Lambda^k K^n$$

is non zero, and generates a line $\lambda(V) \in \mathbb{P}(\Lambda^k K^n)$ independent of the choice of the basis.

(b) Show that the map

$$\begin{array}{rccc} G_{n,k} & \xrightarrow{\psi} & \mathbb{P}(\Lambda^k K^n) \\ V & \mapsto & \lambda(V), \end{array}$$

is an injection.

(c) Let $w \in \Lambda^k K^n$ with $w \neq 0$. Show that w is of the form

$$v_1 \wedge \cdots \wedge v_k$$
,

for $v_i \in K^n$ if and only if the linear map

$$\varphi_w : \frac{K^n}{v} \to \frac{\mathbb{P}(\Lambda^{k+1}K^n)}{w \wedge v}$$

has rank n-k.

- (d) Deduce that the image of ψ is a projective subset of $\mathbb{P}(\Lambda^k K^n)$. It is called the grassmannians of k-spaces in K^n .
- 4. Let $n \ge 1$ be an integer
 - (a) Let $0 \leq k \leq n$ and $x_1, ..., x_k \in \mathbb{P}^n$. Show that the set of lines contained in the subspace V of K^{n+1} generated by $x_1, ..., x_k$ is a projective set in \mathbb{P}^n . Show that it is isomorphic to \mathbb{P}^{d-1} , where $d = \dim(V)$. It is denoted $\mathbb{P}(x_1, ..., x_k)$.
 - (b) Show that a closed projective set Y in \mathbb{P}^n is isomorphic to a set of the form $\mathbb{P}(x_1, \ldots, x_k)$ for some k and some (x_i) if and only if it is the zero set of a family of homogeneous polynomials of degree ≤ 1 .
 - (c) Let $H = \mathbb{P}^n \setminus \mathbb{A}_{x_n}^n$ and $x \in \mathbb{A}_{x_n}^n$ fixed. For $y \in \mathbb{P}^n \setminus \{x\}$, show that there is a unique point $\zeta \in H$ such that $\zeta \in \mathbb{P}(x, y)$.
 - (d) Show that the map

$$\begin{array}{rccc} \mathbb{P}^n \smallsetminus \{x\} & \to & H \\ y & \mapsto & \zeta, \end{array}$$

is a morphism.

- 5. Recall the quadric surface Q given by xy zw in \mathbb{P}^3 of exercise 12, sheet 1. Prove that Q is birationally equivalent to \mathbb{P}^2 .
- 6. A birational map of \mathbb{P}^2 into itself is called a *plane Cremona transformation*. Define the rational map $\varphi : \mathbb{P}^2 \to \mathbb{P}^2$ as $[a_0 : a_1 : a_2] \mapsto [a_1a_2 : a_0a_2 : a_0a_1]$.
 - (a) Show that φ is birational, and its own inverse.
 - (b) Find open sets $U, V \subset \mathbb{P}^2$ such that $\varphi : U \to V$ is an isomorphism.
 - (c) Find the open sets where φ and φ^{-1} are defined, and describe the corresponding morphisms.
- 7. Blowing-up. We define the Blowing-up of \mathbb{A}^2 at the point 0 to be the subset $B := \{((x, y), [t : u]) \mid xu = ty\} \subset \mathbb{A}^2 \times \mathbb{P}^1$. Let $\varphi : B \to \mathbb{A}^2$ be the restriction to B of the projection onto the first component (see Figure 1). Prove that:
 - (a) The map φ is birational and restricts to an isomorphism $B \smallsetminus \varphi^{-1}(0) \cong \mathbb{A}^2 \diagdown 0$.
 - (b) We have $\varphi^{-1}(0) \cong \mathbb{P}^1$.
 - (c) The points in $\varphi^{-1}(0)$ are in 1-to-1-correspondence with lines ℓ in \mathbb{A}^2 through the point 0. [Hint: Look at $\varphi^{-1}(\ell \smallsetminus 0)$ and its closure.]

Figure 1: Blowing-up, figure taken from Hartshorne.