D-MATH Prof. Emmanuel Kowalski Algebraic Geometry

Exercise Sheet 4 Sheaves & Schemes

1. Let X be a topological space and \mathcal{F} a presheaf on X. We denote by \mathcal{F}^s the sheaf associated to \mathcal{F} . Show that the canonical map

$$\theta: \mathcal{F} \to \mathcal{F}^s,$$

induces an isomorphism

$$\theta: \mathcal{F}_x \to \mathcal{F}_x^s$$

for all $x \in X$.

- 2. Let X be a topological space and \mathcal{F} , \mathcal{G} sheaves of abelian groups on X. In the following $U \subset X$ is always an open subset of X.
 - (a) If $f : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves (of abelian groups), then $\operatorname{Ker}(f) : U \to \operatorname{Ker}(f_U)$, is a sheaf (with the obvious restriction).
 - (b) If $f : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves (of abelian groups), then $\mathcal{H} : U \to \operatorname{Im}(f_U)$, is not a sheaf in general. Let us denote $\operatorname{Im}(f) := \mathcal{H}^s$. Show that there is an injective morphism

$$g: \operatorname{Im}(f) \hookrightarrow \mathcal{G}.$$

3. Inverse Image Sheaf. Let $f: X \to Y$ be a continuous map of topological spaces. For a sheaf \mathscr{G} of abelian groups on Y we define the *inverse image* sheaf $f^{-1}\mathscr{G}$ on X to be the sheaf associated to the presheaf $U \mapsto \varinjlim_{V \supset f(U)} \mathscr{G}(V)$, where U is any open set of X and the direct limit (see exercise A) is taken over all open subsets V of Y containing f(U). Prove that for every sheaf \mathscr{F} on X there is a natural map $f^{-1}f_*\mathscr{F} \to \mathscr{F}$ and for any sheaf \mathscr{G} on Y there is a natural map $\mathscr{G} \to f_*f^{-1}\mathscr{G}$. Prove that this induces a natural bijection of sets

$$\operatorname{Hom}_X(f^{-1}\mathscr{G},\mathscr{F}) = \operatorname{Hom}_Y(\mathscr{G}, f_*\mathscr{F})$$

for any sheaves \mathscr{F} on X and \mathscr{G} on Y. One says that f^{-1} and f_* are adjoint functors.

- 4. Let $(f, f^{\sharp}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of locally ringed spaces. Prove that if f is a homeomorphism and f^{\sharp} is an isomorphism, then (f, f^{\sharp}) is an isomorphism.
- 5. Let A be a ring and set $X := \operatorname{Spec}(A)$. Let $f \in A$ and let $U_f \subset X$ be the open complement of V((f)).

- (a) Show that the locally ringed space $(U_f, \mathcal{O}|_{U_f})$ is isomorphic to $\operatorname{Spec}(A_f)$.
- (b) For another element $g \in A$ describe the restriction map $\mathcal{O}(U_f) \to \mathcal{O}(U_{fg})$ in terms of a ring homomorphism $A_f \to A_{fg}$.
- 6. Consider $S_1 := \operatorname{Spec}(\mathbb{Q}[X,Y]/(XY))$ and $S_2 := \operatorname{Spec}(\mathbb{Q}[X,Y]/(X^2+Y^2))$.
 - (a) Compute $\operatorname{Hom}_{\operatorname{Sch}}(\operatorname{Spec}(\mathbb{Q}), S_i)$ for i = 1, 2.
 - (b) Deduce that S_1 and S_2 are not isomorphic schemes.
 - (c) Let $S'_1 := \operatorname{Spec}(\mathbb{Q}(i)[X,Y]/(XY))$ and $S'_2 := \operatorname{Spec}(\mathbb{Q}(i)[X,Y]/(X^2 + Y^2))$. Prove that $S'_1 \cong S'_2$ as schemes.
- 7. Let X be a scheme. For any point $x \in X$ we define the Zariski tangent space T_x to X at x to be the dual of the k(x)-vector space $\mathfrak{m}_x/\mathfrak{m}_x^2$. Now assume that X is a scheme over a field k and let $k[\varepsilon]/(\varepsilon^2)$ be the ring of dual numbers over k. Show that to give a morphism of schemes over k of $\operatorname{Spec}(k[\varepsilon]/(\varepsilon^2))$ to X is equivalent to giving a point $x \in X$ such that k(x) = k and an element of T_x .