D-MATH Prof. Emmanuel Kowalski

Exercise Sheet 5

SCHEMES

- 1. Let X be a scheme and $f \in \mathcal{O}_X(X)$ a global section. Define X_f to be the subset of points $x \in X$ such that the germ f_x of f at x is not contained in the maximal ideal \mathfrak{m}_x of $\mathcal{O}_{X,x}$.
 - (a) If $U = \operatorname{Spec}(B)$ is an open affine subscheme of X and if $\overline{f} \in B = \mathcal{O}_U(U)$ is the restriction of f, show that $U \cap X_f = D(\overline{f})$. Conclude that X_f is an open subset of X.
 - (b) Assume that X is quasi-compact. Let $A := \mathcal{O}_X(X)$ and let $a \in A$ be an element whose restriction to X_f is 0. Show that there exists an integer n > 0 such that $f^n a = 0$.
 - (c) Now assume that X has a finite cover by open affines U_i such that each intersection $U_i \cap U_j$ is quasi-compact. Let $b \in \mathcal{O}_{X_f}(X_f)$. Show that there exists an integer n > 0 such that $f^n b$ is the restriction of an element of A.
 - (d) With the hypothesis of (c) conclude that $\mathcal{O}_{X_f}(X_f) \cong A_f$.
- 2. A Criterion for Affineness.
 - (a) Let $f: X \to Y$ be a morphism of schemes and suppose that Y can be covered by open subsets U_i such that for each *i*, the induced map $f^{-1}(U_i) \to U_i$ is an isomorphism. Then *f* is an isomorphism.
 - (b) A scheme X is affine if and only if there is a finite set of elements $f_1, \ldots, f_r \in A := \mathcal{O}_X(X)$ such that the open subsets X_{f_i} defined in exercise 1 are affine and f_1, \ldots, f_r generate the unit ideal.
- 3. Let us recall that a graded ring is a ring S together with a decomposition $S = \bigoplus_{d \ge 0} S_d$ of S into a direct sum of abelian groups S_d , such that for any $d, e \ge 0$, $S_d \dot{S}_e \subset S_{de}$. An element of S_d is called a homogeneous element of degree d. An ideal $I \subset S$ is a homogeneous ideal if $I = \bigoplus_{d \ge 0} (I \cap S_d)$.
 - (a) Let K be an algebraically closed field, and let $f_1, ..., f_m \in K[X_0, ..., X_n] = S$ be homogeneous polynomials. Re Let $I = (f_1, ..., f_m) \subset S$ prove that
 - i) The ideal I is an homogeneous ideal.
 - *ii*) Show that B := A/I is a graded ring.

(b) Let $B_+ = I = \bigoplus_{d \ge 1} B_d$. One considers

 $\operatorname{Proj}(B) := \{ \mathfrak{p} \subset B \text{ homogeneous prime ideals} : B_+ \nsubseteq \mathfrak{p} \}.$

For any homogeneous ideal, I, one defines

$$V(I) := \{ \mathfrak{q} \in \operatorname{Proj}(B) : I \subset \mathfrak{q} \}.$$

Show that these sets form the closed sets of a topology on $\operatorname{Proj}(B)$.

- (c) We define a sheaf of rings \mathcal{O} on $\operatorname{Proj}(S)$ as follows: For each $\mathfrak{p} \in \operatorname{Proj}(S)$ we consider the ring $S_{(\mathfrak{p})}$ of elements of degree zero in the localized ring $T^{-1}S$, where T is the multiplicative system of all homogeneous elements of S which are not in \mathfrak{p} . For any open subset $U \subset \operatorname{Proj}(S)$ we define $\mathcal{O}(U)$ to be the set of functions $s: U \to \coprod S_{(\mathfrak{p})}$ such that for each $\mathfrak{p} \in U$ we have $s(\mathfrak{p}) \in S_{(\mathfrak{p})}$ and there is an open neighbourhood V of \mathfrak{p} in U and homogeneous elements a, f in S of the same degree such that for all $\mathfrak{q} \in V$ we have $f \notin \mathfrak{q}$ and $s(\mathfrak{q}) = a/f$ in $S_{(\mathfrak{q})}$. Prove the following:
 - i) For any $\mathfrak{p} \in \operatorname{Proj}(S)$, the stalk $\mathcal{O}_{\mathfrak{p}}$ is isomorphic to the local ring $S_{(\mathfrak{p})}$.
 - ii) For any homogeneous $f \in S_+$ let U_f^+ be the complement of V((f)). These open sets cover $\operatorname{Proj}(S)$ and there is an isomorphism of locally ringed spaces

$$(U_f^+, \mathcal{O}|_{U_f^+}) \cong \operatorname{Spec}(S_{(f)})$$

where $S_{(f)}$ is the subring of elements of degree zero in the localized ring S_f .

(d) Conclude that $(\operatorname{Proj}(B), \mathcal{O})$ is a scheme.