Exercise Sheet 4

SCHEMES

- 1. Double Points. Let k be a field and $Y \hookrightarrow \mathbb{A}_k^2$ be a closed subscheme with image containing the origin (0,0) in \mathbb{A}_k^2 and such that $\mathcal{O}_Y(Y) \cong k[\varepsilon]/(\varepsilon^2)$. Denote by $\varphi : k[x,y] \to \mathcal{O}_Y(Y)$ the surjection defining the inclusion $Y \hookrightarrow \mathbb{A}^2$. Prove that the kernel of φ contains a non-zero element $\alpha x + \beta y$ for some $\alpha, \beta \in k$. Write $X_{\alpha,\beta} := \operatorname{Spec}(k[x,y]/\ker(\varphi))$ and show that $X_{\alpha,\beta}$ can also be characterized as the composition of the natural morphism $\operatorname{Spec}(k[\varepsilon]/(\varepsilon^2)) \to \operatorname{Spec}(k[\varepsilon]) \cong \mathbb{A}_k^1$ with the inclusion of the line $\mathbb{A}_k^1 \hookrightarrow \mathbb{A}_k^2$ given by $x \mapsto (\beta x, -\alpha x)$.
- 2. Let k be an algebraically closed field and let $Z := \operatorname{Spec}(k[X_1, \ldots, X_n]/I) \subset \mathbb{A}^n_k$ be a closed subscheme of dimension 0 supported at the origin (i.e. $\sqrt{I} = (X_1, \ldots, X_n)$). Furthermore, suppose that $k[X_1, \ldots, X_n]/I$ is a 3-dimensional k-vector space. Prove that Z is isomorphic to either $A := \operatorname{Spec}(k[X]/(X^3))$ or to $B := \operatorname{Spec}(k[X, Y]/(X^2, XY, Y^2))$ and that A and B are not isomorphic to each other.
- 3. Let $X := \mathbb{A}^2_{\mathbb{C}} \setminus \{0\} \subset \mathbb{A}^2_{\mathbb{C}}$. Prove:
 - (a) The restriction map $\mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}(\mathbb{A}^2_{\mathbb{C}}) \to \mathcal{O}_X(X)$ is an isomorphism.
 - (b) The scheme X is not an affine scheme.
- 4. In the following if X is a scheme we denote by $\operatorname{sp}(X)$ the underlying topological space of X. Let S be a scheme and $\pi : X \to S$, $\rho : Y \to S$ be S-schemes. Let $\operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$ be the fiber product of sets defined by π and ρ , endowed with the topology induced by the product topology on $\operatorname{sp}(X) \times \operatorname{sp}(Y)$. We are going to study some property concerning the relation between $\operatorname{sp}(X \times Y)$ and $\operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$.
 - (a) Show that we have a canonical map $f : \operatorname{sp}(X \times_S Y) \to \operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$.
 - (b) Show that f is surjective.
 - (c) Let us consider the example $X = Y = \operatorname{Spec} \mathbb{C}$ and $S = \operatorname{Spec} \mathbb{R}$. Show that $X \times_S Y \cong \operatorname{Spec}(\mathbb{C} \oplus \mathbb{C})$ and that f is not injective.
 - (d) Show that in the case of the previous Exercise, with $X = \operatorname{Spec} k(u)$, $Y = \operatorname{Spec} k(v)$ and $S = \operatorname{Spec} k$, the map f has infinite fibers.

- (e) Let $S = \operatorname{Spec} k$ be the spectrum of an arbitrary field. By studying the example $X = Y = \mathbb{A}_k^1$, show that the image of an open subset under f is not necessarily an open subset.
- 5. Let \mathcal{C} be a category and $X \in Ob(\mathcal{C})$, one defines

$$h_X: \begin{array}{ccc} \mathcal{C} & \to & (\text{Sets}) \\ Y & \mapsto & \text{Hom}(Y, X) \end{array}$$

- (a) Show that h_X is a controvariant functor.
- (b) Show that any morphism $f: X_1 \to X_2$ induces a morphism of functors

$$h_f: h_{X_1} \to h_{X_2}.$$

- (c) Conversely, let $\varphi : h_{X_1} \to h_{X_2}$ be a morphism of functors. There is an unique $f : X_1 \to X_2$ such that $\varphi = h_f$.
- 6. Let S be a scheme and consider the category $\mathcal{C} = ($ Schemes over S)
 - (a) If $X \to S$ is a scheme over S such that

$$h_X: T \to \operatorname{Hom}_S(T, X) = X(T)$$

is a functor to groups then X has a structure of S-group scheme.

(b) Consider $\mathbb{G}_m := \operatorname{Spec}(\mathbb{Z}[X, X^{-1}])$. Prove that

$$\mathbb{G}_m(T) = \mathcal{O}_T(T)^{\times}$$

for any scheme T and conclude that \mathbb{G}_m is a group scheme. Moreover, describe the morphism of rings corresponding to the multiplication

$$m: \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m.$$