Solutions Sheet 1

Classical Varieties

Let K be an algebraically closed field. All algebraic sets below are defined over K, unless specified otherwise.

1. Describe the Zariski topology on $Z(X Y) \subset \mathbb{A}^{2}$.

Solution: The algebraic set $Z(X Y)$ consists of the union of the two coordinate axis $Y=0$ and $X=0$. The proper closed subsets are given by the whole X-axis, the whole Y-axis and subsets consisting of finitely many points.
2. Assume that char $(K) \neq 2,3$. Show that the polynomial $Y^{2}-X^{3}-X \in K[X, Y]$ is irreducible. Describe the Zariski topology on $Z\left(Y^{2}-X^{3}-X\right) \subset \mathbb{A}^{2}$.
Solution: We consider the polynomial as an element in the ring $(K[X])[Y]$. In the ring $K[X]$ the element X is prime and divides $X^{3}+X$, but its square does not. Using Eisenstein's criterion for the irreducibility of a polynomial, we deduce that $Y^{2}-X^{3}-X$ is irreducible. We conclude that $Z\left(Y^{2}-X^{3}-X\right) \subset \mathbb{A}^{2}$ is an irreducible algebraic variety. Since $K[X, Y]$ has Krull dimension 2 and $\left(Y^{2}-X^{3}-X\right)$ is a nonzero prime ideal the coordinate ring $\mathcal{O}\left(Z\left(Y^{2}-X^{3}-X\right)\right)=K[X, Y] /\left(Y^{2}-X^{3}-X\right)$ and thus also the variety has dimension 1 . Hence the only proper closed subsets are given by finitely many points.
3. Let Y be the algebraic set of \mathbb{A}_{K}^{3} defined by the two polynomials $X^{2}-Y Z$ and $X Z-X$. Show that Y is a union of three irreducible components. Describe them and find their prime ideals.
Solution: One observes that

$$
X Z-X=0 \Rightarrow X=0 \text { or } Z=1
$$

If $X=0$, from the other equation one gets

$$
Y Z=0 \Rightarrow Y=0 \text { or } Z=0
$$

On the other hand, if $Z=1$ then

$$
Y-X^{2}=0
$$

Then one concludes that

$$
Z\left(\left(X^{2}-Y Z, X Z-X\right)\right)=Z((X, Y)) \cap Z((X, Z)) \cap Z\left(\left(Y-X^{2}, Z-1\right)\right)
$$

To conclude the exercise, it is enough to show that $Z((X, Y)), Z((X, Z))$ and $Z\left(\left(Y-X^{2}, Z-1\right)\right)$ are irreducible varieties, i.e. that $\mathfrak{p}_{1}:=(X, Y), \mathfrak{p}_{2}:=(X, Z)$ and $\mathfrak{p}_{3}:=\left(Y-X^{2}, Z-1\right)$ are prime ideals. On the other hand, it is easy to see that

$$
K[X, Y, Z] / \mathfrak{p}_{i}=K[T]
$$

for $i=1,2,3$, i.e. $K[X, Y, Z] / \mathfrak{p}_{i}$ is an integral domain for any $i=1,2,3$. Thus \mathfrak{p}_{i} is prime for $i=1,2,3$.
4. Let $A \subset \mathbb{A}^{n}$ and $B \subset \mathbb{A}^{m}$ be two algebraic sets. Prove that their product set $A \times B \subset \mathbb{A}^{n+m}$ is algebraic, too.
Solution: Let $\mathfrak{a} \subset K\left[X_{1}, \ldots, X_{n}\right]$ and $\mathfrak{b} \subset K\left[Y_{1}, \ldots, Y_{m}\right]$ be ideals such that $A=$ $Z(\mathfrak{a})$ and $B=Z(\mathfrak{b})$. Let $f_{1}, \ldots, f_{r} \in \mathfrak{a}$ and $g_{1}, \ldots, g_{s} \in \mathfrak{b}$ be respective generators of the ideals. It is straightforward to see that $A \times B=Z\left(f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right)$, where we extended tacitly to the ring $K\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right]$.
5. Let K be a field. An algebraic subset of $K^{n^{2}}=\mathcal{M}_{n \times n}(K)$ that is a subgroup of $\mathrm{GL}_{n}(K)$ is called a linear algebraic group.
(a) Show that the following are linear algebraic group

$$
\mathrm{SL}_{n}(K), \quad\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right\}, \quad\left\{\left(\begin{array}{ccc}
1 & & * \\
& \ddots & \\
& & 1
\end{array}\right)\right\}
$$

(b) Show that if $H \subset \mathrm{SL}_{n}(K)$ is any subgroup then the Zariski closure is a linear algebraic group.
(c) Let $K=\mathbb{C}$ and $n=2$. Compute the Zariski closure of $H=\mathrm{SL}_{2}(\mathbb{Z})$.

Solution:

(a) We know that $\operatorname{det} A$ is a polynomial in the coefficients of $A \in \mathcal{M}_{n \times n}(K)$, thus

$$
\mathrm{SL}_{n}(K)=Z(\operatorname{det} A-1)
$$

Let

$$
A=\left(\begin{array}{cc}
a_{1,1} & a_{1,2} \\
a_{2,1}, a_{2,2} &
\end{array}\right) \in \mathcal{M}_{n \times n}(K),
$$

then

$$
A \in\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right\}
$$

if and only if $a_{1,1}=a_{2,2}, a_{1,2}=-a_{2,1}$ and $\operatorname{det} A=1$. Thus

$$
\left\{\left.\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right\}=Z\left(a_{1,1}-a_{2,2}, a_{1,2}+a_{2,1}, \operatorname{det} A-1\right)
$$

To conclude, for any $A \in \mathcal{M}_{n \times n}(K)$,

$$
A \in\left\{\left(\begin{array}{ccc}
1 & & * \\
& \ddots & \\
& & 1
\end{array}\right)\right\}
$$

if and only if $a_{i, i}=1$ for any $i=1, . ., n$ and $a_{i, j}=0$ for any $1 \leqslant j<i \leqslant n$. Thus

$$
\left\{\left(\begin{array}{lll}
1 & & * \\
& \ddots & \\
& & 1
\end{array}\right)\right\}=\left(\bigcap_{i=1}^{n} Z\left(a_{i, i}-1\right)\right) \cap\left(\bigcap_{1 \leqslant j<i \leqslant n} Z\left(a_{i, j}\right)\right) .
$$

(b) Let $i: \mathrm{SL}_{n}(\mathbb{C}) \rightarrow \mathrm{SL}_{n}(\mathbb{C})$ be the inversion morphism. Since H is a subgroup we have $i: H \rightarrow H$. But i is a homeomorphism for the Zariski topology and thus maps $i: \bar{H} \rightarrow \bar{H}$. Hence \bar{H} is closed under inversion. Now consider the multiplication morphism with a fixed element $x \in H$ given by $\mathrm{SL}_{n}(\mathbb{C}) \rightarrow$ $\mathrm{SL}_{n}(\mathbb{C}), a \mapsto x a$. This is a homeomorphism, too and hence $x \bar{H}=\bar{H}$ for all $x \in H$. We conclude that for all $x \in \bar{H}$ we have $H x \subset \bar{H}$. By the same argument as before we conclude that $\bar{H} x \subset \bar{H}$. Hence \bar{H} is closed under multiplication. It follows that \bar{H} is a subgroup of $\mathrm{SL}_{n}(\mathbb{C})$.
(c) Since \mathbb{Z} is infinite and $\mathbb{A}_{\mathbb{C}}^{1}$ is irreducible, we conclude that the closure $\overline{\mathbb{Z}}=\mathbb{A}_{\mathbb{C}}^{1}$. We deduce that the closure of the subgroup $\left(\begin{array}{ll}1 & \mathbb{Z} \\ 0 & 1\end{array}\right)$ is $\left(\begin{array}{ll}1 & \mathbb{C} \\ 0 & 1\end{array}\right)$ and similarly the closure of $\left(\begin{array}{ll}1 & 0 \\ \mathbb{Z} & 1\end{array}\right)$ is $\left(\begin{array}{ll}1 & 0 \\ \mathbb{C} & 1\end{array}\right)$. From exercise 5 we know that $\overline{\mathrm{SL}_{2}(\mathbb{Z})}$ is a group and from the preceding we know that it contains $\left(\begin{array}{ll}1 & \mathbb{C} \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ \mathbb{C} & 1\end{array}\right)$. Notice that we have

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1+a b & c+a b c+a \\
b & 1+b c
\end{array}\right)
$$

Hence all matrices in $\mathrm{SL}_{2}(\mathbb{C})$ of the form $\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$ with $z \neq 0$ are contained in $\overline{\mathrm{SL}_{2}(\mathbb{Z})}$. This is a Zariski dense subset of $\mathrm{SL}_{2}(\mathbb{C})$, because $\mathbb{A}_{\mathbb{C}}^{4} \backslash Z(Z)$ is Zariski dense in $\mathbb{A}_{\mathbb{C}}^{4}$. We conclude that $\overline{\mathrm{SL}_{2}(\mathbb{Z})}=\mathrm{SL}_{2}(\mathbb{C})$.
6. Determine the Zariski closure for the following subsets:
(a) $\{(x, \sin (x)) \mid x \in \mathbb{C}\} \subset \mathbb{A}_{\mathbb{C}}^{2}$
(b) $\left\{\left(a^{2}-b^{2}, 2 a b, a^{2}+b^{2}\right) \mid a, b \in \mathbb{Z}\right\} \subset \mathbb{A}_{\mathbb{C}}^{3}$.

Solution:
(a) Denote the subset by A. We claim that $\bar{A}=\mathbb{A}_{\mathbb{C}}^{2}$. To prove this we compute the dimension. Since A is not a finite set, we conclude that the dimension of \bar{A} must be 1 or 2 . Assume that it is 1 . Then \bar{A} is a curve. However, for all real values $-1 \leqslant y \leqslant 1$ the intersection with the irreducible curve given by $C_{y}:=\{(x, y) \mid x \in \mathbb{C}\}$ has infinitely many points. We conclude using exercise 3 that $C_{y} \subset \bar{A}$ for all real $-1 \leqslant y \leqslant 1$, so \bar{A} contains infinitely many different curves. But \bar{A} is an algebraic set and thus must be coverable by finitely many irreducible curves which is a contradiction. We conclude that the dimension of \bar{A} is 2 and since $\mathbb{A}_{\mathbb{C}}^{2}$ is irreducible we have proven the claim. Aliter: Consider the associated ideal $I(\bar{A}) \subset K[X, Y]$. A polynomial $f \in$ $I(\bar{A})$ must in particular vanish on all points $(x, \sin (x))$. Hence for any $x \in \mathbb{R}$ the polynomial $f(X, \sin (x)) \in K[X]$ has infinitely many roots $X=2 \pi \mathbb{Z}+x$. Thus $f(X, \sin (x))=0$. Since this holds for all $x \in \mathbb{R}$ and $\sin (\mathbb{R})=[-1,1]$ we conclude that $f=0$. Hence $I(\bar{A})=(0)$ and $\bar{A}=\mathbb{A}_{\mathbb{C}}^{2}$.
(b) Let A be the subset in question. These points are all zeroes of the polynomial $X^{2}+Y^{2}-Z^{2}$, they are Pythagorian triples. Hence $\bar{A} \subset Z\left(X^{2}+Y^{2}-Z^{2}\right)$. The polynomial $X^{2}+Y^{2}-Z^{2}$ is irreducible in $K[X, Y, Z]$, which can be seen by the Eisenstein criterion with $Y-Z$ in the ring $(K[Y, Z])[X]$. Therefore $Z\left(X^{2}+\right.$ $Y^{2}-Z^{2}$) is irreducible of dimension 2 . We only need to show that \bar{A} has dimension 2. Containing infinitely many points, we know that it does not have dimension 0 . Assume that it has dimension 1. For all $c \in \mathbb{Z}$, the intersection of A with the irreducible curve given by $C_{c}:=\left\{\left(c^{2}-b^{2}, 2 c b, c^{2}+b^{2}\right) \mid b \in \mathbb{C}\right\}$ has infinitely many points. By exercise 3 we conclude that $C_{c} \subset \bar{A}$ for all $c \in \mathbb{Z}$, hence \bar{A} contains infinitely many different curves, which proves that it cannot have dimension 1 . Thus \bar{A} has dimension 2 and it follows that it is equal to $Z\left(X^{2}+Y^{2}-Z^{2}\right)$.
7. Let $\varphi: \mathbb{A}^{1} \rightarrow \mathbb{A}^{2}$ be defined by $t \mapsto\left(t^{2}, t^{3}\right)$. Show that φ defines a bijective bicontinuous morphism of \mathbb{A}^{1} onto the curve $y^{2}=x^{3}$, but that φ is not an isomorphism. This shows that not every morphism whose underlying map of topological spaces is a homeomorphism needs to be an isomorphism.
Solution: We see that the image of φ is contained in $Z\left(y^{2}-x^{3}\right)$. It is bijective with inverse $\varphi^{-1}:(a, b) \mapsto \frac{b}{a}$ for $a \neq 0$ and $\varphi^{-1}(0,0)=0$. Closed sets in \mathbb{A}^{1} are finitely many points and they are mapped via φ to finitely many points (i.e. closed sets) in \mathbb{A}^{2}, so φ is a closed map. Hence φ and φ^{-1} are both continuous. So φ is bijective and bicontinuous. However, it is not an isomorphism. To see this let $f: \mathbb{A}^{1} \rightarrow k$ be the canonical regular function $t \mapsto t$. Note that $f \circ \varphi^{-1}:(a, b) \mapsto \frac{b}{a}$ is not regular at $a=0$, hence φ^{-1} is not a morphism.
8. Let $Y \subset \mathbb{A}^{3}$ be the set $Y:=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in K\right\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal $I(Y)$ and prove that the coordinate ring $\mathcal{O}(Y)$ is isomorphic to a polynomial ring in one variable over K.

Solution: The ideal $I(Y)$ is equal to $\left(v-u^{2}, w-u^{3}\right) \subset K[u, v, w]$. We have the equality $Y=Z\left(v-u^{2}, w-u^{3}\right)$. Note that $K[u, v, w] /\left(v-u^{2}, w-u^{3}\right) \cong$ $K\left[u, u^{2}, u^{3}\right] \cong K[u]$. This proves that $\mathcal{O}(Y)$ is isomorphic to a polynomial ring in one variable over K and furthermore that $\left(v-u^{2}, w-u^{3}\right)$ is a prime ideal of coheight 1 , so Y is an irreducible affine variety of dimension 1 .
9. (a) Show that there are not non-constant rational functions $f, g \in \mathbb{C}(X)$, such that

$$
f^{2}=g^{3}-g
$$

(b) Show that there exist non-constant rational functions $f, g \in \mathbb{C}(X)$, such that

$$
f^{2}=g^{3}
$$

Solution:

(a) We prove the exercise when $f, g \in \mathbb{C}[X]$, the case of rational function is analogues. First of all let us recall two fact on polynomials:
i) Let $h \in \mathbb{C}[X]$ be a polynomial and let $\alpha \in \mathbb{C}$ be a root of h. We denote by $\operatorname{ord}_{\alpha}(h)$ the order of vanishing of h at α. If $\operatorname{ord}_{\alpha}(h)>1$, then α is a root of h^{\prime} of order $\operatorname{ord}_{\alpha}\left(h^{\prime}\right)=\operatorname{ord}_{\alpha}(h)-1$.
ii) One has that

$$
\operatorname{deg} h=\sum_{\alpha \in \mathbb{C}} \operatorname{ord}_{\alpha}(h) .
$$

We start proving that if $f, g \in \mathbb{C}[X]$ are such that

$$
f^{2}=g^{3}-g
$$

then $g^{2}-1$ is a square in $\mathbb{C}[X]$. Let us start writing

$$
f=a \prod_{i}\left(X-\alpha_{i}\right)^{\operatorname{ord}_{\alpha}(f)}
$$

with $a \in \mathbb{C}$. Than for any i either $\left(X-\alpha_{i}\right) \mid g$ or $\left(X-\alpha_{i}\right) \mid g^{2}-1$. Indeed, by contradiction, if $g\left(\alpha_{i}\right)=g\left(\left(\alpha_{i}\right)\right)^{2}-1=0$ then $-1=0$ which is absurd. Thus we can write

$$
g^{2}-1=b \prod_{i: g\left(\left(\alpha_{i}\right)\right)^{2}-1=0}\left(X-\alpha_{i}\right)^{2 \operatorname{ord}_{\alpha}(f)}=b\left(\prod_{i: g\left(\left(\alpha_{i}\right)\right)^{2}-1=0}\left(X-\alpha_{i}\right)^{\operatorname{ord}_{\alpha}(f)}\right)^{2},
$$

for some $b \in \mathbb{C}$, i.e. $g^{2}-1$ is a square. On the other hand, one has that

$$
\left(g^{2}-1\right)^{\prime}=g \cdot g^{\prime},
$$

thus

$$
\left(g^{2}-1\right)^{\prime} \Leftrightarrow g=0 \text { or } g^{\prime}=0
$$

Assume by contradiction that g is not constant. Then, using (ii) one would get
$\operatorname{deg}\left(g^{2}-1\right)^{\prime}=\sum_{\alpha \in \mathbb{C}} \operatorname{ord}_{\alpha}\left(\left(g^{2}-1\right)^{\prime}\right)=\sum_{\alpha \in \mathbb{C}} \operatorname{ord}_{\alpha}(g)+\sum_{\alpha \in \mathbb{C}} \operatorname{ord}_{\alpha}\left(g^{\prime}\right)=\operatorname{deg} g+\sum_{\alpha \in \mathbb{C}} \operatorname{ord}_{\alpha}\left(g^{\prime}\right)$.
Since $g^{2}-1$ is a square for any $\alpha \in \mathbb{C}$ root of $g^{2}-1$ one has that $\left(g^{2}-1\right)^{\prime}(\alpha)=0$ with $\operatorname{ord}_{\alpha}\left(\left(g^{2}-1\right)^{\prime}\right)=\operatorname{ord}_{\alpha}\left(g^{2}-1\right)-1$ (thanks to $\left.(i)\right)$. Thus, one concludes that for any $\alpha \in \mathbb{C}$ root of $g^{2}-1, g^{\prime}(\alpha)=0$ with $\operatorname{ord}_{\alpha}\left(g^{\prime}\right)=\operatorname{ord}_{\alpha}\left(g^{2}-1\right)-1$. Then

$$
\begin{aligned}
\operatorname{deg}\left(g^{2}-1\right)^{\prime} & =\operatorname{deg} g+\sum_{\alpha \in \mathbb{C}} \operatorname{ord}_{\alpha}\left(g^{\prime}\right) \\
& \geqslant \operatorname{deg} g+\sum_{\substack{\alpha \in \mathbb{C} \\
g(\alpha)^{2}-1=0}} \operatorname{ord}_{\alpha}\left(g^{\prime}\right) \\
& =\operatorname{deg} g+\sum_{\substack{\alpha \in \mathbb{C} \\
g(\alpha)^{2}-1=0}}\left(\operatorname{ord}_{\alpha}\left(g^{2}-1\right)-1\right) \\
& =\operatorname{deg} g+\sum_{\alpha \in \mathbb{C}}\left(\operatorname{ord}_{\alpha}\left(g^{2}-1\right)-\sum_{\substack{\alpha \in \mathbb{C} \\
g(\alpha)^{2}-1=0}} 1\right. \\
& =\operatorname{deg} g+\operatorname{deg}\left(g^{2}-1\right)-\sum_{\substack{\alpha \in \mathbb{C} \\
g(\alpha)^{2}-1=0}} 1
\end{aligned}
$$

Where in the last step we used (ii). On the other hand

$$
\sum_{\substack{\alpha \in \mathbb{C} \\ g(\alpha)^{2}-1=0}} 1=\text { number of distinct root of } g^{2}-1 \leqslant \frac{\operatorname{deg}\left(g^{2}-1\right)}{2},
$$

since $g^{2}-1$ is a square. Thus, we obtain

$$
\operatorname{deg}\left(g^{2}-1\right)^{\prime} \geqslant \operatorname{deg} g+\operatorname{deg}\left(g^{2}-1\right)-\frac{\operatorname{deg}\left(g^{2}-1\right)}{2}
$$

using the fact that $\operatorname{deg}\left(g^{2}-1\right)=2 \operatorname{deg} g$ and that $\operatorname{deg}\left(\left(g^{2}-1\right)^{\prime}\right)=\operatorname{deg}\left(g^{2}-\right.$ 1) -1 , one obtains

$$
2 \operatorname{deg}(g)-1 \geqslant 2 \operatorname{deg} g
$$

which is not possible. Thus g has to be constant, and this implies that also f has to be constant. To handle the case where f, g are rational functions one argues similarly using the following facts
i) Let $h \in \mathbb{C}(X)$ be a rational functions and let $\alpha \in \mathbb{C}$ be a zero of h. If $\operatorname{ord}_{\alpha}(h)>1$, then α is a zero of h^{\prime} of order $\operatorname{ord}_{\alpha}\left(h^{\prime}\right)=\operatorname{ord}_{\alpha}(h)-1$.
ii) Let $h \in \mathbb{C}(X)$ be a rational functions and let $\alpha \in \mathbb{C}$ be a pole of h. Then α is a pole of h^{\prime} of $\operatorname{order} \operatorname{ord}_{\alpha}\left(h^{\prime}\right)=\operatorname{ord}_{\alpha}(h)+1$.
iii) One has that

$$
\sum_{\alpha \in \mathbb{C}} \operatorname{ord}_{\alpha}(h)=0 .
$$

10. Let $Y \subset \mathbb{A}_{K}^{3}$ be the curve given parametrically by $x=t^{3}, y=t^{4}, z=t^{5}$. Show that $I(Y)$ is a prime ideal of height 2 in $K[X, Y, Z]$ which cannot be generated by 2 elements. We say that Y is not a local complete intersection. Proceed as follows:
(a) Show that the closed subsets of Y are given by

$$
\{Y\} \cup\{C \subset Y:|C|<\infty\} .
$$

Conclude that Y is irreducible and that $\operatorname{dim} Y=1$.
(b) Let $f \in \subset K[X, Y, Z]$, then we can write

$$
f(X, Y, Z)=\sum_{n_{1}, n_{2}, n_{3}} c_{n_{1}, n_{2}, n_{3}} X^{n_{1}} Y^{n_{2}} Z^{n_{3}} .
$$

Show that if $f \in I(Y)$, then

$$
\sum_{\substack{n_{1}, n_{2}, n_{3} \\ 3 n_{1}+4 n_{2}+5 n_{3}=n}} c_{n_{1}, n_{2}, n_{3}}=0
$$

for any $n \geqslant 0$. Use this to show that

$$
Y^{2}-X Z, \quad X^{3}-Y Z, \quad X^{2} Y-Z^{2} \in I(Y)
$$

and deduce that Y is an affine variety.
(c) Conclude the exercise.

Solution:

(a) Let $C \subset Y$ a closed subset of Y with $|C|=\infty$. By definition, $C=$ $Z\left(f_{1}, \ldots, f_{n}\right) \cap Y$ for some $f_{i} \in K[X, Y, Z]$. Then for any $i=1, \ldots, n$, the polynomial in one variable

$$
f_{i}\left(T^{3}, T^{4}, T^{5}\right)
$$

vanishes for any t such that $\left(t^{3}, t^{4}, t^{5}\right) \in C$, i.e. $f_{i}\left(T^{3}, T^{4}, T^{5}\right)$ has infinitely many zeros since we are assuming $|C|=\infty$. Thus, for any $i=1, \ldots, n$, $f_{i}\left(T^{3}, T^{4}, T^{5}\right)$ is the zero polynomial i.e. for any $i=1, \ldots, n, f_{i}\left(t^{3}, t^{4}, t^{5}\right)=0$
for any $t \in \mathbb{C}$. Hence, $Y \subset Z\left(f_{1}, \ldots, f_{n}\right)$ and this implies $Y=C$. Let us prove that Y is irreducible. Let $C_{1}, C_{2} \subset Y$ closed subsets such that

$$
Y=C_{1} \cup C_{2} .
$$

Since $|Y|=\infty$ then $\left|C_{1}\right|=\infty$ or $\left|C_{2}\right|=\infty$. Hence, $C_{1}=Y$ or $C_{2}=Y$ i.e. Y is irreducible. Let us prove that $\operatorname{dim} Y=1$: a maximal chain of irreducible closed subset is given by

$$
(0,0,0) \subset Y
$$

Thus, $\operatorname{dim} Y=1$.
(b) Let $f \in I(Y)$, we can write f as

$$
f(X, Y, Z)=\sum_{n_{1}, n_{2}, n_{3}} c_{n_{1}, n_{2}, n_{3}} X^{n_{1}} Y^{n_{2}} Z^{n_{3}} .
$$

The polynomial in one variable

$$
f\left(T^{3}, T^{4}, T^{5}\right)=\sum_{n} T^{n} \sum_{\substack{n_{1}, n_{2}, n_{3} \\ 3 n_{1}+4 n_{2}+5 n_{3}=n}} c_{n_{1}, n_{2}, n_{3}}
$$

has to vanish at any $t \in \mathbb{C}$ by definition of $I(Y)$. Thus $f\left(T^{3}, T^{4}, T^{5}\right)$ is the zero polynomial and we conclude that

$$
\begin{equation*}
\sum_{\substack{n_{1}, n_{2}, n_{3} \\ 3 n_{1}+4 n_{2}+5 n_{3}=n}} c_{n_{1}, n_{2}, n_{3}}=0 \tag{1}
\end{equation*}
$$

for any $n \geqslant 0$. For the second part, it is enough to specialize equation (1) at $n=0, \ldots, 10$. For example, for $n=8$ we get

$$
c_{1,0,1}-c_{0,2,0}=0,
$$

i.e. $Y^{2}-X Z \in I(Y)$.
(c) Thanks to part (b) we know that $Y \subset Z\left(Y^{2}-X Z, X^{3}-Y Z, X^{2} Y-Z^{2}\right)$. Let $(x, y, z) \in Z\left(Y^{2}-X Z, X^{3}-Y Z, X^{2} Y-Z^{2}\right)$, we have that

$$
y^{2}-x z=0, \quad x^{3}-y z=0, \quad x^{2} y-z^{2} \in I(Y)
$$

Multiplying both sides of the first equation by y we get

$$
y^{3}=x z y=x^{4}
$$

thanks to the second equation. Similarly one gets that

$$
z^{3}=x^{5}, \quad z^{4}=y^{5}
$$

Assume $x \neq 0$, and consider $t=y / x$. Then

$$
t^{3}=\frac{y^{3}}{x^{3}}=\frac{x^{4}}{x^{3}}=x, \quad t^{4}=\frac{y^{4}}{x^{4}}=\frac{y^{4}}{y^{3}}=y, \quad t^{4}=\frac{y^{5}}{x^{5}}=\frac{z^{4}}{z^{3}}=z .
$$

Thus $(x, y, z) \in Y$ if $x \neq 0$. On the other hand if $x=0, y=z=0$ and $(0,0,0) \in Y$. Hence $Y=Z\left(Y^{2}-X Z, X^{3}-Y Z, X^{2} Y-Z^{2}\right)$, i.e. Y is an affine variety.
(d) Let us prove that $I(Y)$ cannot be generated by two elements. By contradiction assume $I(Y)=(f, g)$ for some $f, g \in K[X, Y, Z]$. Since $\left(Y^{2}-X Z, X^{3}-\right.$ $\left.Y Z, X^{2} Y-Z^{2}\right) \subset I(Y)$, then $\operatorname{deg} f, \operatorname{deg} g \leqslant 10$. Thanks to part (b), we may assume without loss of generalities that

$$
f=Y^{2}-X Z \text { or } f=X^{3}-Y Z \text { or } f=X^{2} Y-Z^{2}
$$

and that

$$
g=Y^{2}-X Z \text { or } g=X^{3}-Y Z \text { or } g=X^{2} Y-Z^{2}
$$

Let us discuss the case when $f=X^{3}-Y Z$ and $g=X^{2} Y-Z^{2}$, the others are similar. Since $I(Y)=(f, g)=\left(X^{3}-Y Z, X^{2} Y-Z^{2}\right)$, there would be $h, w \in K[X, Y, Z]$ such that

$$
Y^{2}-X Z=h \cdot\left(X^{3}-Y Z\right)+w \cdot\left(X^{2} Y-Z^{2}\right)
$$

The equation above would be true also modulo (X, Z), i.e.:

$$
Y^{2}=0 \quad \bmod (X, Z)
$$

and this would imply $Y \in(X, Z)$ which is not true. Thus $Y^{2}-X Z \notin\left(X^{3}-\right.$ $\left.Y Z, X^{2} Y-Z^{2}\right)$. Similarly one proves that $X^{3}-Y Z \notin\left(Y^{2}-X Z, X^{2} Y-Z^{2}\right)$ and $X^{2} Y-Z^{2} \notin\left(Y^{2}-X Z, X^{3}-Y Z\right)$. Then $\operatorname{ht}(I(Y))=3-\operatorname{dim} Y=2$ but $I(Y)$ cannot be generated by 2 elements.
11. The Segre Embedding. Let $\psi: \mathbb{P}^{r} \times \mathbb{P}^{s} \rightarrow \mathbb{P}^{N}$ be the map defined by sending the ordered pair $\left(a_{0}, \ldots, a_{r}\right) \times\left(b_{0}, \ldots, b_{s}\right)$ to $\left(\ldots, a_{i} b_{j}, \ldots\right)$ in lexicographic order, where $N=r s+r+s$. Show that ψ is well-defined and injective. It is called the Segre embedding. Prove that the image of ψ is a projective algebraic set in \mathbb{P}^{N}.
Solution: The map ψ is homogeneous and thus well-defined. Denote for all indices $0 \leqslant i \leqslant r, 0 \leqslant j \leqslant s$ by $x_{i j}$ the coordinates of a point in \mathbb{P}^{N}. The points in the image of ψ satisfy $x_{i j} x_{k l}=x_{k j} x_{i l}$. Let Y be the projective algebraic set defined by these equations. Let $Q:=\left[x_{i j}\right] \in Y$ be a point. Then at least one coordinate $x_{k \ell}$ is non-zero. Using that we are in projective space we have

$$
Q=\left[x_{k \ell} x_{i j}\right]=\left[x_{i \ell} x_{k j}\right]=\psi\left(\left[x_{0 \ell}: \cdots: x_{r \ell}\right],\left[x_{k 0}: \cdots: x_{k s}\right]\right) .
$$

Which proves that $Y=\operatorname{im}(\psi)$, hence the image of ψ is a projective algebraic set. The above also provides a left inverse to ψ which proves that ψ is injective.
12. Consider the surface Q (i.e. variety of dimension 2) in \mathbb{P}^{3} defined by the equation $x y-z w$.
(a) Show that Q is equal to the image of the Segre embedding of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ in \mathbb{P}^{3}, for suitable choice of coordinates.
(b) Show that Q contains two families of lines (i.e. linear varieties of dimension 1) $\left\{L_{t}\right\},\left\{M_{t}\right\}$, each parametrized by $t \in \mathbb{P}^{1}$, with the property that if $L_{t} \neq L_{u}$, then $L_{t} \cap L_{u}=\varnothing$; if $M_{t} \neq M_{u}$ then $M_{t} \cap M_{u}=\varnothing$ and for all t, u we have $L_{t} \cap M_{u}=$ one point.
(c) Show that Q contains other curves besides these lines and deduce that the Zariski topology on Q is not homeomorphic via the Segre embedding to the product topology on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Solution:

(a) The image of the Segre embedding is given by

$$
\operatorname{im}(\psi)=\left\{\left[a_{0} b_{0}: a_{0} b_{1}: a_{1} b_{0}: a_{1} b_{1}\right] \mid\left[a_{0}: a_{1}\right],\left[b_{0}: b_{1}\right] \in \mathbb{P}^{1}\right\}
$$

We see that every point $[x: w: z: y]$ in the image of ψ satisfies the equation $x y-z w=0$. Conversely suppose that a point $[x: w: z: y] \in \mathbb{P}^{3}$ satisfies $x y-z w=0$. If $x \neq 0$, then the image of $([x: z],[x: w])$ under the Segre embedding is the point $[x x: x w: x z: w z]=[x: w: z: y]$. Similarly for $w \neq 0$ take $([w: y],[x: w])$, for $z \neq 0$ take $([x: z],[z: y])$ and for $y \neq 0$ take $([w: y],[z: y])$ to prove that every point $[x: w: z: y]$ with $x y-z w=0$ is always in the image of the Segre embedding. Thus the image of the Segre embedding is equal to $Z(x y-z w)=Q$.
(b) For any $t \in \mathbb{P}^{1}$ we define L_{t} to be $\psi\left(\mathbb{P}^{1} \times\{t\}\right)$ and for any $u \in \mathbb{P}^{1}$ we define M_{u} to be $\psi\left(\{u\} \times \mathbb{P}^{1}\right)$. We have shown in exercise 9 that ψ is injective. Thus $L_{t} \cap L_{u}=\varnothing$ and $M_{t} \cap M_{u}=\varnothing$ for $t \neq u$. Furthermore it follows that $L_{t} \cap M_{u}=\psi(u, t)$, which is one point.
(c) The surface Q contains the curve

$$
C:=Z(x y-z w, w-z)=\psi\left(\left\{([x: z],[x: z]) \mid[x: z] \in \mathbb{P}^{1}\right\}\right) .
$$

By bijectivity of ψ, we know that $C \cap L_{t}$ and $C \cap M_{t}$ are both one point for all $t \in \mathbb{P}^{1}$, hence we conclude that C is a different curve. The curve C is closed in \mathbb{P}^{3}, but the set $\left\{([x: z],[x: z]) \mid[x: z] \in \mathbb{P}^{1}\right\}$ is not closed in the product topology of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, because it is the diagonal of a non-Hausdorff space.
13. Let $n, d>0$ be integers. We denote by M_{0}, \ldots, M_{N} all monomials of degree d in the $n+1$ variables x_{0}, \ldots, x_{n}, where $N:=\binom{n+d}{n}-1$. We define the $d-$ uple embedding as the map $\rho_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ sending the point $a=\left(a_{0}, \ldots, a_{n}\right)$
to the point $\left(M_{0}(a), \ldots, M_{N}(a)\right)$. Show that the d-uple embedding of \mathbb{P}^{n} is an isomorphism onto its image.
[Hint: Look at the inverse map.]
Solution: For $0 \leqslant i, j \leqslant n$ denote by $M_{i j}$ the monomial $x_{i}^{d-1} x_{j}$ and denote for a point $\left[b_{0}: \cdots: b_{N}\right]$ in the image of ρ_{d} by $b_{i j}$ the coordinate corresponding to the monomial $M_{i j}$. Note that at least one $b_{i i}$ is non-zero. On the chart $b_{i i} \neq 0$, define the map $\varphi_{i}:\left[b_{0}: \cdots: b_{N}\right] \mapsto\left[b_{i 0}: \cdots: b_{i n}\right]$. These maps φ_{i} glue to an inverse of ρ_{d} on the whole image. Since they are defined only by projecting to certain coordinates, they are regular and thus glue to a morphism. Hence ρ_{d} is an isomorphism onto its image.

