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Prof. Emmanuel Kowalski .
Solutions Sheet 1

CLASSICAL VARIETIES

Let K be an algebraically closed field. All algebraic sets below are defined over K,
unless specified otherwise.

1. Describe the Zariski topology on Z(XY) C A%

Solution: The algebraic set Z(XY') consists of the union of the two coordinate
axis Y = 0 and X = 0. The proper closed subsets are given by the whole X-axis,
the whole Y-axis and subsets consisting of finitely many points.

2. Assume that char(K) # 2,3. Show that the polynomial Y? — X3 — X € K[X,Y]
is irreducible. Describe the Zariski topology on Z(Y? — X3 — X)) C A%

Solution: We consider the polynomial as an element in the ring (K[X])[Y]. In the
ring K[X] the element X is prime and divides X3 + X, but its square does not.
Using Eisenstein’s criterion for the irreducibility of a polynomial, we deduce that
Y?—X3—X is irreducible. We conclude that Z(Y?—X?—X) C A? is an irreducible
algebraic variety. Since K[X,Y] has Krull dimension 2 and (Y?—X?3—X) is a non-
zero prime ideal the coordinate ring O(Z(Y?—X?*-X)) = K[X,Y]/(Y?-X3-X)
and thus also the variety has dimension 1. Hence the only proper closed subsets
are given by finitely many points.

3. Let Y be the algebraic set of A% defined by the two polynomials X? — Y Z and
X7 — X. Show that Y is a union of three irreducible components. Describe them
and find their prime ideals.

Solution: One observes that
XZ-X=0=X=0o0rZ=1.
If X =0, from the other equation one gets
YZ=0=Y=0o0r Z=0.
On the other hand, if Z =1 then
Y —X?=0.
Then one concludes that

Z(X?-YZ,XZ-X)=Z2(X,Y)NZ(X,2)NZ((Y — X?,Z — 1))



To conclude the exercise, it is enough to show that Z((X,Y)),Z((X,Z)) and
Z((Y — X2, Z — 1)) are irreducible varieties, i.e. that p; := (X,Y),ps := (X, Z)
and p3 := (Y — X2, Z — 1) are prime ideals. On the other hand, it is easy to see
that

KIX.Y, Z)/p; = K[T],
for i =1,2,3, i.e. K[X,Y,Z]/p; is an integral domain for any i = 1,2,3. Thus p;
is prime for ¢ = 1,2, 3.

. Let A C A" and B C A™ be two algebraic sets. Prove that their product set
A x B C A™™ is algebraic, too.

Solution: Let a C K[X;,...,X,] and b C K[Y1,...,Y,,] be ideals such that A =
Z(a) and B = Z(b). Let fi,...,f, €aand ¢i,...,gs € b be respective generators
of the ideals. It is straightforward to see that A x B = Z(f1,..., fr,01,---,9s),
where we extended tacitly to the ring K[Xy,..., X, Y7, ..., Y]

. Let K be a field. An algebraic subset of K™ = M,,(K) that is a subgroup of
GL,(K) is called a linear algebraic group.

(a) Show that the following are linear algebraic group

SL(K), {(_ab 2)' @+ =1}, { 1 * }
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(b) Show that if H C SL, (K) is any subgroup then the Zariski closure is a linear
algebraic group.

(c) Let K = C and n = 2. Compute the Zariski closure of H = SLy(Z).

Solution:

(a) We know that det A is a polynomial in the coefficients of A € M, «,(K),

thus

SL,(K) = Z(det A —1).
Let

aia ai 2
A - ’ ’ E Mn n K I

<a2,1, az2 ) 8 ( )

then
AG{(a b) a2—|—b2=1}
-b a

if and only if @11 = a2, a12 = —as; and det A = 1. Thus

{ <_ab Z) ‘ a2 —+ b2 = ]_} = Z(al,l — 022,012 + a271,detA — 1)
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To conclude, for any A € M, (K),

Ae{ 1 * }

1

it and only if @;; =1 forany i = 1,..,n and a;; =0 forany 1 < j < < n.
Thus

{ ) }:(ﬁz(am—l))m( ﬂ Z(ai’j)>'

1 i=1 1<j<i<n

(b) Let ¢ : SL,(C) — SL,(C) be the inversion morphism. Since H is a subgroup
we have ¢ : H — H. But ¢ is a homeomorphism for the Zariski topology and
thus maps i : H — H. Hence H is closed under inversion. Now consider
the multiplication morphism with a fixed element # € H given by SL, (C) —
SL,(C), a — wa. This is a homeomorphism, too and hence xH = H for all
r € H. We conclude that for all z € H we have Hx C H. By the same
argument as before we conclude that Hx C H. Hence H is closed under
multiplication. It follows that H is a subgroup of SL,(C).

(¢) Since Z is infinite and A} is irreducible, we conclude that the closure Z = AL.

We deduce that the closure of the subgroup ((1) ?) is <(1) (1:) and similarly

the closure of ( 0) is <1 0). From exercise 5 we know that SLy(Z) is a

1
Z 1 C 1

group and from the preceding we know that it contains (é ((1:> and ( é (1)> :

Notice that we have

1a.10'1c_1+abc+abc+a
0 1 b 1 0o 1) b 1+ bc

Hence all matrices in SLy(C) of the form (QZ: 3)) with 2 # 0 are contained

in SLy(Z). This is a Zariski dense subset of SLy(C), because A¢ \ Z(Z) is
Zariski dense in AZ. We conclude that SLy(Z) = SLy(C).

6. Determine the Zariski closure for the following subsets:

(a) {(z,sin(x)) |z € C} C A2
(b) {(a* =V 2ab,a® + b*) | a,b € Z} C A.

Solution:



(a) Denote the subset by A. We claim that A = AZ. To prove this we compute
the dimension. Since A is not a finite set, we conclude that the dimension
of A must be 1 or 2. Assume that it is 1. Then A is a curve. However, for
all real values —1 < y < 1 the intersection with the irreducible curve given
by Cy = {(z,y) | z € C} has infinitely many points. We conclude using
exercise 3 that C, C A for all real —1 <y < 1, so A contains infinitely many
different curves. But A is an algebraic set and thus must be coverable by
finitely many irreducible curves which is a contradiction. We conclude that
the dimension of A is 2 and since A2 is irreducible we have proven the claim.

Aliter: Consider the associated ideal I(A) C K[X,Y]. A polynomial f €
I(A) must in particular vanish on all points (x,sin(z)). Hence for any z € R
the polynomial f(X,sin(z)) € K[X] has infinitely many roots X = 27Z + x.
Thus f(X,sin(z)) = 0. Since this holds for all x € R and sin(R) = [—1, 1] we

conclude that f = 0. Hence I(A) = (0) and A = AZ.

(b) Let A be the subset in question. These points are all zeroes of the polynomial
X24Y?%- 72 they are Pythagorian triples. Hence A C Z(X2+Y?2—Z2). The
polynomial X2+Y?2—Z?is irreducible in K[X,Y, Z], which can be seen by the
Eisenstein criterion with Y — Z in the ring (K[Y, Z])[X]. Therefore Z (X2 +
Y? — Z?) is irreducible of dimension 2. We only need to show that A has
dimension 2. Containing infinitely many points, we know that it does not have
dimension 0. Assume that it has dimension 1. For all ¢ € Z, the intersection
of A with the irreducible curve given by C, := {(¢* — b?,2cb, ¢* + b*) | b€ C}
has infinitely many points. By exercise 3 we conclude that C, C A for all
¢ € 7, hence A contains infinitely many different curves, which proves that
it cannot have dimension 1. Thus A has dimension 2 and it follows that it is
equal to Z(X? +Y? — Z?).

7. Let ¢ : A1 — A? be defined by ¢ +— (¢2,¢3). Show that ¢ defines a bijective bicon-
tinuous morphism of A! onto the curve ? = 23, but that ¢ is not an isomorphism.
This shows that not every morphism whose underlying map of topological spaces
is a homeomorphism needs to be an isomorphism.

Solution: We see that the image of ¢ is contained in Z(y? — x3). It is bijective
with inverse ¢! : (a,b) — 2 for a # 0 and ¢71(0,0) = 0. Closed sets in A! are
finitely many points and they are mapped via ¢ to finitely many points (i.e. closed
sets) in A2 so ¢ is a closed map. Hence ¢ and ¢~! are both continuous. So ¢
is bijective and bicontinuous. However, it is not an isomorphism. To see this let
[+ A' — k be the canonical regular function ¢ — t. Note that fop™': (a,b) — g
is not regular at a = 0, hence ¢! is not a morphism.

8. Let Y C A3 be the set Y := {(¢,t*,¢3) |t € K'}. Show that Y is an affine variety
of dimension 1. Find generators for the ideal I(Y') and prove that the coordinate
ring O(Y") is isomorphic to a polynomial ring in one variable over K.



Solution: The ideal I(Y) is equal to (v — v*,w — u3) C Klu,v,w]. We have
the equality Y = Z(v — v?,w — u?). Note that Ku,v,w|/(v — v?,w — u®) =
Klu,u* u¥] & K[u]. This proves that O(Y) is isomorphic to a polynomial ring

in one variable over K and furthermore that (v — u? w — u?®) is a prime ideal of

coheight 1, so Y is an irreducible affine variety of dimension 1.

9. (a) Show that there are not non-constant rational functions f,g € C(X), such

that
ff=g" -y
(b) Show that there exist non-constant rational functions f, g € C(X), such that
=g
Solution:

(a) We prove the exercise when f,g € C[X], the case of rational function is
analogues. First of all let us recall two fact on polynomials:

i) Let h € C[X] be a polynomial and let & € C be a root of h. We denote
by ord,(h) the order of vanishing of h at . If ord,(h) > 1, then « is a
root of A’ of order ord, (k') = ord,(h) — 1.

i1) One has that
degh = Z ord,(h).

acC
We start proving that if f, g € C[X] are such that
=9 -y,

then g? — 1 is a square in C[X]. Let us start writing
f = aH(X — ai)orda(f)

with ¢ € C. Than for any i either (X — «;)|g or (X — a;)|g? — 1. Indeed, by
contradiction, if g(a;) = g((@;))* —1 = 0 then —1 = 0 which is absurd. Thus
we can write

2
92 S H (X i ai)2orda(f) — b( H (X . Oéi)orda(f)) :
i: g((a;))2—1=0 it g(())2—1=0
for some b € C, i.e. g2 — 1is a square. On the other hand, one has that

/

(-1 =g-¢,

thus
(-1 g=00rg =0.
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Assume by contradiction that g is not constant. Then, using (ii) one would
get

deg(g Z ord( Z ord, ( —i—Z ord,(g') = deg g—i—Z ord,(g')

acC aeC aeC acC

Since g?—1 is a square for any o € C root of g?—1 one has that (¢*—1)'(a) = 0
with ord,((g*> —1)") = ord,(¢g? — 1) — 1 (thanks to (i)). Thus, one concludes
that for any o € C root of g*> — 1, ¢’(a) = 0 with ord,(g') = ord,(¢g? — 1) — 1.
Then

deg(g® — 1) = degg+ > _orda(g)

acC
> degg + Z ord,(¢')
acC
9(@)?~1=0
=degg + Z (orde(g® — 1) — 1)
aEC
g(a)?2—1=0
=degg + Z(orda(g2 —1)— Z 1
acC aeC
9()*~1=0
=degg+deg(g®—1)— > 1,
aecC
g(a)?=1=0

Where in the last step we used (i¢). On the other hand

deg(g? — 1
Z 1 = number of distinct root of ¢g* — 1 < %7
acC
g(a)?=1=0
since g? — 1 is a square. Thus, we obtain
deg(g* — 1)

deg(g° —1)" > deg g + deg(g* — 1) — 5 ,

using the fact that deg(g®> — 1) = 2deg g and that deg((¢g? — 1)) = deg(g* —
1) — 1, one obtains

2deg(g) — 1 > 2degg,

which is not possible. Thus g has to be constant, and this implies that also f
has to be constant. To handle the case where f, g are rational functions one
argues similarly using the following facts



i) Let h € C(X) be a rational functions and let a € C be a zero of h. If
ord,(h) > 1, then « is a zero of A’ of order ord, (k') = ord,(h) — 1.

i1) Let h € C(X) be a rational functions and let a € C be a pole of h. Then
« is a pole of A’ of order ord, (k') = ord,(h) + 1.

i7i) One has that

> " ordy(h) = 0.

10. Let Y C A% be the curve given parametrically by z = 3, y = t*, 2 = t5. Show
that I(Y") is a prime ideal of height 2 in K[X,Y, Z] which cannot be generated by
2 elements. We say that Y is not a local complete intersection. Proceed as follows:

(a) Show that the closed subsets of Y are given by
{Y}u{C cCcY:|C| < oo}
Conclude that Y is irreducible and that dimY = 1.
(b) Let f eC K[X,Y, Z], then we can write
FXLY, Z) = D Cupmamy XY™ 2™

ni,m2,n3

Show that if f € I(Y), then

E Cnimang = 0,

n1,m2,n3
3ni1+4n2+5n3=n

for any n > 0. Use this to show that
Yi-X7Z X*-YZ X% -Z*cI(Y),

and deduce that Y is an affine variety.

(c) Conclude the exercise.

Solution:

(a) Let C C Y a closed subset of Y with |C| = oco. By definition, C' =
Z(f1, .., fn) NY for some f; € K[X,Y,Z]. Then for any i = 1,...,n, the
polynomial in one variable

fi(T3,T4,T5)
vanishes for any t such that (¢3,¢*,¢%) € C, ie. f;(T3,T* T°) has infinitely
many zeros since we are assuming |C| = oo. Thus, for any ¢ = 1,...,n,
fi(T3, 7%, T°) is the zero polynomial i.e. for any i = 1,...,n, f;(t3,t*,t°) =0



for any t € C. Hence, Y C Z(fi, ..., f) and this implies Y = C. Let us prove
that Y is irreducible. Let C1,Cy C Y closed subsets such that

Y =C,UC(Ch.

Since |Y| = oo then |C}]| = 0o or |Cy| = co. Hence, C; =Y or Cy =Y ie. YV
is irreducible. Let us prove that dimY = 1: a maximal chain of irreducible
closed subset is given by

(0,0,0) C Y.

Thus, dimY = 1.
Let f € I(Y), we can write f as

FXLY,Z) = D Cupmamy XY™ 2™

ni,n2,n3
The polynomial in one variable

f(T37 T4, T5) = Z ™ Z Cny,na2,ns

n1,n2,1n3
3ni1+4no+5n3=n

has to vanish at any ¢t € C by definition of I(Y). Thus f(7%,T%,T%) is the
zero polynomial and we conclude that

Z Cninang — 07 (1)

ni,n2,n3
3ni1+4ns+5n3=n

for any n > 0. For the second part, it is enough to specialize equation (1) at
n =20,...,10. For example, for n = 8 we get

C1,01 — €020 = 0,

ie. Y2— XZ € I(Y).

Thanks to part (b) we know that Y C Z(Y?—XZ, X3 -Y Z, X?Y — Z?). Let
(r,y,2) € Z(Y? - XZ, X3 -YZ, X?Y — Z?%), we have that

v —xz=0, 2°—yz=0, 2%y—2>clI(Y).
Multiplying both sides of the first equation by y we get
4

v =azy =2

thanks to the second equation. Similarly one gets that



Assume z # 0, and consider ¢t = y/x. Then

3 4 4 4 5 4
3 Yy T 4 Y Y 4 _ _* _
Thus (z,y,2) € Y if  # 0. On the other hand if x = 0, y = z = 0 and
(0,0,0) € Y. Hence Y = Z(Y? - XZ, X3 -YZ XY — Z?), ie. YV is an

affine variety.

(d) Let us prove that I(Y") cannot be generated by two elements. By contradic-
tion assume [(Y) = (f, g) for some f,g € K[X,Y, Z]. Since (Y? - XZ, X3 —
YZ, X?Y — Z%) C I(Y), then deg f,deg g < 10. Thanks to part (), we may
assume without loss of generalities that

f=Y*-XZorf=X*-YZor f=X?Y -2
and that
g=Y?>—-XZorg=X*-YZorg=X?Y — 7%

Let us discuss the case when f = X3 —YZ and g = X?Y — Z2, the others
are similar. Since I(Y) = (f,g) = (X3 — Y Z, X?Y — Z?), there would be
h,w € K[X,Y, Z] such that

Y2-XZ=h-(X*-YZ)+w- (XY - Z2).
The equation above would be true also modulo (X, Z), i.e.:
Y?=0 mod (X, Z2),
and this would imply Y € (X, Z) which is not true. Thus Y? — XZ ¢ (X3 —
Y Z, X?Y — Z?). Similarly one proves that X*—Y Z ¢ (Y- XZ, X?Y — Z?)
and X2Y — 2% ¢ (Y2 — XZ,X* — YZ). Then ht(I(Y)) = 3 — dimY = 2 but
I(Y') cannot be generated by 2 elements.

11. The Segre Embedding. Let ¢ : P" x P — PV be the map defined by sending
the ordered pair (ao, ..., a,) X (by,...,bs) to (...,a;b;,...) in lexicographic order,
where N = rs +r + s. Show that ¢ is well-defined and injective. It is called the
Segre embedding. Prove that the image of 1 is a projective algebraic set in PV.
Solution: The map v is homogeneous and thus well-defined. Denote for all indices
0<i<r 0<j<s by the coordinates of a point in PY. The points in the
image of 1 satisfy x;;2; = xi;zq. Let Y be the projective algebraic set defined
by these equations. Let @ := [z;;] € Y be a point. Then at least one coordinate
Zre i1s non-zero. Using that we are in projective space we have

Q = [pewij] = [wiexyj] = V([xoe s -+ 2 @], [0 -+ 1 Tps))-

Which proves that Y = im(#)), hence the image of ¢ is a projective algebraic set.
The above also provides a left inverse to ¢ which proves that v is injective.
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12. Consider the surface Q (i.e. variety of dimension 2) in P? defined by the equation
TY — 2W.

(a)
(b)

(c)

Show that @ is equal to the image of the Segre embedding of P! x P! in P3,
for suitable choice of coordinates.

Show that () contains two families of lines (i.e. linear varieties of dimension 1)
{L}, {M;}, each parametrized by ¢t € P!, with the property that if L; # L,
then L; N L, = @; if My # M, then M; N M, = @ and for all ¢,u we have
L, N M, = one point.

Show that () contains other curves besides these lines and deduce that the
Zariski topology on @) is not homeomorphic via the Segre embedding to the
product topology on P! x P!,

Solution:

(a)

The image of the Segre embedding is given by
11’Il('¢) = {[aobo . a0b1 . a1b0 . albl] | [CLO . al], [bo . bl] - Pl}

We see that every point [ : w : z : y] in the image of ¢ satisfies the equation
ry — zw = 0. Conversely suppose that a point [z : w : z : y|] € P? satisfies
xy —zw = 0. If x # 0, then the image of ([x : 2|, [r : w]) under the Segre
embedding is the point [zx : 2w : xz : wz] = [z : w : z : y|. Similarly for
w # 0 take (Jw : yl, [z : w]), for z # 0 take ([z : 2], [z : y]) and for y # 0 take
([w : y],[z : y]) to prove that every point [z : w : z : y| with 2y — zw = 0
is always in the image of the Segre embedding. Thus the image of the Segre
embedding is equal to Z(zy — zw) = Q.

For any ¢t € P! we define L; to be (P! x {t}) and for any u € P* we define
M, to be ¥({u} x P'). We have shown in exercise 9 that ¢ is injective.
Thus L;N L, = @ and M; N M,, = @ for t # u. Furthermore it follows that
L, N M, = ¢ (u,t), which is one point.

The surface () contains the curve
Ci=Zy—z2ww—2)=9({([z:2],[x:2]) |[z:2] €P'}).

By bijectivity of ¥, we know that C'N L; and C'N M; are both one point for all
t € P!, hence we conclude that C is a different curve. The curve C is closed
in P?, but the set {([x: 2], [x: 2]) | [z : 2] € P'} is not closed in the product
topology of P! x P!, because it is the diagonal of a non-Hausdorff space.

13. Let n,d > 0 be integers. We denote by My,..., My all monomials of degree
d in the n + 1 variables xy,...,z,, where N := (7fd) — 1. We define the d-
uple embedding as the map pg : P — PV sending the point a = (aq,...,a,)
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to the point (My(a),..., Mx(a)). Show that the d-uple embedding of P™ is an
isomorphism onto its image.

[Hint: Look at the inverse map.]

Solution: For 0 < 4,7 < n denote by M,;; the monomial xf’lxj and denote for

a point [by : --- : by in the image of pg by b;; the coordinate corresponding to
the monomial M;;. Note that at least one b;; is non-zero. On the chart b; # 0,
define the map ¢; : [bg : +-+ : by| = [bio : -+ : biy]. These maps p; glue to an

inverse of p; on the whole image. Since they are defined only by projecting to
certain coordinates, they are regular and thus glue to a morphism. Hence py is an
isomorphism onto its image.
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