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Prof. Emmanuel Kowalski

Solutions Sheet 2

Classical Varietes, Rational Maps, Blowups, Spectrum

Let K be an algebraically closed field. All algebraic sets and varieties below are defined
over K, unless specified otherwise.

1. Consider the set M := Matm,n(K) of m × n-matrices. It can be identified with
the affine algebraic variety Anm. Determine if S is open/closed/dense in M :

(a) S := {A ∈M | AtA has an eigenvalue 1}
(b) S := {A ∈M | rank(A) = min{m,n}}
(c) for m = n, S := {A ∈M | A is diagonalisable}

Solution:

(a) We define the map ϕ : M → A1 to be A 7→ det(AtA − id). For a matrix
A ∈M the matrix AtA has an eigenvalue 1 if and only if ϕ(A) = 0. The map
ϕ is a polynomial in the coefficients of A and hence a morphism of algebraic
varieties. We conclude that S = ϕ−1(0) is a closed subset of M .

(b) We define d := min{m,n} and N :=
(

max{m,n}
d

)
. We define ϕ : M → AN as

the map taking an m×n-matrix A to all of its d×d-minors. Then A has full
rank(A) = d if and only if ϕ(A) 6= (0, . . . , 0). Since minors are polynomial
expressions in the coefficients of A, we conclude that ϕ is a morphism of
algebraic varieties. Hence S = M r ϕ−1(0) is an open subset of M .

(c) It is neither: We define the map ϕ : M → A1 as the map taking a matrix A ∈
M to the discriminant of its characteristic polynomial. Since the discriminant
is a polynomial expression in the coefficients of the characteristic polynomial,
and these coefficients are polynomial expressions in the coefficients of A, we
conclude that ϕ is a morphism of algebraic varieties. Furthermore, every
matrix A with ϕ(A) 6= 0 is diagonalisable. Thus S contains an open set
S ⊃ ϕ−1(0) and since M is irreducible, we conclude that S is dense in M .
Since not all matrices are diagonalisable, we conclude that S is not closed
in M . To see that S is neither open, for all α ∈ K define the matrices Aα

as everywhere zero except for the upper left corner, where we have

(
1 α
0 1

)
.

Define the set R to be the set of matrices Aα for α 6= 0. Then every element
of R is not diagonalisable and thus in the complement of S. However, the
matrix A0 is contained in the Zariski closure of R and is diagonalisable. Hence
the complement of S is not closed, which implies that S is not open.
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2. Show that a commutative K-algebra, A, is of the form O(Y ) for some algebraic set
Y if and only if it is finitely generated and it does not contains non-zero nilpotent
elements.

Solution: Let A be a finitely generated commutative K-algebra which does not
contain non-zero nilpotent. Since A is finitely generated, there exists a set of
generators x1, ..., xn over K. Let K[X1, ..., Xn] be a the polynomial ring in n
variables, then the ring morphism

ψ :
K[X1, ..., Xn] → A

Xi 7→ xi,

is surjective, i.e. A = K[X1, ..., Xn]/Ker(ψ). Moreover Ker(ψ) is a radical ideal,
since A does not contains non-zero nilpotent elements. Thus, A = O(Y ) where
Y = Z(Ker(ψ)). On the other hand, assume that A = O(Y ) for some algebraic set
Y . We may assume Y ⊂ An

K for some n > 0. Then there exists I ⊂ K[X1, ..., Xn]
ideal such that Y = Z(I). Then by definition A = O(Y ) = K[X1, ..., Xn]/

√
I, i.e.

A is a finitely generated commutative K-algebra which does not contain non-zero
nilpotent.

3. Let n > 1 be an integer and 1 6 k 6 n. Let

Gn,k := {V ⊂ Kn : V is a K-vector space of dimension k}.

Moreover, for a K-vector space, W , we denote by

P(W ) := {lines in W}.

(a) Let V ∈ Gn,k, show that for any basis (e1, ..., ek) of V the element

e1 ∧ · · · ∧ ek ∈ ΛkKn

is non zero, and generates a line λ(V ) ∈ P(ΛkKn) independent of the choice
of the basis.

(b) Show that the map

Gn,k
ψ−→ P(ΛkKn)

V 7→ λ(V ),

is an injection.

(c) Let w ∈ ΛkKn with w 6= 0. Show that w is of the form

v1 ∧ · · · ∧ vk,

for vi ∈ Kn if and only if the linear map

ϕw :
Kn → P(Λk+1Kn)
v 7→ w ∧ v,

has rank n− k.
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(d) Deduce that the image of ψ is a projective subset of P(ΛkKn). It is called
the grassmannians of k-spaces in Kn.

Solution: First, we recall some notion about exterior algebras:

i) for any v1, ..., vk ∈ Kn one has that

v1 ∧ · · · ∧ vk 6= 0

if and only if v1, ..., vk are linearly independent.

ii) for any v1, ..., vk ∈ V and any a1, ..., ak ∈ V

a1v1 ∧ · · · ∧ akvk =
( k∏

i

ai

)
v1 ∧ · · · ∧ vk

iii) for any v1, ..., vk ∈ V and any σ ∈ Ωk (Ωk is the permutation group of k
elements), we have

vσ(1) ∧ · · · ∧ vσ(k) = sng(σ)v1 ∧ · · · ∧ vk

iv) A basis for ΛkKn is given by

Ek := {ei1 ∧ · · · ∧ eik : 1 6 i1 < · · · < ik 6 n},

where {e1, ..., en} is the standard basis of Kn.

(a) Let {e1, ..., ek} and {f1, ..., fk} be two basis for V . Then for any i = 1, ..., k
we have that

fi =
k∑
j=1

ai,jej,
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for some ai,j ∈ K. Then

f1 ∧ · · · ∧ fk =
( k∑
j1=1

a1,j1ej1

)
∧ · · · ∧

( k∑
jk=1

ak,jkejk

)
=

k∑
j1=1

· · ·
k∑

jk=1

a1,j1ej1 ∧ · · · ∧ a1,jkejk

(i)
=

k∑
j1=1

· · ·
k∑

jk=1

js 6=jt if s 6=t

a1,j1ej1 ∧ · · · ∧ a1,jkejk

=
∑
σ∈Ωk

a1,σ(1)eσ(1) ∧ · · · ∧ a1,σ(k)eσ(k)

(ii)
=
∑
σ∈Ωk

( k∏
i=1

ai,σ(i)

)
eσ(1) ∧ · · · ∧ eσ(k)

(iii)
=
( ∑
σ∈Ωk

sng(σ)
k∏
i=1

ai,σ(i)

)
e1 ∧ · · · ∧ ek

= (detA)e1 ∧ · · · ∧ ek,

where A = (ai,j)16i,j6k. Thus e1 ∧ · · · ∧ ek and f1 ∧ · · · ∧ fk generate the same
line in P(ΛkKn).

(b) Let V,W ⊂ Kn be two subvector spaces of Kn of dimension k, and assume
V 6= W . Let {e1, ..., ek} be a basis for V and {f1, ..., fk} be a basis for W .
Since V 6= W , there exists an element of the basis of W , fi, such that fi /∈ V .
Thus, e1, ..., ek, fi are linearly independent, i.e.

e1 ∧ · · · ∧ ek ∧ fi 6= 0.

By contradiction, assume λ(V ) = λ(W ). Then one would have

a(e1 ∧ · · · ∧ ek) = f1 ∧ · · · ∧ fk,

for some a ∈ K×. This would imply that

0 = f1 ∧ · · · ∧ fk ∧ fi = a(e1 ∧ · · · ∧ ek ∧ fi) 6= 0,

and this is absurd. Then λ(V ) 6= λ(W ) if V 6= W , i.e. the map λ is injective.

(c) Let us first assume that w = v1 ∧ · · · ∧ vk for some v1, ..., vk ∈ Kn. Then
there exist uk+1, ..., un ∈ Kn such that v1, ..., vk, uk+1, ..., un is a basis for Kn.
Then we have that ϕw(vi) = v1 ∧ · · · vi · · · ∧ vk ∧ vi = 0 for any i = 1, ..., k.
On the other hand

{ϕw(uj) : j = k + 1, ..., n} = {v1 ∧ · · · ∧ vk ∧ uj : j = k + 1, ..., n} ⊂ Ek
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is a subset of n− k elements of the basis for ΛkKn. Thus rank(ϕw) = n− k.
Assume that w ∈ ΛkKn is such that ϕw has rank n − k. Then, there exists
a basis v1, ..., vn such that ϕw(vi) = 0 if 1 6 i 6 k and ϕw(vi) 6= 0 if
k + 1 6 i 6 n. Then we have

w =
∑

16i1<···<ik6n

ai1,...,ikvi1 ∧ · · · ∧ vik

= a1,...,kv1 ∧ · · · ∧ vk +
∑

16i1<···<ik6n
ik>k

ai1,...,ikvi1 ∧ · · · ∧ vik .

Let 1 6 s 6 k. By hypothesis, one knows that w ∧ vs = 0. Hence, one has
that

0 = w ∧ vs = a1,...,kv1 ∧ · · · ∧ vk ∧ vs +
∑

16i1<···<ik6n
ik>k

ai1,...,ikvi1 ∧ · · · ∧ vik ∧ vs

=
∑

16i1<···<ik6n
ij 6=s for any ij

ai1,...,ikvi1 ∧ · · · ∧ vik ∧ vs.

(1)

On the other hand.

{vi1 ∧ · · · ∧ vik ∧ vs : 1 6 i1 < · · · < ik 6 n, ij 6= s for any ij} ⊂ Ek+1

Thus equation (??) implies
aai1,...,ik = 0

for any 1 6 i1 < · · · < ik 6 n such that ij 6= s for any ij. Since this holds for
any 1 6 s 6 k we conclude that

w = a1,...,kv1 ∧ · · · ∧ vk,

as we wanted.

(d) The map

ϕ :
ΛkKn → Hom(V,Λk+1Kn)
w 7→ ϕw,

is linear, that is, the entries of the matrix ϕw ∈ Hom(V,Λk+1Kn) are homoge-
neous coordinates on P(ΛkKn); we say that Gn,k ⊂ P(ΛkKn) is the subvariety
defined by the vanishing of the (n−k+1)× (n−k+1) minors of this matrix.

4. Let n > 1 be an integer

(a) Let 0 6 k 6 n and x1, ..., xk ∈ Pn. Show that the set of lines contained in the
subspace V of Kn+1 generated by x1, ..., xk is a projective set in Pn. Show
that it is isomorphic to Pd−1, where d = dim(V ). It is denoted P(x1, ..., xk).
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(b) Show that a closed projective set Y in Pn is isomorphic to a set of the form
P(x1, . . . , xk) for some k and some (xi) if and only if it is the zero set of a
family of homogeneous polynomials of degree 6 1.

(c) Let H = Pn r An
xn and x ∈ An

xn fixed. For y ∈ Pn r {x}, show that there is
a unique point ζ ∈ H such that ζ ∈ P(x, y).

(d) Show that the map
Pn r {x} → H

y 7→ ζ,

is a morphism.

Solution:

(a) Let V ⊂ Kn be the subspace of dimension d generate by x1, ..., xk. Without
loss of generalities, we may assume that x1, ..., xd generates V . Then a vector
v is contained in V if and only if all the (d+ 1)× (d+ 1) minors of the matrix

A =


v
x1
...
xn


have determinant vanishing. These determinants are homogeneus linear equa-
tions in the variables v = (v1, ..., vn), thus V is a projective varieties. For the
second part, let us consider u1, ..., ud a basis for V . Recall that we can see

Pn = Gn,1 = {〈v〉 : v ∈ Kn+1 r {0}}.

Then we define

ϕ :
Pd → Pn

[a1 : ... : ad] 7→ 〈a1u1 + · · ·+ adud〉.

It is easy to check that this map is an injective morphism and that ϕ(Pd) =
P(x1, ..., xk).

(b) In part (a) we have shown that, if Y = P(x1, ..., xk) for some k and some
(xi), then Y is the zero set of a family of homogeneous polynomials of degree
6 1. On the other hand, let Y be the zero set of homogeneous polynomials
of degree 6 1, f1, ..., fn. Let us consider I = (f1, ..fn). Then Z(I) ⊂ Kn+1

is a subvectorspace of Kn+1, because f1, ..., fn are linear polynomials. Then
Y = P(x1, ..., xdim(Z(I))) where {x1, ..., xdim(Z(I))} is a basis for Z(I).

(c) Let x ∈ An
xn and y ∈ Pn r {x}. Then P(x, y) is the projective line passing

through x and y. We can parametrize this line as

µ · x+ λy.
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Then we have that µ · x+ λy ∈ H if and only if

µxn + λyn = 0.

Since x ∈ An
xn , the above equation became

µ = −λyn.

Thus, we have two possibilities: either ζ = y ∈ H ∩ P(x, y) or ζ := y − x ∈
H ∩ P(x, y). Moreover, in both cases this point is unique.

(d) Let us consider the map

ψ :
Pn r {x} → H

y 7→ ζ,

Let Z(f) ⊂ H be a closed subset where f is an homogeneous polynomial.
Since H = Pn r An

xn , then f ∈ K[X1, ..., Xn−1]. Our goal is to show that
ψ−1(Z(f)) is closed in Pn r {x}. Let us first consider ψ−1(Z(f)) ∩ An

xn .
Thanks to part (c), y ∈ ψ−1(Z(f)) ∩ An

xn if and only if y − x ∈ Z(f), i.e. if
and only if y is solution of the polynomial

g := f(X1 − x1, ..., Xn−1 − xn−1).

Let G be the polynomial

G = f(X1 − x1Xn, ..., Xn−1 − xn−1Xn).

Then we have that
Z(G) ∩H = Z(f),

because
G(X1, ..., Xn−1, 0) = f(X1, ..., Xn−1).

On the other hand, Z(G) ∩ An
xn = ψ−1(Z(f)) ∩ An

xn , since

G(X1, ..., Xn−1, 1) = f(X1 − x1, ..., Xn−1 − xn−1).

Thus, ψ−1(Z(f)) = Z(G)∩Pnr{x}, i.e. ψ−1(Z(f)) is closed in Z(G)∩Pnr
{x}. Hence, ψ is a morphism since

{V (f) : f ∈ K[X1, ..., Xn−1] homogeneous polynomial}

is a base for the Zarisky topology of H.

5. Recall the quadric surface Q given by xy− zw in P3 of exercise 12, sheet 1. Prove
that Q is birationally equivalent to P2.
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Solution: Let U ⊂ Q be the open set defined as the complement Qr{[0 : 0 : 0 : 1]}.
We define the map f : U → P2 as [x : y : z : w] 7→ [x : y : z]. This is well-defined
on U and thus defines a rational map from Q to P2. Let V ⊂ P2 be the open
set where the third coordinate does not vanish. Define the map g : V → Q as
[x0 : x1 : x2] 7→ [x0x2 : x1x2 : x2

2 : x0x1]. It is well-defined on V and thus defines a
rational map from P2 to Q. We note that the compositions f ◦ g and g ◦ f are the
identity on the respective open sets where they are defined. Hence Q and P2 are
birationally equivalent.

6. A birational map of P2 into itself is called a plane Cremona transformation. Define
the rational map ϕ : P2 → P2 as [a0 : a1 : a2] 7→ [a1a2 : a0a2 : a0a1].

(a) Show that ϕ is birational, and its own inverse.

(b) Find open sets U, V ⊂ P2 such that ϕ : U → V is an isomorphism.

(c) Find the open sets where ϕ and ϕ−1 are defined, and describe the correspond-
ing morphisms.

Solution:

(a) Define the open set V ⊂ P2 to be the complement in P2 of the three points
[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]. Then ϕ is regular on V , hence a rational map
on P2. Let [a0 : a1 : a2] be a point in the preimage ϕ−1(V ) ⊂ V . Then

ϕ2([a0 : a1 : a2]) = [a2
0a1a2 : a0a

2
1a2 : a0a1a

2
2] = [a0 : a1 : a2].

So ϕ is birational and its own inverse.

(b) Define the subset U := P2 r V (xyz) as the set of all points in P2 where
no coordinate is zero. Then ϕ(U) ⊂ U and by the above calculation, ϕ
is an isomorphism from U to U . On U , the isomorphism ϕ is given by
[a0 : a1 : a2] 7→ [ 1

a0
: 1
a1

: 1
a2

].

(c) The maps ϕ and ϕ−1 = ϕ are both maximally defined on the open set V
given in the solution of (a).

7. Blowing-up. We define the Blowing-up of A2 at the point 0 to be the subset
B := {((x, y), [t : u]) | xu = ty} ⊂ A2 × P1. Let ϕ : B → A2 be the restriction to
B of the projection onto the first component (see Figure 1). Prove that:

(a) The map ϕ is birational and restricts to an isomorphism Brϕ−1(0) ∼= A2r0.

(b) We have ϕ−1(0) ∼= P1.

(c) The points in ϕ−1(0) are in 1-to-1-correspondence with lines ` in A2 through
the point 0. [Hint: Look at ϕ−1(`r 0) and its closure.]

Solution:
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(a) The projection is a morphism and thus in particular a rational map. Define
the open set U := A2 r 0 and the morphism ψ : U → B given by (x, y) 7→
((x, y), [x : y]). The map ψ defines a rational map from A2 to B which is
clearly the inverse of ϕ. Therefore ϕ is birational. Looking at the definition
of ψ, we see that ψ(U) ⊂ B r ϕ−1(0). Thus ϕ restricts to an isomorphism
with inverse ψ.

(b) Since ϕ is projection onto the first component and (0, [t : u]) ∈ B for all
[t : u] ∈ P1, it follows that ϕ−1(0) = {0} × P1 ∼= P1.

(c) Let ` ⊂ A2 be a line through the point 0 given by ` = {(az, bz) | z ∈ A1} for
two parameters a, b ∈ K which are not both zero, i.e. [a : b] ∈ P1. The inverse
image ϕ−1(` r 0) = ψ(` r 0) is given by {((az, bz), [az : bz]) | z ∈ A1 r 0}.
But in this set we have [az : bz] = [a : b] which is also defined for z = 0.
Hence the closure of ϕ−1(`r 0) contains the point ((0, 0), [a : b]). So we have
a 1-to-1-correspondence given by sending ` to ((0, 0), [a : b]).

Figure 1: Blowing-up, figure taken from Hartshorne.
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