D-MATH
Prof. Emmanuel Kowalski

Algebraic Geometry
FS 2019

Solutions Sheet 2

Classical Varietes, Rational Maps, Blowups, Spectrum

Let K be an algebraically closed field. All algebraic sets and varieties below are defined over K, unless specified otherwise.

1. Consider the set $M:=\operatorname{Mat}_{m, n}(K)$ of $m \times n$-matrices. It can be identified with the affine algebraic variety $\mathbb{A}^{n m}$. Determine if S is open/closed/dense in M :
(a) $S:=\left\{A \in M \mid A^{t} A\right.$ has an eigenvalue 1$\}$
(b) $S:=\{A \in M \mid \operatorname{rank}(A)=\min \{m, n\}\}$
(c) for $m=n, S:=\{A \in M \mid A$ is diagonalisable $\}$

Solution:

(a) We define the map $\varphi: M \rightarrow \mathbb{A}^{1}$ to be $A \mapsto \operatorname{det}\left(A^{t} A-\mathrm{id}\right)$. For a matrix $A \in M$ the matrix $A^{t} A$ has an eigenvalue 1 if and only if $\varphi(A)=0$. The map φ is a polynomial in the coefficients of A and hence a morphism of algebraic varieties. We conclude that $S=\varphi^{-1}(0)$ is a closed subset of M.
(b) We define $d:=\min \{m, n\}$ and $N:=\binom{\max \{m, n\}}{d}$. We define $\varphi: M \rightarrow \mathbb{A}^{N}$ as the map taking an $m \times n$-matrix A to all of its $d \times d$-minors. Then A has full $\operatorname{rank}(A)=d$ if and only if $\varphi(A) \neq(0, \ldots, 0)$. Since minors are polynomial expressions in the coefficients of A, we conclude that φ is a morphism of algebraic varieties. Hence $S=M \backslash \varphi^{-1}(0)$ is an open subset of M.
(c) It is neither: We define the map $\varphi: M \rightarrow \mathbb{A}^{1}$ as the map taking a matrix $A \in$ M to the discriminant of its characteristic polynomial. Since the discriminant is a polynomial expression in the coefficients of the characteristic polynomial, and these coefficients are polynomial expressions in the coefficients of A, we conclude that φ is a morphism of algebraic varieties. Furthermore, every matrix A with $\varphi(A) \neq 0$ is diagonalisable. Thus S contains an open set $S \supset \varphi^{-1}(0)$ and since M is irreducible, we conclude that S is dense in M. Since not all matrices are diagonalisable, we conclude that S is not closed in M. To see that S is neither open, for all $\alpha \in K$ define the matrices A_{α} as everywhere zero except for the upper left corner, where we have $\left(\begin{array}{cc}1 & \alpha \\ 0 & 1\end{array}\right)$. Define the set R to be the set of matrices A_{α} for $\alpha \neq 0$. Then every element of R is not diagonalisable and thus in the complement of S. However, the matrix A_{0} is contained in the Zariski closure of R and is diagonalisable. Hence the complement of S is not closed, which implies that S is not open.
2. Show that a commutative K-algebra, A, is of the form $\mathcal{O}(Y)$ for some algebraic set Y if and only if it is finitely generated and it does not contains non-zero nilpotent elements.

Solution: Let A be a finitely generated commutative K-algebra which does not contain non-zero nilpotent. Since A is finitely generated, there exists a set of generators x_{1}, \ldots, x_{n} over K. Let $K\left[X_{1}, \ldots, X_{n}\right]$ be a the polynomial ring in n variables, then the ring morphism

$$
\psi: \begin{array}{clc}
K\left[X_{1}, \ldots, X_{n}\right] & \rightarrow A \\
X_{i} & \mapsto & x_{i},
\end{array}
$$

is surjective, i.e. $A=K\left[X_{1}, \ldots, X_{n}\right] / \operatorname{Ker}(\psi)$. Moreover $\operatorname{Ker}(\psi)$ is a radical ideal, since A does not contains non-zero nilpotent elements. Thus, $A=O(Y)$ where $Y=Z(\operatorname{Ker}(\psi))$. On the other hand, assume that $A=O(Y)$ for some algebraic set Y. We may assume $Y \subset \mathbb{A}_{K}^{n}$ for some $n \geqslant 0$. Then there exists $I \subset K\left[X_{1}, \ldots, X_{n}\right]$ ideal such that $Y=Z(I)$. Then by definition $A=O(Y)=K\left[X_{1}, \ldots, X_{n}\right] / \sqrt{I}$, i.e. A is a finitely generated commutative K-algebra which does not contain non-zero nilpotent.

3 . Let $n \geqslant 1$ be an integer and $1 \leqslant k \leqslant n$. Let

$$
G_{n, k}:=\left\{V \subset K^{n}: V \text { is a } K \text {-vector space of dimension } k\right\} .
$$

Moreover, for a K-vector space, W, we denote by

$$
\mathbb{P}(W):=\{\text { lines in } W\} .
$$

(a) Let $V \in G_{n, k}$, show that for any basis $\left(e_{1}, \ldots, e_{k}\right)$ of V the element

$$
e_{1} \wedge \cdots \wedge e_{k} \in \Lambda^{k} K^{n}
$$

is non zero, and generates a line $\lambda(V) \in \mathbb{P}\left(\Lambda^{k} K^{n}\right)$ independent of the choice of the basis.
(b) Show that the map

$$
\begin{aligned}
G_{n, k} & \xrightarrow{\psi} \mathbb{P}\left(\Lambda^{k} K^{n}\right) \\
V & \mapsto
\end{aligned} \lambda(V),
$$

is an injection.
(c) Let $w \in \Lambda^{k} K^{n}$ with $w \neq 0$. Show that w is of the form

$$
v_{1} \wedge \cdots \wedge v_{k}
$$

for $v_{i} \in K^{n}$ if and only if the linear map

$$
\varphi_{w}: \begin{array}{ccc}
K^{n} & \rightarrow \mathbb{P}\left(\Lambda^{k+1} K^{n}\right) \\
v & \mapsto & w \wedge v
\end{array}
$$

has rank $n-k$.
(d) Deduce that the image of ψ is a projective subset of $\mathbb{P}\left(\Lambda^{k} K^{n}\right)$. It is called the grassmannians of k-spaces in K^{n}.

Solution: First, we recall some notion about exterior algebras:
i) for any $v_{1}, \ldots, v_{k} \in K^{n}$ one has that

$$
v_{1} \wedge \cdots \wedge v_{k} \neq 0
$$

if and only if v_{1}, \ldots, v_{k} are linearly independent.
ii) for any $v_{1}, \ldots, v_{k} \in V$ and any $a_{1}, \ldots, a_{k} \in V$

$$
a_{1} v_{1} \wedge \cdots \wedge a_{k} v_{k}=\left(\prod_{i}^{k} a_{i}\right) v_{1} \wedge \cdots \wedge v_{k}
$$

iii) for any $v_{1}, \ldots, v_{k} \in V$ and any $\sigma \in \Omega_{k}$ (Ω_{k} is the permutation group of k elements), we have

$$
v_{\sigma(1)} \wedge \cdots \wedge v_{\sigma(k)}=\operatorname{sng}(\sigma) v_{1} \wedge \cdots \wedge v_{k}
$$

iv) A basis for $\Lambda^{k} K^{n}$ is given by

$$
\mathcal{E}_{k}:=\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}: 1 \leqslant i_{1}<\cdots<i_{k} \leqslant n\right\},
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis of K^{n}.
(a) Let $\left\{e_{1}, \ldots, e_{k}\right\}$ and $\left\{f_{1}, \ldots, f_{k}\right\}$ be two basis for V. Then for any $i=1, \ldots, k$ we have that

$$
f_{i}=\sum_{j=1}^{k} a_{i, j} e_{j},
$$

for some $a_{i, j} \in K$. Then

$$
\begin{aligned}
f_{1} \wedge \cdots \wedge f_{k} & =\left(\sum_{j_{1}=1}^{k} a_{1, j_{1}} e_{j_{1}}\right) \wedge \cdots \wedge\left(\sum_{j_{k}=1}^{k} a_{k, j_{k}} e_{j_{k}}\right) \\
& =\sum_{j_{1}=1}^{k} \cdots \sum_{j_{k}=1}^{k} a_{1, j_{1}} e_{j_{1}} \wedge \cdots \wedge a_{1, j_{k}} e_{j_{k}} \\
& \stackrel{(i)}{=} \sum_{\substack{j_{1}=1 \\
j_{s} \neq j_{t} \text { if }}}^{k \not j_{k \neq t}^{k}} a_{j_{1, j_{1}}} e_{j_{1}} \wedge \cdots \wedge a_{1, j_{k}} e_{j_{k}} \\
& =\sum_{\sigma \in \Omega_{k}}^{a_{1, \sigma(1)} e_{\sigma(1)} \wedge \cdots \wedge a_{1, \sigma(k)} e_{\sigma(k)}} \\
& \stackrel{(i i)}{=} \sum_{\sigma \in \Omega_{k}}\left(\prod_{i=1}^{k} a_{i, \sigma(i)}\right) e_{\sigma(1)} \wedge \cdots \wedge e_{\sigma(k)} \\
& \stackrel{(i i i)}{=}\left(\sum_{\sigma \in \Omega_{k}} \operatorname{sng}(\sigma) \prod_{i=1}^{k} a_{i, \sigma(i)}\right) e_{1} \wedge \cdots \wedge e_{k} \\
& =(\operatorname{det} A) e_{1} \wedge \cdots \wedge e_{k},
\end{aligned}
$$

where $A=\left(a_{i, j}\right)_{1 \leqslant i, j \leqslant k}$. Thus $e_{1} \wedge \cdots \wedge e_{k}$ and $f_{1} \wedge \cdots \wedge f_{k}$ generate the same line in $\mathbb{P}\left(\Lambda^{k} K^{n}\right)$.
(b) Let $V, W \subset K^{n}$ be two subvector spaces of K^{n} of dimension k, and assume $V \neq W$. Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be a basis for V and $\left\{f_{1}, \ldots, f_{k}\right\}$ be a basis for W. Since $V \neq W$, there exists an element of the basis of W, f_{i}, such that $f_{i} \notin V$. Thus, $e_{1}, \ldots, e_{k}, f_{i}$ are linearly independent, i.e.

$$
e_{1} \wedge \cdots \wedge e_{k} \wedge f_{i} \neq 0
$$

By contradiction, assume $\lambda(V)=\lambda(W)$. Then one would have

$$
a\left(e_{1} \wedge \cdots \wedge e_{k}\right)=f_{1} \wedge \cdots \wedge f_{k}
$$

for some $a \in K^{\times}$. This would imply that

$$
0=f_{1} \wedge \cdots \wedge f_{k} \wedge f_{i}=a\left(e_{1} \wedge \cdots \wedge e_{k} \wedge f_{i}\right) \neq 0
$$

and this is absurd. Then $\lambda(V) \neq \lambda(W)$ if $V \neq W$, i.e. the map λ is injective.
(c) Let us first assume that $w=v_{1} \wedge \cdots \wedge v_{k}$ for some $v_{1}, \ldots, v_{k} \in K^{n}$. Then there exist $u_{k+1}, \ldots, u_{n} \in K^{n}$ such that $v_{1}, \ldots, v_{k}, u_{k+1}, \ldots, u_{n}$ is a basis for K^{n}. Then we have that $\varphi_{w}\left(v_{i}\right)=v_{1} \wedge \cdots v_{i} \cdots \wedge v_{k} \wedge v_{i}=0$ for any $i=1, \ldots, k$. On the other hand

$$
\left\{\varphi_{w}\left(u_{j}\right): j=k+1, \ldots, n\right\}=\left\{v_{1} \wedge \cdots \wedge v_{k} \wedge u_{j}: j=k+1, \ldots, n\right\} \subset \mathcal{E}_{k}
$$

is a subset of $n-k$ elements of the basis for $\Lambda^{k} K^{n}$. Thus $\operatorname{rank}\left(\varphi_{w}\right)=n-k$. Assume that $w \in \Lambda^{k} K^{n}$ is such that φ_{w} has rank $n-k$. Then, there exists a basis v_{1}, \ldots, v_{n} such that $\varphi_{w}\left(v_{i}\right)=0$ if $1 \leqslant i \leqslant k$ and $\varphi_{w}\left(v_{i}\right) \neq 0$ if $k+1 \leqslant i \leqslant n$. Then we have

$$
\begin{aligned}
w & =\sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} a_{i_{1}, \ldots, i_{k}} v_{i_{1}} \wedge \cdots \wedge v_{i_{k}} \\
& =a_{1, \ldots, k} v_{1} \wedge \cdots \wedge v_{k}+\sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
i_{k}>k}} a_{i_{1}, \ldots, i_{k}} v_{i_{1}} \wedge \cdots \wedge v_{i_{k}} .
\end{aligned}
$$

Let $1 \leqslant s \leqslant k$. By hypothesis, one knows that $w \wedge v_{s}=0$. Hence, one has that

$$
\begin{align*}
0=w \wedge v_{s} & =a_{1, \ldots, k} v_{1} \wedge \cdots \wedge v_{k} \wedge v_{s}+\sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
i_{k}>k}} a_{i_{1}, \ldots, i_{k}} v_{i_{1}} \wedge \cdots \wedge v_{i_{k}} \wedge v_{s} \\
& =\sum_{\substack{1 \leqslant i_{1}<\ldots<i_{k} \leqslant n \\
i_{j} \neq s \text { for any } i_{j}}} a_{i_{1}, \ldots, i_{k}} v_{i_{1}} \wedge \cdots \wedge v_{i_{k}} \wedge v_{s} . \tag{1}
\end{align*}
$$

On the other hand.

$$
\left\{v_{i_{1}} \wedge \cdots \wedge v_{i_{k}} \wedge v_{s}: 1 \leqslant i_{1}<\cdots<i_{k} \leqslant n, i_{j} \neq s \text { for any } i_{j}\right\} \subset \mathcal{E}_{k+1}
$$

Thus equation (??) implies

$$
a_{a_{i_{1}, \ldots, i_{k}}}=0
$$

for any $1 \leqslant i_{1}<\cdots<i_{k} \leqslant n$ such that $i_{j} \neq s$ for any i_{j}. Since this holds for any $1 \leqslant s \leqslant k$ we conclude that

$$
w=a_{1, \ldots, k} v_{1} \wedge \cdots \wedge v_{k}
$$

as we wanted.
(d) The map

$$
\varphi: \begin{array}{ccc}
\Lambda^{k} K^{n} & \rightarrow & \operatorname{Hom}\left(V, \Lambda^{k+1} K^{n}\right) \\
w & \mapsto & \varphi_{w}
\end{array}
$$

is linear, that is, the entries of the matrix $\varphi_{w} \in \operatorname{Hom}\left(V, \Lambda^{k+1} K^{n}\right)$ are homogeneous coordinates on $\mathbb{P}\left(\Lambda^{k} K^{n}\right)$; we say that $G_{n, k} \subset \mathbb{P}\left(\Lambda^{k} K^{n}\right)$ is the subvariety defined by the vanishing of the $(n-k+1) \times(n-k+1)$ minors of this matrix.
4. Let $n \geqslant 1$ be an integer
(a) Let $0 \leqslant k \leqslant n$ and $x_{1}, \ldots, x_{k} \in \mathbb{P}^{n}$. Show that the set of lines contained in the subspace V of K^{n+1} generated by x_{1}, \ldots, x_{k} is a projective set in \mathbb{P}^{n}. Show that it is isomorphic to \mathbb{P}^{d-1}, where $d=\operatorname{dim}(V)$. It is denoted $\mathbb{P}\left(x_{1}, \ldots, x_{k}\right)$.
(b) Show that a closed projective set Y in \mathbb{P}^{n} is isomorphic to a set of the form $\mathbb{P}\left(x_{1}, \ldots, x_{k}\right)$ for some k and some $\left(x_{i}\right)$ if and only if it is the zero set of a family of homogeneous polynomials of degree $\leqslant 1$.
(c) Let $H=\mathbb{P}^{n} \backslash \mathbb{A}_{x_{n}}^{n}$ and $x \in \mathbb{A}_{x_{n}}^{n}$ fixed. For $y \in \mathbb{P}^{n} \backslash\{x\}$, show that there is a unique point $\zeta \in H$ such that $\zeta \in \mathbb{P}(x, y)$.
(d) Show that the map

$$
\begin{array}{ccc}
\mathbb{P}^{n} \backslash\{x\} & \rightarrow H \\
y & \mapsto \zeta,
\end{array}
$$

is a morphism.

Solution:

(a) Let $V \subset K^{n}$ be the subspace of dimension d generate by x_{1}, \ldots, x_{k}. Without loss of generalities, we may assume that x_{1}, \ldots, x_{d} generates V. Then a vector v is contained in V if and only if all the $(d+1) \times(d+1)$ minors of the matrix

$$
A=\left(\begin{array}{c}
v \\
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

have determinant vanishing. These determinants are homogeneus linear equations in the variables $v=\left(v_{1}, \ldots, v_{n}\right)$, thus V is a projective varieties. For the second part, let us consider u_{1}, \ldots, u_{d} a basis for V. Recall that we can see

$$
\mathbb{P}^{n}=G_{n, 1}=\left\{\langle v\rangle: v \in K^{n+1} \backslash\{0\}\right\} .
$$

Then we define

$$
\begin{array}{cccc}
\mathbb{P}^{d} & \rightarrow & \mathbb{P}^{n} \\
{\left[a_{1}: \ldots: a_{d}\right]} & \mapsto & \left\langle a_{1} u_{1}+\cdots+a_{d} u_{d}\right\rangle .
\end{array}
$$

It is easy to check that this map is an injective morphism and that $\varphi\left(\mathbb{P}^{d}\right)=$ $\mathbb{P}\left(x_{1}, \ldots, x_{k}\right)$.
(b) In part (a) we have shown that, if $Y=\mathbb{P}\left(x_{1}, \ldots, x_{k}\right)$ for some k and some $\left(x_{i}\right)$, then Y is the zero set of a family of homogeneous polynomials of degree $\leqslant 1$. On the other hand, let Y be the zero set of homogeneous polynomials of degree $\leqslant 1, f_{1}, \ldots, f_{n}$. Let us consider $I=\left(f_{1}, . . f_{n}\right)$. Then $Z(I) \subset K^{n+1}$ is a subvectorspace of K^{n+1}, because f_{1}, \ldots, f_{n} are linear polynomials. Then $Y=\mathbb{P}\left(x_{1}, \ldots, x_{\operatorname{dim}(Z(I))}\right)$ where $\left\{x_{1}, \ldots, x_{\operatorname{dim}(Z(I))}\right\}$ is a basis for $Z(I)$.
(c) Let $x \in \mathbb{A}_{x_{n}}^{n}$ and $y \in \mathbb{P}^{n} \backslash\{x\}$. Then $\mathbb{P}(x, y)$ is the projective line passing through x and y. We can parametrize this line as

$$
\mu \cdot x+\lambda y
$$

Then we have that $\mu \cdot x+\lambda y \in H$ if and only if

$$
\mu x_{n}+\lambda y_{n}=0 .
$$

Since $x \in \mathbb{A}_{x_{n}}^{n}$, the above equation became

$$
\mu=-\lambda y_{n} .
$$

Thus, we have two possibilities: either $\zeta=y \in H \cap \mathbb{P}(x, y)$ or $\zeta:=y-x \in$ $H \cap \mathbb{P}(x, y)$. Moreover, in both cases this point is unique.
(d) Let us consider the map

$$
\psi: \begin{array}{ccc}
\mathbb{P}^{n} \backslash\{x\} & \rightarrow H \\
y & \mapsto & \mapsto,
\end{array}
$$

Let $Z(f) \subset H$ be a closed subset where f is an homogeneous polynomial. Since $H=\mathbb{P}^{n} \backslash \mathbb{A}_{x_{n}}^{n}$, then $f \in K\left[X_{1}, \ldots, X_{n-1}\right]$. Our goal is to show that $\psi^{-1}(Z(f))$ is closed in $\mathbb{P}^{n} \backslash\{x\}$. Let us first consider $\psi^{-1}(Z(f)) \cap \mathbb{A}_{x_{n}}^{n}$. Thanks to part $(c), y \in \psi^{-1}(Z(f)) \cap \mathbb{A}_{x_{n}}^{n}$ if and only if $y-x \in Z(f)$, i.e. if and only if y is solution of the polynomial

$$
g:=f\left(X_{1}-x_{1}, \ldots, X_{n-1}-x_{n-1}\right) .
$$

Let G be the polynomial

$$
G=f\left(X_{1}-x_{1} X_{n}, \ldots, X_{n-1}-x_{n-1} X_{n}\right) .
$$

Then we have that

$$
Z(G) \cap H=Z(f),
$$

because

$$
G\left(X_{1}, \ldots, X_{n-1}, 0\right)=f\left(X_{1}, \ldots, X_{n-1}\right)
$$

On the other hand, $Z(G) \cap \mathbb{A}_{x_{n}}^{n}=\psi^{-1}(Z(f)) \cap \mathbb{A}_{x_{n}}^{n}$, since

$$
G\left(X_{1}, \ldots, X_{n-1}, 1\right)=f\left(X_{1}-x_{1}, \ldots, X_{n-1}-x_{n-1}\right)
$$

Thus, $\psi^{-1}(Z(f))=Z(G) \cap \mathbb{P}^{n} \backslash\{x\}$, i.e. $\psi^{-1}(Z(f))$ is closed in $Z(G) \cap \mathbb{P}^{n} \backslash$ $\{x\}$. Hence, ψ is a morphism since

$$
\left\{V(f): f \in K\left[X_{1}, \ldots, X_{n-1}\right] \text { homogeneous polynomial }\right\}
$$

is a base for the Zarisky topology of H.
5. Recall the quadric surface Q given by $x y-z w$ in \mathbb{P}^{3} of exercise 12 , sheet 1 . Prove that Q is birationally equivalent to \mathbb{P}^{2}.

Solution: Let $U \subset Q$ be the open set defined as the complement $Q \backslash\{[0: 0: 0: 1]\}$. We define the map $f: U \rightarrow \mathbb{P}^{2}$ as $[x: y: z: w] \mapsto[x: y: z]$. This is well-defined on U and thus defines a rational map from Q to \mathbb{P}^{2}. Let $V \subset \mathbb{P}^{2}$ be the open set where the third coordinate does not vanish. Define the map $g: V \rightarrow Q$ as $\left[x_{0}: x_{1}: x_{2}\right] \mapsto\left[x_{0} x_{2}: x_{1} x_{2}: x_{2}^{2}: x_{0} x_{1}\right]$. It is well-defined on V and thus defines a rational map from \mathbb{P}^{2} to Q. We note that the compositions $f \circ g$ and $g \circ f$ are the identity on the respective open sets where they are defined. Hence Q and \mathbb{P}^{2} are birationally equivalent.
6. A birational map of \mathbb{P}^{2} into itself is called a plane Cremona transformation. Define the rational map $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ as $\left[a_{0}: a_{1}: a_{2}\right] \mapsto\left[a_{1} a_{2}: a_{0} a_{2}: a_{0} a_{1}\right]$.
(a) Show that φ is birational, and its own inverse.
(b) Find open sets $U, V \subset \mathbb{P}^{2}$ such that $\varphi: U \rightarrow V$ is an isomorphism.
(c) Find the open sets where φ and φ^{-1} are defined, and describe the corresponding morphisms.

Solution:

(a) Define the open set $V \subset \mathbb{P}^{2}$ to be the complement in \mathbb{P}^{2} of the three points [1:0:0], $[0: 1: 0],[0: 0: 1]$. Then φ is regular on V, hence a rational map on \mathbb{P}^{2}. Let $\left[a_{0}: a_{1}: a_{2}\right]$ be a point in the preimage $\varphi^{-1}(V) \subset V$. Then

$$
\varphi^{2}\left(\left[a_{0}: a_{1}: a_{2}\right]\right)=\left[a_{0}^{2} a_{1} a_{2}: a_{0} a_{1}^{2} a_{2}: a_{0} a_{1} a_{2}^{2}\right]=\left[a_{0}: a_{1}: a_{2}\right] .
$$

So φ is birational and its own inverse.
(b) Define the subset $U:=\mathbb{P}^{2} \backslash V(x y z)$ as the set of all points in \mathbb{P}^{2} where no coordinate is zero. Then $\varphi(U) \subset U$ and by the above calculation, φ is an isomorphism from U to U. On U, the isomorphism φ is given by $\left[a_{0}: a_{1}: a_{2}\right] \mapsto\left[\frac{1}{a_{0}}: \frac{1}{a_{1}}: \frac{1}{a_{2}}\right]$.
(c) The maps φ and $\varphi^{-1}=\varphi$ are both maximally defined on the open set V given in the solution of (a).
7. Blowing-up. We define the Blowing-up of \mathbb{A}^{2} at the point 0 to be the subset $B:=\{((x, y),[t: u]) \mid x u=t y\} \subset \mathbb{A}^{2} \times \mathbb{P}^{1}$. Let $\varphi: B \rightarrow \mathbb{A}^{2}$ be the restriction to B of the projection onto the first component (see Figure 1). Prove that:
(a) The map φ is birational and restricts to an isomorphism $B \backslash \varphi^{-1}(0) \cong \mathbb{A}^{2} \backslash 0$.
(b) We have $\varphi^{-1}(0) \cong \mathbb{P}^{1}$.
(c) The points in $\varphi^{-1}(0)$ are in 1-to-1-correspondence with lines ℓ in \mathbb{A}^{2} through the point 0 . [Hint: Look at $\varphi^{-1}(\ell \backslash 0)$ and its closure.]

Solution:

(a) The projection is a morphism and thus in particular a rational map. Define the open set $U:=\mathbb{A}^{2} \backslash 0$ and the morphism $\psi: U \rightarrow B$ given by $(x, y) \mapsto$ $((x, y),[x: y])$. The map ψ defines a rational map from \mathbb{A}^{2} to B which is clearly the inverse of φ. Therefore φ is birational. Looking at the definition of ψ, we see that $\psi(U) \subset B \backslash \varphi^{-1}(0)$. Thus φ restricts to an isomorphism with inverse ψ.
(b) Since φ is projection onto the first component and $(0,[t: u]) \in B$ for all $[t: u] \in \mathbb{P}^{1}$, it follows that $\varphi^{-1}(0)=\{0\} \times \mathbb{P}^{1} \cong \mathbb{P}^{1}$.
(c) Let $\ell \subset \mathbb{A}^{2}$ be a line through the point 0 given by $\ell=\left\{(a z, b z) \mid z \in \mathbb{A}^{1}\right\}$ for two parameters $a, b \in K$ which are not both zero, i.e. $[a: b] \in \mathbb{P}^{1}$. The inverse image $\varphi^{-1}(\ell \backslash 0)=\psi(\ell \backslash 0)$ is given by $\left\{((a z, b z),[a z: b z]) \mid z \in \mathbb{A}^{1} \backslash 0\right\}$. But in this set we have $[a z: b z]=[a: b]$ which is also defined for $z=0$. Hence the closure of $\varphi^{-1}(\ell \backslash 0)$ contains the point $((0,0),[a: b])$. So we have a 1 -to- 1 -correspondence given by sending ℓ to $((0,0),[a: b])$.

Figure 1: Blowing-up, figure taken from Hartshorne.

