D-MATH Prof. Emmanuel Kowalski

Solutions Sheet 5

Schemes

- 1. Let X be a scheme and $f \in \mathcal{O}_X(X)$ a global section. Define X_f to be the subset of points $x \in X$ such that the germ f_x of f at x is not contained in the maximal ideal \mathfrak{m}_x of $\mathcal{O}_{X,x}$.
 - (a) If $U = \operatorname{Spec}(B)$ is an open affine subscheme of X and if $\overline{f} \in B = \mathcal{O}_U(U)$ is the restriction of f, show that $U \cap X_f = D(\overline{f})$. Conclude that X_f is an open subset of X.
 - (b) Assume that X is quasi-compact. Let $A := \mathcal{O}_X(X)$ and let $a \in A$ be an element whose restriction to X_f is 0. Show that there exists an integer n > 0 such that $f^n a = 0$.
 - (c) Now assume that X has a finite cover by open affines U_i such that each intersection $U_i \cap U_j$ is quasi-compact. Let $b \in \mathcal{O}_{X_f}(X_f)$. Show that there exists an integer n > 0 such that $f^n b$ is the restriction of an element of A.
 - (d) With the hypothesis of (c) conclude that $\mathcal{O}_{X_f}(X_f) \cong A_f$.

Solution:

(a) We have that

$$X_{f} \cap U := \{ \mathfrak{p} \in \operatorname{Spec}(B) : f_{\mathfrak{p}} \notin \mathfrak{p}B_{\mathfrak{p}} \}$$
$$= \{ \mathfrak{p} \in \operatorname{Spec}(B) : \overline{f} \notin \mathfrak{p}B_{\mathfrak{p}} \}$$
$$= \operatorname{Spec}(B_{\overline{f}}),$$

thus $X_f \cap U = D(\overline{f})$ has we wanted.

(b) Since X is quasi-compact by hypothesis, we can find a finite affine cover, $\{U_i\}_{i=1}^n$, of X. For any i = 1, ..., n, let B_i denote the ring such that $U_i = \operatorname{Spec}(B_i)$. Let $a \in \mathcal{O}_X(X)$ such that $a_{|X_f|} = 0$. For any i = 1, ..., n we have that $a_{|X_f \cap U_i} = 0$. On the other hand by part (a) we know that $X_f \cap U_i = (U_i)_{f_i} = \operatorname{Spec}(B_{f_i}^i)$, where f_i denote the restriction of f to U_i . Thus for $i = 1, ..., n, a_{|(U_i)_{f_i}} = 0$ and this implies that there exist $n_i \ge 0$ such that

$$f_i^{n_i} \cdot a_{|U_i|} = 0 \text{ in } B_i.$$

Let us take $N := \max_{1 \leq i \leq n} n_i$. For any i = 1, ..., n one has that $f^N a_{|U_i|} = f_i^N \cdot a_{|U_i|} = 0$. Since $\{U_i\}_{i=1}^n$ is a cover of X and \mathcal{O}_X is a sheaf we conclude that $f^N a = 0$.

(c) Let $b \in \mathcal{O}_{X_f}(X_f)$, $\{U_i\}_{i=1}^n$ be a finite affine cover such that for any $i, j, U_i \cap U_j$ is quasi-compact and for any i = 1, ..., n, let b_i denotes the restriction of b to $X_f \cap U_i = (U_i)_{f_i}$. Since $(U_i)_{f_i} = \operatorname{Spec}((B_i)_{f_i})$, there exists $n_i \ge 0$ such that $f_i^{n_i} b_i \in B_i$. Let us take $N := \max_{1 \le i \le n} n_i$. Fix i, j and consider

$$b_{i,j} := (f_i^N b_i)_{|U_i \cap U_j} - (f_j^N b_j)_{|U_i \cap U_j} \in \mathcal{O}_X(U_i \cap U_j).$$

It is easy to see that $b_{ij||U_i \cap U_j \cap X_f} = 0$, then we can apply part (b) since $U_i \cap U_j$ is quasi compact. Thus there exists $n_{i,j} \ge 0$ such that

$$f^{n_{i,j}}_{|U_i \cap U_j} c_{i,j} = 0.$$

Let us take $M := \max_{i,j} n_{i,j}$, We claim that $f^{N+M}b \in \mathcal{O}_X(X)$. For any i, $f_i^{N+M}b_i \in \mathcal{O}_X(U_i)$, such that $(f_i^{N+M}b_i)_{|U_i \cap U_j} = (f_j^{N+M}b_j)_{|U_i \cap U_j}$ for any i, j. Thus $f^{N+M}b \in \mathcal{O}_X(X)$ since \mathcal{O}_X is a sheaf.

- (d) The inclusion $A_f \subset \mathcal{O}_{X_f}(X_f)$ follows because for any i = 1, ..., n, $\{X_f \cap U_i\}_{i=1}^n$ is a covering of open affine subset of X_f and $\mathcal{O}_{X_f}(X_f \cap U_i) = B_f^i$. For the other inclusion, let $s \in \mathcal{O}_{X_f}(X_f)$ then by part (c) there exists $n \ge 0$ such that $a := f^n s \in \mathcal{O}_X(X)$. On the other hand f is invertible in $\mathcal{O}_{X_f}(X_f)$, thus $s = \frac{a}{f^n}$ as we wanted.
- 2. A Criterion for Affineness.
 - (a) Let $f: X \to Y$ be a morphism of schemes and suppose that Y can be covered by open subsets U_i such that for each *i*, the induced map $f^{-1}(U_i) \to U_i$ is an isomorphism. Then *f* is an isomorphism.
 - (b) A scheme X is affine if and only if there is a finite set of elements $f_1, \ldots, f_r \in A := \mathcal{O}_X(X)$ such that the open subsets X_{f_i} defined in exercise 1 are affine and f_1, \ldots, f_r generate the unit ideal.

Solution:

(a) Let $f: X \to Y$ a map as in the statement of the exercise. To check that f is an isomorphis it is enough to check that for any $x \in X$ the map

$$f_x: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$$

is an isomorphism. Let U_i be an open set in the covering such that $x \in U_i$, then we have that

$$(f_{|U_i})_x : (\mathcal{O}_{Y|_{f(U_i)}})_{f(x)} \to (\mathcal{O}_{X|_{U_i}})_x$$

is an isomorphism by hypothesis. On the other hand we have $(\mathcal{O}_{Y|_{f(U_i)}})_{f(x)} \cong \mathcal{O}_{Y,f(x)}$ and $(\mathcal{O}_{X|_{U_i}})_x \cong \mathcal{O}_{X,x}$ since U_i and $f(U_i)$ are open subset respectively of X and Y.

(b) First We prove that $\bigcup_{i=1}^{n} X_{f_i}$. By contradiction, assume that there exists $x \in X \setminus \bigcup_{i=1}^{n} X_{f_i}$, then $f_i \in \mathfrak{m}_x$ for any i = 1, ..., n. This would implies that $1 \in \mathfrak{m}_x$ and this is not possible since $\mathcal{O}_{X,x}$ has to be a local ring. Because we are assuming X_{f_i} to be affine we can apply part (d) of the previous exercise getting $X_{f_i} = \operatorname{Spec}(A_{f_i})$ for any i = 1, ..., n. From the ring homomorphisms

$$\begin{array}{cccccccc} g_i^* : A & \to & A_{f_i} \\ a & \mapsto & \frac{a}{1}, \end{array}$$

we get the scheme morphisms

$$g_i: X_{f_i} \to \operatorname{Spec}(A)$$

which are isomorphisms between X_f and $g_i(X_{f_i}) = \text{Spec}(A_{f_i})$. Gluing together these maps we obtain a morphism

$$g: X \to \operatorname{Spec}(A).$$

Then we conclude applying part (a).

- 3. Let us recall that a graded ring is a ring S together with a decomposition $S = \bigoplus_{d \ge 0} S_d$ of S into a direct sum of abelian groups S_d , such that for any $d, e \ge 0$, $S_d \dot{S}_e \subset S_{de}$. An element of S_d is called a homogeneous element of degree d. An ideal $I \subset S$ is a homogeneous ideal if $I = \bigoplus_{d \ge 0} (I \cap S_d)$.
 - (a) Let K be an algebraically closed field, and let $f_1, ..., f_m \in K[X_0, ..., X_n] = S$ be homogeneous polynomials. Re Let $I = (f_1, ..., f_m) \subset S$ prove that
 - i) The ideal I is an homogeneous ideal.
 - *ii*) Show that B := S/I is a graded ring.
 - (b) Let $B_+ = I = \bigoplus_{d \ge 1} B_d$. One considers

 $\operatorname{Proj}(B) := \{ \mathfrak{p} \subset B \text{ homogeneous prime ideals} : B_+ \nsubseteq \mathfrak{p} \}.$

For any homogeneous ideal, I, one defines

$$V(I) := \{ \mathfrak{q} \in \operatorname{Proj}(B) : I \subset \mathfrak{q} \}.$$

Show that these sets form the closed sets of a topology on $\operatorname{Proj}(B)$.

(c) We define a sheaf of rings \mathcal{O} on $\operatorname{Proj}(S)$ as follows: For each $\mathfrak{p} \in \operatorname{Proj}(S)$ we consider the ring $S_{(\mathfrak{p})}$ of elements of degree zero in the localized ring $T^{-1}S$, where T is the multiplicative system of all homogeneous elements of S which are not in \mathfrak{p} . For any open subset $U \subset \operatorname{Proj}(S)$ we define $\mathcal{O}(U)$ to be the set of functions $s: U \to \coprod S_{(\mathfrak{p})}$ such that for each $\mathfrak{p} \in U$ we have $s(\mathfrak{p}) \in S_{(\mathfrak{p})}$ and there is an open neighbourhood V of \mathfrak{p} in U and homogeneous elements a, fin S of the same degree such that for all $\mathfrak{q} \in V$ we have $f \notin \mathfrak{q}$ and $s(\mathfrak{q}) = a/f$ in $S_{(\mathfrak{q})}$. Prove the following:

- i) For any $\mathfrak{p} \in \operatorname{Proj}(S)$, the stalk $\mathcal{O}_{\mathfrak{p}}$ is isomorphic to the local ring $S_{(\mathfrak{p})}$.
- ii) For any homogeneous $f \in S_+$ let U_f^+ be the complement of V((f)). These open sets cover $\operatorname{Proj}(S)$ and there is an isomorphism of locally ringed spaces

$$(U_f^+, \mathcal{O}|_{U_f^+}) \cong \operatorname{Spec}(S_{(f)})$$

where $S_{(f)}$ is the subring of elements of degree zero in the localized ring S_f .

(d) Conclude that $(\operatorname{Proj}(B), \mathcal{O})$ is a scheme.

Solution:

- (a) Let $f_1, ..., f_m \in K[X_0, ..., X_n] = S$ be homogeneous polynomials and denote $I = (f_1, ..., f_m)$. Then
 - i) It is clear that $I \supset \bigoplus_{d \ge 0} (I \cap S_d)$. Let us prove the other inclusion. Let $f \in I$, then there exist $a_1, ..., a_m \in K[X_0, ..., X_n]$ such that

$$f = \sum_{i=1}^{m} a_i f_i$$

For any i we can decompose a_i as sums of monomial

$$a_{i} = \sum_{d=1}^{\deg a_{i}} \sum_{\substack{d_{0}, \dots, d_{n} \\ d_{0} + \dots + d_{n} = d}} a_{d_{0}, \dots, d_{n}} X_{0}^{d_{0}} \cdots X_{n}^{d_{n}},$$

where $a_{d_0,...,d_n} \in K$ for any $d_0,...,d_n$. On the other hand, for any $d_0,...,d_n$ such that $d_0 + \cdots + d_n = d$, $f_i \cdot (X_0^{d_0} \cdots X_n^{d_n}) \in I \cap S_{d+\deg f_i}$. Thus, $a_i f_i \in \bigoplus_{d \ge 0} (I \cap S_d)$ and this implies that $f \in \bigoplus_{d \ge 0} (I \cap S_d)$ as we wanted.

- *ii*) Since $S = \bigoplus_{d \ge 0} S_d$ and $I = \bigoplus_{d \ge 0} (I \cap S_d)$ it follows that $B = \bigoplus_{d \ge 0} B_d$ where $B_d := S_d/(IcapS_d)$. Moreover, $B_d B_e \subset B_{de}$ since $S_d S_e \subset S_{de}$. Thus B is a graded ring.
- (b) This is analogous to the proof for the case of affine schemes.
- (c) For each $\mathfrak{p} \in \operatorname{Proj}(S)$ we consider the ring $S_{(\mathfrak{p})}$ of elements of degree zero in the localized ring $T^{-1}S$, where T is the multiplicative system of all homogeneous elements of S which are not in \mathfrak{p} . For any open subset $U \subset \operatorname{Proj}(S)$ we define $\mathcal{O}(U)$ to be the set of functions $s : U \to \coprod S_{(\mathfrak{p})}$ such that for each $\mathfrak{p} \in U$ we have $s(\mathfrak{p}) \in S_{(\mathfrak{p})}$ and there is an open neighbourhood V of \mathfrak{p} in U and homogeneous elements a, f in S of the same degree such that for all $\mathfrak{q} \in V$ we have $f \notin \mathfrak{q}$ and $s(\mathfrak{q}) = a/f$ in $S_{(\mathfrak{q})}$. Then

- i) As in the affine case, we define a homomorphism φ : O_p → S_(p) by sending any local section s in a neighbourhood of p to its value s(p) ∈ S_(p). This is surjective, since every element a/f ∈ S_(p) for two homogeneous elements a, f ∈ S of the same degree such that f ∉ p, define a well-defined section U_f → ∐ S_(p), whose image at p is a/f. The map φ is also injective, because for any element s_p ∈ O_p such that φ(s_p) = 0 there is an open neighbourhood U of p and a section s over U such that s(p) = s_p and s is given by q → a/f for some homogeneous elements a, f ∈ S of the same degree and f ∉ q for all q ∈ U. Since φ(s_p) = 0 we conclude that there is a homogeneous element u ∉ p such that ua = 0. Thus s|_{Uu∩U} = 0, which implies that s_p = 0. Hence φ is an isomorphism.
- ii) Since $\operatorname{Proj}(S)$ is the set of all homogeneous prime ideals which do not contain S_+ , the sets U_f^+ for homogeneous $f \in S_+$ cover $\operatorname{Proj}(S)$. Consider the localisation map $S \to S_f$. We know that $S_{(f)}$ is a subring of S_f . For a homogeneous ideal $\mathfrak{a} \subset S$ define $\varphi(\mathfrak{a}) := (\mathfrak{a}S_f) \cap S_{(f)}$. In particular for $\mathfrak{p} \in$ U_f^+ we have $\varphi(\mathfrak{p}) \in \operatorname{Spec}(S_{(f)})$. This respects inclusions and is bijective, and so φ defines a homeomorphism $\varphi : U_f^+ \to \operatorname{Spec}(S_{(f)})$. Note that for $\mathfrak{p} \in U_f^+$ we have $S_{(\mathfrak{p})} \cong (S_{(f)})_{(\varphi(\mathfrak{p}))}$ and so the sheaf homomorphism is an isomorphism. This proves that $(U_f^+, \mathcal{O}|_{U_f^+}) \cong \operatorname{Spec}(S_{(f)})$.