D-MATH
Prof. Emmanuel Kowalski

Algebraic Geometry
FS 2019

Solutions Sheet 4

Schemes

1. Double Points. Let k be a field and $Y \hookrightarrow \mathbb{A}_{k}^{2}$ be a closed subscheme with image containing the origin $(0,0)$ in \mathbb{A}_{k}^{2} and such that $\mathcal{O}_{Y}(Y) \cong k[\varepsilon] /\left(\varepsilon^{2}\right)$. Denote by $\varphi: k[x, y] \rightarrow \mathcal{O}_{Y}(Y)$ the surjection defining the inclusion $Y \hookrightarrow \mathbb{A}^{2}$. Prove that the kernel of φ contains a non-zero element $\alpha x+\beta y$ for some $\alpha, \beta \in k$. Write $X_{\alpha, \beta}:=\operatorname{Spec}(k[x, y] / \operatorname{ker}(\varphi))$ and show that $X_{\alpha, \beta}$ can also be characterized as the composition of the natural morphism $\operatorname{Spec}\left(k[\varepsilon] /\left(\varepsilon^{2}\right)\right) \rightarrow \operatorname{Spec}(k[\varepsilon]) \cong \mathbb{A}_{k}^{1}$ with the inclusion of the line $\mathbb{A}_{k}^{1} \hookrightarrow \mathbb{A}_{k}^{2}$ given by $x \mapsto(\beta x,-\alpha x)$.
Solution: You find this solution in the Book of Eisenbud and Harris, Examples II.9, II. 10 .
2. Let k be an algebraically closed field and let $Z:=\operatorname{Spec}\left(k\left[X_{1}, \ldots, X_{n}\right] / I\right) \subset$ \mathbb{A}_{k}^{n} be a closed subscheme of dimension 0 supported at the origin (i.e. $\sqrt{I}=$ $\left.\left(X_{1}, \ldots, X_{n}\right)\right)$. Furthermore, suppose that $k\left[X_{1}, \ldots, X_{n}\right] / I$ is a 3 -dimensional k vector space. Prove that Z is isomorphic to either $A:=\operatorname{Spec}\left(k[X] /\left(X^{3}\right)\right)$ or to $B:=\operatorname{Spec}\left(k[X, Y] /\left(X^{2}, X Y, Y^{2}\right)\right)$ and that A and B are not isomorphic to each other.
Solution: Let us start proving that A and B are not isomorphic. To show this it is enough to prove that $k[X] /\left(X^{3}\right)$ and $k[X, Y] /\left(X^{2}, X Y, Y^{2}\right)$ are not isomorphic as rings. Let $\varphi: k[X] /\left(X^{3}\right) \rightarrow k[X, Y] /\left(X^{2}, X Y, Y^{2}\right)$ be any ring homomorphism from $k[X] /\left(X^{3}\right)$ to $k[X, Y] /\left(X^{2}, X Y, Y^{2}\right)$. Then $\varphi\left(X^{2}\right)=\varphi(X)^{2}=0$. On the other hand $X^{2} \neq 0$ in A, thus $\operatorname{Ker}(\varphi) \neq 0$. It follows that $k[X] /\left(X^{3}\right)$ and $k[X, Y] /\left(X^{2}, X Y, Y^{2}\right)$ can not be isomorphic since any homorphism from from $k[X] /\left(X^{3}\right)$ to $k[X, Y] /\left(X^{2}, X Y, Y^{2}\right)$ is not injective.
Let us prove the other part of the Exercise. in the following, x_{i} denotes the imagine of X_{i} in $k\left[X_{1}, \ldots, X_{n}\right] / I$. Since $\sqrt{I}=\left(X_{1}, \ldots, X_{n}\right)$, then $\operatorname{Spec}\left(k\left[X_{1}, \ldots, X_{n}\right] / I\right)=$ $\{\mathfrak{m}\}$ where \mathfrak{m} is the reduction of $\left(X_{1}, \ldots, X_{n}\right)$ modulo I. Moreover we have that

$$
k\left[X_{1}, \ldots, X_{n}\right] / I=k \oplus \mathfrak{m}
$$

thus $\operatorname{dim}_{k}(\mathfrak{m})=2$. We claim that $\mathfrak{m}^{3}=0$. Let us consider the chain

$$
\mathfrak{m} \supset \mathfrak{m}^{2} \supset \mathfrak{m}^{3} .
$$

Then $\mathfrak{m} \supsetneq \mathfrak{m}^{2}$, otherwise by Nakayama's Lemma $\mathfrak{m}=0$. Thus $\operatorname{dim}_{k}\left(\mathfrak{m}^{2}\right) \leqslant 1$ If $\operatorname{dim}_{k}\left(\mathfrak{m}^{2}\right)=0$ we have done, otherwise $\mathfrak{m}^{2} \supsetneq \mathfrak{m}^{3}$ (again thanks to Nakayama'sd Lemma) and then $\mathfrak{m}^{3}=0$. Now we have to distinguish to situation
i) $\mathfrak{m}^{2}=0$. In this case we have that $\mathfrak{m}=\operatorname{span}_{k}\left\{x_{1}, \ldots, x_{n}\right\}$. Because $\operatorname{dim}_{k}(\mathfrak{m})=$ 2 , without loss generalities we may assume that $\operatorname{span}\left\{x_{1}, x_{2}\right\}$. On the other hand $\mathfrak{m}^{2}=0$ implies that $x_{1}^{2}=x_{1} x_{2}=x_{2}^{2}=0$. Hence the map

$$
\begin{array}{ccc}
k[X, Y] /\left(X^{2}, Y^{2}, X Y\right) & \rightarrow & k\left[X_{1}, \ldots, X_{n}\right] / I \\
X & \mapsto & x_{1} \\
Y & \mapsto & x_{2},
\end{array}
$$

is a ring isomorphism and so $Z \cong B$.
ii) $\mathfrak{m}^{2} \neq 0$. We claim that there exists $i \in\{1, \ldots, n\}$ such that $x_{i}^{2} \neq 0$. By contradiction assume this is not the case. Let x_{i}, x_{j} with $i \neq j$ such that $x_{i} x_{j} \neq 0$ (we know that there exists at least one of these pairs because $\mathfrak{m}^{2} \neq 0$ and we are assuming $x_{i}^{2}=0$ for any $\left.i=1, \ldots, n\right)$. Then $\operatorname{span}_{k}\left\{x_{i}, x_{i} x_{j}\right\}=\mathfrak{m}$: let $\alpha, \beta \in k$ such that

$$
\alpha x_{i}+\beta x_{i} x_{j}=0,
$$

then

$$
x_{i}\left(\alpha+\beta x_{i} x_{j}\right)=0 .
$$

This implies $\alpha=0$, otherwise $\alpha+\beta x_{i} x_{j}$ is invertible in $k\left[X_{1}, \ldots, X_{n}\right] / I$ and so $x_{i}=0$ and this is not possible since we are assuming $x_{i} x_{j}=0$. On the other hand $\alpha=0$ implies $\beta=0$ again because $x_{i} x_{j} \neq 0$. Then $\operatorname{dim}\left(\operatorname{span}_{k}\left\{x_{i}, x_{i} x_{j}\right\}\right)=2$ and so $\operatorname{span}_{k}\left\{x_{i}, x_{i} x_{j}\right\}=\mathfrak{m}$. In particular there exist $\alpha, \beta \in k$ such that

$$
x_{j}=\alpha x_{i}+\beta x_{i} x_{j} .
$$

Multiplying both sides by x_{j} we get

$$
x_{j}^{2}=\alpha x_{i} x_{j}+\beta x_{i} x_{j}^{2},
$$

thus $\alpha x_{i} x_{j}=0$ which implies $\alpha=0$. So we have

$$
x_{j}=\beta x_{i} x_{j} .
$$

implies $x_{j}\left(1-\beta x_{i}\right)=0$. On the other hand $1-\beta x_{i}$ is invertible in $k\left[X_{1}, \ldots, X_{n}\right] / I$, thus $x_{j}=0$ and then $x_{i} x_{j}=0$ and this is absurd since we are assuming $x_{i} x_{j} \neq 0$. Hence, without loss of generality we may assume that x_{1} is such that $x_{1}^{2} \neq 0$. Then $\operatorname{span}_{k}\left\{x_{1}, x_{1}^{2}\right\}=\mathfrak{m}$: indeed if $x_{1}^{2}=\lambda x_{1}$ for some $\lambda \in k^{\times}$then $x_{1}^{3}=\lambda^{2} x_{1} \neq 0$ since $x_{1} \neq 0$. On the other hand $x_{1}^{3} \in \mathfrak{m}^{3}=0$ and this leads to a contradiction. Thus $x_{1}^{2} \neq 0$ and $x_{1}^{2} \notin \operatorname{span}_{k}\left\{x_{1}\right\}$, i.e. $\operatorname{span}_{k}\left\{x_{1}, x_{1}^{2}\right\}=\mathfrak{m}$. Hence the map

$$
\begin{array}{ccc}
k[X] /\left(X^{3}\right) & \rightarrow & k\left[X_{1}, \ldots, X_{n}\right] / I \\
X & \mapsto & x_{1}
\end{array}
$$

is a ring isomorphism and so $Z \cong A$.

Let us consider $V=\operatorname{span}\left\{x_{1}, \ldots, x_{n}\right\}$, we have two possibilities:
i) $\operatorname{dim}_{k}(V)=2$. With out loss of generalities we may assume $V=\operatorname{span}\left\{x_{1}, x_{2}\right\}$. Then $k\left[X_{1}, \ldots, X_{n}\right] / I=\operatorname{span}\left\{1, x_{1}, x_{2}\right\}$
ii) $\operatorname{dim}_{k}(V)=1$
3. Let $X:=\mathbb{A}_{\mathbb{C}}^{2} \backslash\{0\} \subset \mathbb{A}_{\mathbb{C}}^{2}$. Prove:
(a) The restriction map $\mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\left(\mathbb{A}_{\mathbb{C}}^{2}\right) \rightarrow \mathcal{O}_{X}(X)$ is an isomorphism.
(b) The scheme X is not an affine scheme.

Solution:

(a) We compute $\Gamma\left(\mathbb{A}_{\mathbb{C}}^{2} \backslash\{0\}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right)$. Since

$$
\mathbb{A}_{\mathbb{C}}^{2} \backslash\{0\}=\mathbb{A}_{\mathbb{C}, X}^{2} \cup \mathbb{A}_{\mathbb{C}, Y}^{2}
$$

where

$$
\mathbb{A}_{\mathbb{C}, X}^{2}:=\mathbb{A}_{\mathbb{C}}^{2} \backslash\{\mathfrak{p}:(X) \subset \mathfrak{p}\}, \quad \mathbb{A}_{\mathbb{C}, Y}^{2}:=\mathbb{A}_{\mathbb{C}}^{2} \backslash\{\mathfrak{p}:(Y) \subset \mathfrak{p}\}
$$

we have that $\Gamma\left(\mathbb{A}_{\mathbb{C}}^{2} \backslash\{0\}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right)$ is the kernel of the map

$$
\begin{aligned}
\Gamma\left(\mathbb{A}_{\mathbb{C}, X}^{2}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right) \oplus \Gamma\left(\mathbb{A}_{\mathbb{C}, Y}^{2}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right) & \rightarrow \Gamma\left(\mathbb{A}_{\mathbb{C}, X Y}^{2}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right) \\
& \mapsto s_{\mathbb{A}_{\mathbb{C}}^{2}, X Y}-t_{\mathbb{A}_{\mathbb{C}}^{2}, X Y}
\end{aligned}
$$

where $\mathbb{A}_{\mathbb{C}, X Y}^{2}=\mathbb{A}_{\mathbb{C}, X}^{2} \cap \mathbb{A}_{\mathbb{C}, Y}^{2}$. Let $s \in \Gamma\left(\mathbb{A}_{\mathbb{C}, X}^{2}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right)$ and $t \in \Gamma\left(\mathbb{A}_{\mathbb{C}, Y}^{2}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right)$, since $\Gamma\left(\mathbb{A}_{\mathbb{C}, X}^{2}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right)=k[X, Y]_{X}, \Gamma\left(\mathbb{A}_{\mathbb{C}, Y}^{2}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right)=k[X, Y]_{Y}$ there exist two polynomial $f, g \in k[X, Y]$ such that $X \nmid f, Y \nmid g$ and $s=\frac{f}{X^{m}}, g=\frac{t}{Y^{n}}$ for some $m, n \geqslant 0$. On the other hand $\Gamma\left(\mathbb{A}_{\mathbb{C}, X Y}^{2}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}\right)=k[X, Y]_{X Y}$, thus $s_{\left.\right|_{A_{\mathbb{C}}^{2}, X Y}}-t_{\left.\right|_{A_{\mathbb{C}}^{2}, X Y}}=0$ if and only if

$$
f \cdot Y^{n}=g \cdot X^{m}
$$

and this is possible if and only if $n=m=0$ and $f=g$. Hence $\Gamma\left(\mathbb{A}_{\mathbb{C}}^{2} \backslash\right.$ $\left.\{0\}, \mathcal{O}_{\mathbb{A}_{\mathrm{C}}^{2}}\right)=k[X, Y]$.
(b) By contradiction, assume $\mathbb{A}_{\mathbb{C}}^{2} \backslash\{0\}$ affine scheme, then

$$
\mathbb{A}_{\mathbb{C}}^{2} \backslash\{0\}=\operatorname{Spec}\left(\Gamma\left(\mathbb{A}_{\mathbb{C}}^{2} \backslash\{0\}, \mathcal{O}_{\mathbb{A}_{\mathbb{C}}^{2}}^{2}\right)\right)=\operatorname{Spec}(k[X, Y])=\mathbb{A}_{\mathbb{C}}^{2}
$$

and this is absurd.
4. In the following if X is a scheme we denote by $\operatorname{sp}(X)$ the underlying topological space of X. Let S be a scheme and $\pi: X \rightarrow S, \rho: Y \rightarrow S$ be S-schemes. Let $\operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$ be the fiber product of sets defined by π and ρ, endowed with the topology induced by the product topology on $\operatorname{sp}(X) \times \operatorname{sp}(Y)$. We are going to study some property concerning the relation between $\operatorname{sp}(X \times Y)$ and $\operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$.
(a) Show that we have a canonical map $f: \operatorname{sp}\left(X \times_{S} Y\right) \rightarrow \operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$.
(b) Show that f is surjective.
(c) Let us consider the example $X=Y=\operatorname{Spec} \mathbb{C}$ and $S=\operatorname{Spec} \mathbb{R}$. Show that $X \times_{S} Y \cong \operatorname{Spec}(\mathbb{C} \oplus \mathbb{C})$ and that f is not injective.
(d) Show that in the case of the previous Exercise, with $X=\operatorname{Spec} k(u), Y=$ Spec $k(v)$ and $S=\operatorname{Spec} k$, the map f has infinite fibers.
(e) Let $S=\operatorname{Spec} k$ be the spectrum of an arbitrary field. By studying the example $X=Y=\mathbb{A}_{k}^{1}$, show that the image of an open subset under f is not necessarily an open subset.

Solution:

(a) By definition of the fiber product of scheme we have two morphism λ_{1} : $X \times{ }_{S} Y \rightarrow X$ and $\lambda_{2}: X \times_{S} Y \rightarrow Y$ such that diagram

is commutative. Then we define

$$
\begin{array}{ccc}
f: \operatorname{sp}(X \times Y) & \rightarrow & \operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y) \\
z & \mapsto & \left(\lambda_{1}(z), \lambda_{2}(z)\right)
\end{array}
$$

(b) Let $(x, y) \in \operatorname{sp}(X) \times \operatorname{sp}(S) \operatorname{sp}(Y)$ we want to show that there exist $z \in \operatorname{sp}\left(X \times_{S}\right.$ Y) such that $f(z)=(x, y)$. Let us denote by $k(x), k(y)$ the residue field of x, y respectively. Since $(x, y) \in \operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$ we have that $\pi(x)=$ $\rho(y)=s \in S$. Moreover we also get $k(s) \hookrightarrow k(x)$ and $k(s) \hookrightarrow k(y)$ since $\pi: X \rightarrow S$ and $\rho: Y \rightarrow S$ are morphisms. Since $k(x), k(y) \supset k(s)$ we get that $k(x) \otimes_{k(s)} k(y)=k(x) . k(y)$ the compositum field of $k(x)$ and $k(y)$. We denote $L:=k(x) k(y)$ the compositum of $k(x)$ and $k(y)$. So we get the two morphisms

$$
f_{x}: \operatorname{Spec} L \rightarrow X \quad f_{y}: \operatorname{Spec} L \rightarrow Y,
$$

such that $f_{x}((0))=x$ and $f_{y}((0))=y$. Thus we have the commutative diagram of scheme

Using the the universal property of $X \times_{S} Y$ there exists a morphism of scheme $f_{x} \times f_{y}: \operatorname{Spec} L \rightarrow X \times_{S} Y$ such that

is a commutative diagram. Then $z:=f_{x} \times f_{y}((0))$ is such that $f(z)=(x, y)$, indeed

$$
\lambda_{1}(z)=\lambda_{1} \circ f_{x} \times f_{y}((0))=f_{x}((0))=x
$$

and similarly for λ_{2} and y.
(c) Let $X=Y=\operatorname{Spec} \mathbb{C}$ and $S=\operatorname{Spec} \mathbb{R}$. To show that $X \times_{S} Y \cong \operatorname{Spec}(\mathbb{C} \oplus \mathbb{C})$ it is enough to show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}$. An explicit isomorphism is given for example by

$$
\begin{array}{rlc}
\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} & \rightarrow & \mathbb{C} \oplus \mathbb{C} \\
z \otimes w & \mapsto & (z \cdot w, z \cdot \bar{w}) .
\end{array}
$$

Then f is not injective since $\left|\operatorname{sp}(\operatorname{Spec} \mathbb{C}) \times_{\operatorname{sp}(\operatorname{Spec} \mathbb{R})} \operatorname{sp}(\operatorname{Spec} \mathbb{C})\right|=1$ while $\left|\operatorname{sp}\left(\operatorname{Spec} \mathbb{C} \times_{\text {Spec } \mathbb{R}} \operatorname{Spec} \mathbb{C}\right)\right|=2$.
(d) We have that $\operatorname{sp}(\operatorname{Spec}(k(u))) \times_{\operatorname{sp}(\operatorname{Spec} k)} \operatorname{sp}(\operatorname{Spec}(k(v)))=\{((0),(0)\}$, thus $f^{-1}((0),(0))=\operatorname{Spec} A$. On the other hand $|\operatorname{Spec} A|=\infty$ thanks to part (d) of the previous exercise.
(e) Since f is surjective it is enough to show that the image of a closed subset under f is not necessarily closed. Let $X=Y=\mathbb{A}_{k}^{1}$, then we know that $\mathbb{A}_{k}^{1} \times_{k} \mathbb{A}_{k}^{1}=\mathbb{A}_{k}^{2}$ with respect to the Zarisky topoly. On the other hand the topology in $\operatorname{sp}\left(\mathbb{A}_{k}^{1}\right) \times_{\operatorname{sp}(\operatorname{Spec} k)} \operatorname{sp}\left(\mathbb{A}_{k}^{1}\right)$ is the product topology, i.e. $Z \subset$ $\operatorname{sp}\left(\mathbb{A}_{k}^{1}\right) \times_{\operatorname{sp}(\operatorname{Spec} k)} \operatorname{sp}\left(\mathbb{A}_{k}^{1}\right)$ is closed if and only if $Z=V(I) \times{ }_{\operatorname{sp}\left(\mathrm{Spec}^{k}\right)} V(J)$, where $I, J \subset k[X]$ are ideals. Consider $g=X+Y$. Then we have that

$$
f(V((g)))=\{((X+a)(X-a)): a \in k\} \cup\{((0)(0))\}
$$

which is not of the for $V(I) \times_{\mathrm{sp}(\operatorname{Spec} k)} V(J)$. Thus $g(V((g))$ is not closed.
5. Let \mathcal{C} be a category and $X \in \mathrm{Ob}(\mathcal{C})$, one defines

$$
h_{X}: \begin{array}{ccc}
\mathcal{C} & \rightarrow & (\text { Sets }) \\
Y & \mapsto & \operatorname{Hom}(Y, X)
\end{array}
$$

(a) Show that h_{X} is a controvariant functor.
(b) Show that any morphism $f: X_{1} \rightarrow X_{2}$ induces a morphism of functors

$$
h_{f}: h_{X_{1}} \rightarrow h_{X_{2}} .
$$

(c) Conversely, let $\varphi: h_{X_{1}} \rightarrow h_{X_{2}}$ be a morphism of functors. There is an unique $f: X_{1} \rightarrow X_{2}$ such that $\varphi=h_{f}$.
Solution: This result is called Yoneda Lemma. You can find a proof of this in Szamuely's book " Galois Groups and Fundamental Groups", pp. 20, 21.
6. Let S be a scheme and consider the category $\mathcal{C}=($ Schemes over $S)$
(a) If $X \rightarrow S$ is a scheme over S such that

$$
h_{X}: T \rightarrow \operatorname{Hom}_{S}(T, X)=X(T)
$$

is a functor to groups then X has a structure of S-group scheme.
(b) Consider $\mathbb{G}_{m}:=\operatorname{Spec}\left(\mathbb{Z}\left[X, X^{-1}\right]\right)$. Prove that

$$
\mathbb{G}_{m}(T)=\mathcal{O}_{T}(T)^{\times}
$$

for any scheme T and conclude that \mathbb{G}_{m} is a group scheme. Moreover, describe the morphism of rings corresponding to the multiplication

$$
m: \mathbb{G}_{m} \times \mathbb{G}_{m} \rightarrow \mathbb{G}_{m}
$$

Solution:

(a) We need to check the axioms of S-group scheme, i.e. we need tgo define three maps

$$
m: X \times_{S} X \rightarrow X, \quad e: S \rightarrow X, \quad i: X \rightarrow X
$$

subject to the commutative diagrams

and

where $p: X \rightarrow S$ is the structure morphism. We start defining the map m. For any S-scheme T, we know that $X(T)$ is a group. Thus, we consider the multiplication map, $\mu(T)$, over $X(T)$:

$$
\mu(T): X(T) \times X(T) \rightarrow X(T)
$$

On the other hand, for any S-scheme T one has that $X(T) \times X(T)=$ $\left(X \times_{S} X\right)(T)$ (Remark 1.6 page 81 in Liu's book "Algebraic Geometry and Arithmetic Curves"), thus for any S-scheme T we have a map

$$
\mu(T):\left(X \times_{S} X\right)(T) \rightarrow X(T)
$$

Let us check that these maps define a functor $\mu: h_{X \times X} \rightarrow h_{X}$. Let T, T^{\prime} be S-schemes and $t: T \rightarrow T^{\prime}$ a S-morphism, then we have the diagram

$$
\begin{gathered}
\left(X \times_{S} X\right)\left(T^{\prime}\right)=X\left(T^{\prime}\right) \times X\left(T^{\prime}\right) \xrightarrow{\mu\left(T^{\prime}\right)} X\left(T^{\prime}\right) \\
\\
\\
\left(X \times_{S} X\right)(T) \stackrel{h_{X \times X}(t)}{=} X(T) \times X(T) \xrightarrow{{ }^{\prime}(T)} X(T),
\end{gathered}
$$

which is commutative since h_{X} is a functor to groups. Thanks to part (c) of the previous exercise, there exists an unique $m: X \times_{S} X \rightarrow X$ such that $h_{m}=\mu$. note that one can also define m using the fiber product:

To define i, one argue as before using the fact that for any S-scheme T, we have an inversion map

$$
\iota(T): X(T) \rightarrow X(T)
$$

Let us conclude defining e. One can see $\operatorname{id}_{S}: S \rightarrow S$ as an S-scheme. Then we define e as the zero element in $\operatorname{Hom}_{S}(S, X)$. To verify that the maps m, i, e satisfy the commutative diagrams is just a computation involving part (b), (c) of the previous exercise and the universal property of the fiber product.
(b) We have that

$$
\mathbb{G}_{m}(T)=\operatorname{Hom}\left(T, \operatorname{Spec}\left(\mathbb{Z}\left[X, X^{-1}\right]\right)\right)=\operatorname{Hom}\left(\mathbb{Z}\left[X, X^{-1}\right], \mathcal{O}_{T}(T)\right)=\mathcal{O}_{T}(T)^{\times}
$$

where the second step follows from the fact that \mathbb{G}_{m} is an affine scheme. Hence, $\mathbb{G}_{m}(T)$ is a group for any scheme T. Let us check that $h_{\mathbb{G}_{m}}$ sends morphisms to group homomorphism: let T, T^{\prime} be schemes and $t: T \rightarrow T^{\prime}$ a morphism, and denote by $t^{\sharp}: \mathcal{O}_{T^{\prime}}\left(T^{\prime}\right) \rightarrow \mathcal{O}_{T}(T)$. Then we have the map

$$
\begin{array}{cl}
\left.h_{\mathbb{G}_{m}}(t): \begin{array}{cc}
\mathbb{G}_{m}\left(T^{\prime}\right) & \rightarrow \mathbb{G}_{m}(T) \\
\psi & \mapsto
\end{array}\right\} \circ t .
\end{array}
$$

Using again the fact that $\mathbb{G}_{m}\left(T^{\prime}\right)=\operatorname{Hom}\left(\mathbb{Z}\left[X, X^{-1}\right], \mathcal{O}_{T^{\prime}}\left(T^{\prime}\right)\right)$ and that $\mathbb{G}_{m}(T)=$ $\operatorname{Hom}\left(\mathbb{Z}\left[X, X^{-1}\right], \mathcal{O}_{T}(T)\right)$, we can rewrite $h_{\mathbb{G}_{m}}(t)$ as

$$
h_{\mathbb{G}_{m}}(t): \begin{array}{ccc}
\operatorname{Hom}\left(\mathbb{Z}\left[X, X^{-1}\right], \mathcal{O}_{T^{\prime}}\left(T^{\prime}\right)\right) & \rightarrow & \operatorname{Hom}\left(\mathbb{Z}\left[X, X^{-1}\right], \mathcal{O}_{T}(T)\right) \\
X \mapsto x & \mapsto & X \mapsto t^{\sharp}(x),
\end{array}
$$

i.e. $h_{\mathbb{G}_{m}}(t)=t_{\left.\right|_{\mathcal{O}^{\prime}\left(T^{\prime}\right)} ^{\#}}^{\#}: \mathcal{O}_{T^{\prime}}^{\times}\left(T^{\prime}\right) \rightarrow \mathcal{O}_{T}^{\times}(T)$. Thus, $h_{\mathbb{G}_{m}}(t)$ is a group homomorpism and we can conclude that \mathbb{G}_{m} is a group scheme thanks to part (a). Let us describe m. First of all, observe that

$$
\mathbb{G}_{m} \times \mathbb{G}_{m}=\operatorname{Spec}\left(\mathbb{Z}\left[X_{1}, X_{1}^{-1}\right] \otimes \mathbb{Z}\left[X_{2}, X_{2}^{-1}\right]\right)
$$

Thus, we need to describe

$$
m^{\sharp}: \mathbb{Z}\left[X, X^{-1}\right] \rightarrow \mathbb{Z}\left[X_{1}, X_{1}^{-1}\right] \otimes \mathbb{Z}\left[X_{2}, X_{2}^{-1}\right] .
$$

Let us consider the commutative diagram

From this diagram we get the following commutative diagram

where for any $a, b \in \mathbb{Z}$ one has $\operatorname{Id}_{i}\left(a X_{i}\right)=a X, e^{\sharp}\left(b X_{i}\right)=b$ for $i=1,2$. Thus, $\left(\operatorname{Id}_{1} \otimes e^{\sharp}\right)\left(m^{\sharp(X)}\right)=\left(\operatorname{Id}_{2} \otimes e^{\sharp}\right)\left(m^{\sharp}(X)\right)=X$. On the other hand, we have that

$$
m^{\sharp}(X)=\sum_{i, j=-1}^{1} a_{i, j}\left(X_{1}^{i} \otimes X_{2}^{j}\right)
$$

thus we get $a_{1,0}+a_{0,0}+a_{-1,0}=0=a_{0,1}+a_{0,0}+a_{0,-1}, a_{1,0}+a_{1,1}+a_{1,-1}=$ $1=a_{0,1}+a_{1,1}+a_{-1,1}$ and $a_{-1,-1}+a_{-1,0}+a_{-1,1}=0=a_{-1,-1}+a_{0,-1}+a_{1,-1}$. Looking at the other diagram

one gets the relations $a_{1,-1}=a_{-1,1}=0, a_{0,0}+a_{1,1}+a_{-1,-1}=1, a_{1,0}+a_{0,-1}=$ $a_{-1,0}+a_{0,1}=0$. Putting all the conditions together we get that $a_{1,1}=0$ and $a_{i, j}=0$ for $(i, j) \neq(1,1)$. Thus $m^{\sharp}(X)=X_{1} \otimes X_{2}$ and this concludes the exercise.

