Prof. Emmanuel Kowalski

Algebraic Geometry

Solutions Sheet 4

Schemes

1. Double Points. Let k be a field and $Y \hookrightarrow \mathbb{A}_k^2$ be a closed subscheme with image containing the origin (0,0) in \mathbb{A}_k^2 and such that $\mathcal{O}_Y(Y) \cong k[\varepsilon]/(\varepsilon^2)$. Denote by $\varphi : k[x,y] \to \mathcal{O}_Y(Y)$ the surjection defining the inclusion $Y \hookrightarrow \mathbb{A}^2$. Prove that the kernel of φ contains a non-zero element $\alpha x + \beta y$ for some $\alpha, \beta \in k$. Write $X_{\alpha,\beta} := \operatorname{Spec}(k[x,y]/\ker(\varphi))$ and show that $X_{\alpha,\beta}$ can also be characterized as the composition of the natural morphism $\operatorname{Spec}(k[\varepsilon]/(\varepsilon^2)) \to \operatorname{Spec}(k[\varepsilon]) \cong \mathbb{A}_k^1$ with the inclusion of the line $\mathbb{A}_k^1 \hookrightarrow \mathbb{A}_k^2$ given by $x \mapsto (\beta x, -\alpha x)$.

Solution: You find this solution in the Book of Eisenbud and Harris, Examples II.9, II.10.

2. Let k be an algebraically closed field and let $Z := \operatorname{Spec}(k[X_1, \ldots, X_n]/I) \subset \mathbb{A}_k^n$ be a closed subscheme of dimension 0 supported at the origin (i.e. $\sqrt{I} = (X_1, \ldots, X_n)$). Furthermore, suppose that $k[X_1, \ldots, X_n]/I$ is a 3-dimensional k-vector space. Prove that Z is isomorphic to either $A := \operatorname{Spec}(k[X]/(X^3))$ or to $B := \operatorname{Spec}(k[X, Y]/(X^2, XY, Y^2))$ and that A and B are not isomorphic to each other.

Solution: Let us start proving that A and B are not isomorphic. To show this it is enough to prove that $k[X]/(X^3)$ and $k[X,Y]/(X^2, XY, Y^2)$ are not isomorphic as rings. Let $\varphi : k[X]/(X^3) \to k[X,Y]/(X^2, XY, Y^2)$ be any ring homomorphism from $k[X]/(X^3)$ to $k[X,Y]/(X^2, XY, Y^2)$. Then $\varphi(X^2) = \varphi(X)^2 = 0$. On the other hand $X^2 \neq 0$ in A, thus $\operatorname{Ker}(\varphi) \neq 0$. It follows that $k[X]/(X^3)$ and $k[X,Y]/(X^2, XY, Y^2)$ can not be isomorphic since any homorphism from from $k[X]/(X^3)$ to $k[X,Y]/(X^2, XY, Y^2)$ is not injective.

Let us prove the other part of the Exercise. in the following, x_i denotes the imagine of X_i in $k[X_1, \ldots, X_n]/I$. Since $\sqrt{I} = (X_1, \ldots, X_n)$, then $\text{Spec}(k[X_1, \ldots, X_n]/I) = \{\mathfrak{m}\}$ where \mathfrak{m} is the reduction of (X_1, \ldots, X_n) modulo I. Moreover we have that

$$k[X_1,\ldots,X_n]/I = k \oplus \mathfrak{m}$$

thus $\dim_k(\mathfrak{m}) = 2$. We claim that $\mathfrak{m}^3 = 0$. Let us consider the chain

$$\mathfrak{m} \supset \mathfrak{m}^2 \supset \mathfrak{m}^3.$$

Then $\mathfrak{m} \supseteq \mathfrak{m}^2$, otherwise by Nakayama's Lemma $\mathfrak{m} = 0$. Thus $\dim_k(\mathfrak{m}^2) \leq 1$ If $\dim_k(\mathfrak{m}^2) = 0$ we have done, otherwise $\mathfrak{m}^2 \supseteq \mathfrak{m}^3$ (again thanks to Nakayama'sd Lemma) and then $\mathfrak{m}^3 = 0$. Now we have to distinguish to situation

i) $\mathfrak{m}^2 = 0$. In this case we have that $\mathfrak{m} = \operatorname{span}_k \{x_1, ..., x_n\}$. Because $\dim_k(\mathfrak{m}) = 2$, without loss generalities we may assume that $\operatorname{span}\{x_1, x_2\}$. On the other hand $\mathfrak{m}^2 = 0$ implies that $x_1^2 = x_1 x_2 = x_2^2 = 0$. Hence the map

$$k[X,Y]/(X^2,Y^2,XY) \rightarrow k[X_1,...,X_n]/I$$

$$X \qquad \mapsto \qquad x_1$$

$$Y \qquad \mapsto \qquad x_2,$$

is a ring isomorphism and so $Z \cong B$.

ii) $\mathfrak{m}^2 \neq 0$. We claim that there exists $i \in \{1, ..., n\}$ such that $x_i^2 \neq 0$. By contradiction assume this is not the case. Let x_i, x_j with $i \neq j$ such that $x_i x_j \neq 0$ (we know that there exists at least one of these pairs because $\mathfrak{m}^2 \neq 0$ and we are assuming $x_i^2 = 0$ for any i = 1, ..., n). Then $\operatorname{span}_k\{x_i, x_i x_j\} = \mathfrak{m}$: let $\alpha, \beta \in k$ such that

$$\alpha x_i + \beta x_i x_j = 0$$

then

$$x_i(\alpha + \beta x_i x_j) = 0$$

This implies $\alpha = 0$, otherwise $\alpha + \beta x_i x_j$ is invertible in $k[X_1, \ldots, X_n]/I$ and so $x_i = 0$ and this is not possible since we are assuming $x_i x_j = 0$. On the other hand $\alpha = 0$ implies $\beta = 0$ again because $x_i x_j \neq 0$. Then $\dim(\operatorname{span}_k\{x_i, x_i x_j\}) = 2$ and so $\operatorname{span}_k\{x_i, x_i x_j\} = \mathfrak{m}$. In particular there exist $\alpha, \beta \in k$ such that

$$x_j = \alpha x_i + \beta x_i x_j.$$

Multiplying both sides by x_i we get

$$x_j^2 = \alpha x_i x_j + \beta x_i x_j^2,$$

thus $\alpha x_i x_j = 0$ which implies $\alpha = 0$. So we have

$$x_j = \beta x_i x_j.$$

implies $x_j(1-\beta x_i) = 0$. On the other hand $1-\beta x_i$ is invertible in $k[X_1, \ldots, X_n]/I$, thus $x_j = 0$ and then $x_i x_j = 0$ and this is absurd since we are assuming $x_i x_j \neq 0$. Hence, without loss of generality we may assume that x_1 is such that $x_1^2 \neq 0$. Then $\operatorname{span}_k\{x_1, x_1^2\} = \mathfrak{m}$: indeed if $x_1^2 = \lambda x_1$ for some $\lambda \in k^{\times}$ then $x_1^3 = \lambda^2 x_1 \neq 0$ since $x_1 \neq 0$. On the other hand $x_1^3 \in \mathfrak{m}^3 = 0$ and this leads to a contradiction. Thus $x_1^2 \neq 0$ and $x_1^2 \notin \operatorname{span}_k\{x_1\}$, i.e. $\operatorname{span}_k\{x_1, x_1^2\} = \mathfrak{m}$. Hence the map

$$\begin{array}{rccc} k[X]/(X^3) & \to & k[X_1,...,X_n]/I \\ X & \mapsto & & x_1 \end{array}$$

is a ring isomorphism and so $Z \cong A$.

Let us consider $V = \text{span}\{x_1, ..., x_n\}$, we have two possibilities:

- i) $\dim_k(V) = 2$. With out loss of generalities we may assume $V = \operatorname{span}\{x_1, x_2\}$. Then $k[X_1, \ldots, X_n]/I = \operatorname{span}\{1, x_1, x_2\}$
- ii) dim_k(V) = 1
- 3. Let $X := \mathbb{A}^2_{\mathbb{C}} \setminus \{0\} \subset \mathbb{A}^2_{\mathbb{C}}$. Prove:
 - (a) The restriction map $\mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}(\mathbb{A}^2_{\mathbb{C}}) \to \mathcal{O}_X(X)$ is an isomorphism.
 - (b) The scheme X is not an affine scheme.

Solution:

(a) We compute $\Gamma(\mathbb{A}^2_{\mathbb{C}} \smallsetminus \{0\}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}})$. Since

$$\mathbb{A}^2_{\mathbb{C}} \smallsetminus \{0\} = \mathbb{A}^2_{\mathbb{C},X} \cup \mathbb{A}^2_{\mathbb{C},Y}$$

where

$$\mathbb{A}^2_{\mathbb{C},X} := \mathbb{A}^2_{\mathbb{C}} \smallsetminus \{ \mathfrak{p} : (X) \subset \mathfrak{p} \}, \quad \mathbb{A}^2_{\mathbb{C},Y} := \mathbb{A}^2_{\mathbb{C}} \smallsetminus \{ \mathfrak{p} : (Y) \subset \mathfrak{p} \},$$

we have that $\Gamma(\mathbb{A}^2_{\mathbb{C}} \smallsetminus \{0\}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}})$ is the kernel of the map

$$\begin{array}{ccc} \Gamma(\mathbb{A}^2_{\mathbb{C},X},\mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}) \oplus \Gamma(\mathbb{A}^2_{\mathbb{C},Y},\mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}) & \to & \Gamma(\mathbb{A}^2_{\mathbb{C},XY},\mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}) \\ (s,t) & \mapsto & s_{|_{\mathbb{A}^2_{\mathbb{C},XY}}} - t_{|_{\mathbb{A}^2_{\mathbb{C},XY}}}, \end{array}$$

where $\mathbb{A}^2_{\mathbb{C},XY} = \mathbb{A}^2_{\mathbb{C},X} \cap \mathbb{A}^2_{\mathbb{C},Y}$. Let $s \in \Gamma(\mathbb{A}^2_{\mathbb{C},X}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}})$ and $t \in \Gamma(\mathbb{A}^2_{\mathbb{C},Y}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}})$, since $\Gamma(\mathbb{A}^2_{\mathbb{C},X}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}) = k[X,Y]_X$, $\Gamma(\mathbb{A}^2_{\mathbb{C},Y}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}) = k[X,Y]_Y$ there exist two polynomial $f, g \in k[X,Y]$ such that $X \nmid f, Y \nmid g$ and $s = \frac{f}{X^m}, g = \frac{t}{Y^n}$ for some $m, n \ge 0$. On the other hand $\Gamma(\mathbb{A}^2_{\mathbb{C},XY}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}) = k[X,Y]_{XY}$, thus $s_{|_{\mathbb{A}^2_{\mathbb{C},XY}}} - t_{|_{\mathbb{A}^2_{\mathbb{C},XY}}} = 0$ if and only if

$$f \cdot Y^n = g \cdot X^m,$$

and this is possible if and only if n = m = 0 and f = g. Hence $\Gamma(\mathbb{A}^2_{\mathbb{C}} \setminus \{0\}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}}) = k[X, Y].$

(b) By contradiction, assume $\mathbb{A}^2_{\mathbb{C}} \smallsetminus \{0\}$ affine scheme, then

$$\mathbb{A}^2_{\mathbb{C}} \smallsetminus \{0\} = \operatorname{Spec}(\Gamma(\mathbb{A}^2_{\mathbb{C}} \smallsetminus \{0\}, \mathcal{O}_{\mathbb{A}^2_{\mathbb{C}}})) = \operatorname{Spec}(k[X, Y]) = \mathbb{A}^2_{\mathbb{C}},$$

and this is absurd.

- 4. In the following if X is a scheme we denote by $\operatorname{sp}(X)$ the underlying topological space of X. Let S be a scheme and $\pi : X \to S$, $\rho : Y \to S$ be S-schemes. Let $\operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$ be the fiber product of sets defined by π and ρ , endowed with the topology induced by the product topology on $\operatorname{sp}(X) \times \operatorname{sp}(Y)$. We are going to study some property concerning the relation between $\operatorname{sp}(X \times Y)$ and $\operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$.
 - (a) Show that we have a canonical map $f : \operatorname{sp}(X \times_S Y) \to \operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$.
 - (b) Show that f is surjective.
 - (c) Let us consider the example $X = Y = \operatorname{Spec} \mathbb{C}$ and $S = \operatorname{Spec} \mathbb{R}$. Show that $X \times_S Y \cong \operatorname{Spec}(\mathbb{C} \oplus \mathbb{C})$ and that f is not injective.
 - (d) Show that in the case of the previous Exercise, with $X = \operatorname{Spec} k(u)$, $Y = \operatorname{Spec} k(v)$ and $S = \operatorname{Spec} k$, the map f has infinite fibers.
 - (e) Let $S = \operatorname{Spec} k$ be the spectrum of an arbitrary field. By studying the example $X = Y = \mathbb{A}_k^1$, show that the image of an open subset under f is not necessarily an open subset.

Solution:

(a) By definition of the fiber product of scheme we have two morphism λ_1 : $X \times_S Y \to X$ and $\lambda_2 : X \times_S Y \to Y$ such that diagram

$$\begin{array}{ccc} X \times_S Y & \xrightarrow{\lambda_1} & X \\ & \downarrow^{\lambda_2} & & \downarrow^{\pi} \\ & Y & \xrightarrow{\rho} & S \end{array}$$

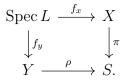
is commutative. Then we define

$$\begin{array}{rccc} f: \operatorname{sp}(X \times Y) & \to & \operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y) \\ z & \mapsto & (\lambda_1(z), \lambda_2(z)). \end{array}$$

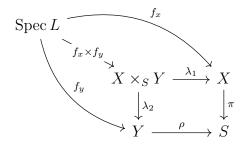
(b) Let $(x, y) \in \operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$ we want to show that there exist $z \in \operatorname{sp}(X \times_S Y)$ such that f(z) = (x, y). Let us denote by k(x), k(y) the residue field of x, y respectively. Since $(x, y) \in \operatorname{sp}(X) \times_{\operatorname{sp}(S)} \operatorname{sp}(Y)$ we have that $\pi(x) = \rho(y) = s \in S$. Moreover we also get $k(s) \hookrightarrow k(x)$ and $k(s) \hookrightarrow k(y)$ since $\pi : X \to S$ and $\rho : Y \to S$ are morphisms. Since $k(x), k(y) \supset k(s)$ we get that $k(x) \otimes_{k(s)} k(y) = k(x).k(y)$ the compositum field of k(x) and k(y). We denote L := k(x)k(y) the compositum of k(x) and k(y). So we get the two morphisms

$$f_x : \operatorname{Spec} L \to X \qquad f_y : \operatorname{Spec} L \to Y,$$

such that $f_x((0)) = x$ and $f_y((0)) = y$. Thus we have the commutative diagram of scheme



Using the the universal property of $X \times_S Y$ there exists a morphism of scheme $f_x \times f_y$: Spec $L \to X \times_S Y$ such that



is a commutative diagram. Then $z := f_x \times f_y((0))$ is such that f(z) = (x, y), indeed

$$\lambda_1(z) = \lambda_1 \circ f_x \times f_y((0)) = f_x((0)) = x$$

and similarly for λ_2 and y.

(c) Let $X = Y = \operatorname{Spec} \mathbb{C}$ and $S = \operatorname{Spec} \mathbb{R}$. To show that $X \times_S Y \cong \operatorname{Spec}(\mathbb{C} \oplus \mathbb{C})$ it is enough to show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} \cong \mathbb{C} \oplus \mathbb{C}$. An explicit isomorphism is given for example by

$$\begin{array}{cccc} \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} & \to & \mathbb{C} \oplus \mathbb{C} \\ z \otimes w & \mapsto & (z \cdot w, z \cdot \overline{w}). \end{array}$$

Then f is not injective since $|\operatorname{sp}(\operatorname{Spec} \mathbb{C}) \times_{\operatorname{sp}(\operatorname{Spec} \mathbb{R})} \operatorname{sp}(\operatorname{Spec} \mathbb{C})| = 1$ while $|\operatorname{sp}(\operatorname{Spec} \mathbb{C} \times_{\operatorname{Spec} \mathbb{R}} \operatorname{Spec} \mathbb{C})| = 2.$

- (d) We have that $\operatorname{sp}(\operatorname{Spec}(k(u))) \times_{\operatorname{sp}(\operatorname{Spec}(k))} \operatorname{sp}(\operatorname{Spec}(k(v))) = \{((0), (0)\}, \text{ thus } f^{-1}((0), (0)) = \operatorname{Spec} A.$ On the other hand $|\operatorname{Spec} A| = \infty$ thanks to part (d) of the previous exercise.
- (e) Since f is surjective it is enough to show that the image of a closed subset under f is not necessarily closed. Let $X = Y = \mathbb{A}_k^1$, then we know that $\mathbb{A}_k^1 \times_k \mathbb{A}_k^1 = \mathbb{A}_k^2$ with respect to the Zarisky topoly. On the other hand the topology in $\operatorname{sp}(\mathbb{A}_k^1) \times_{\operatorname{sp}(\operatorname{Spec} k)} \operatorname{sp}(\mathbb{A}_k^1)$ is the product topology, i.e. $Z \subset$ $\operatorname{sp}(\mathbb{A}_k^1) \times_{\operatorname{sp}(\operatorname{Spec} k)} \operatorname{sp}(\mathbb{A}_k^1)$ is closed if and only if $Z = V(I) \times_{\operatorname{sp}(\operatorname{Spec} k)} V(J)$, where $I, J \subset k[X]$ are ideals. Consider g = X + Y. Then we have that

$$f(V((g))) = \{((X+a)(X-a)) : a \in k\} \cup \{((0)(0))\}$$

which is not of the for $V(I) \times_{\operatorname{sp}(\operatorname{Spec} k)} V(J)$. Thus g(V((g))) is not closed.

5. Let \mathcal{C} be a category and $X \in Ob(\mathcal{C})$, one defines

$$h_X: \begin{array}{ccc} \mathcal{C} & \to & (\text{Sets}) \\ Y & \mapsto & \text{Hom}(Y, X) \end{array}$$

- (a) Show that h_X is a controvariant functor.
- (b) Show that any morphism $f: X_1 \to X_2$ induces a morphism of functors

$$h_f: h_{X_1} \to h_{X_2}.$$

- (c) Conversely, let φ : h_{X1} → h_{X2} be a morphism of functors. There is an unique f : X₁ → X₂ such that φ = h_f.
 Solution: This result is called Yoneda Lemma. You can find a proof of this in Szamuely's book "Galois Groups and Fundamental Groups", pp. 20, 21.
- 6. Let S be a scheme and consider the category $\mathcal{C} = ($ Schemes over S)
 - (a) If $X \to S$ is a scheme over S such that

$$h_X: T \to \operatorname{Hom}_S(T, X) = X(T)$$

is a functor to groups then X has a structure of S-group scheme.

(b) Consider $\mathbb{G}_m := \operatorname{Spec}(\mathbb{Z}[X, X^{-1}])$. Prove that

$$\mathbb{G}_m(T) = \mathcal{O}_T(T)^{\times}$$

for any scheme T and conclude that \mathbb{G}_m is a group scheme. Moreover, describe the morphism of rings corresponding to the multiplication

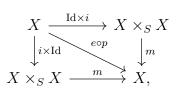
$$m: \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m.$$

Solution:

(a) We need to check the axioms of S-group scheme, i.e. we need tgo define three maps

$$m: X \times_S X \to X, \quad e: S \to X, \quad i: X \to X,$$

subject to the commutative diagrams



where $p: X \to S$ is the structure morphism. We start defining the map m. For any S-scheme T, we know that X(T) is a group. Thus, we consider the multiplication map, $\mu(T)$, over X(T):

$$\mu(T): X(T) \times X(T) \to X(T).$$

On the other hand, for any S-scheme T one has that $X(T) \times X(T) = (X \times_S X)(T)$ (Remark 1.6 page 81 in Liu's book "Algebraic Geometry and Arithmetic Curves"), thus for any S-scheme T we have a map

$$\mu(T): (X \times_S X)(T) \to X(T).$$

Let us check that these maps define a functor $\mu : h_{X \times X} \to h_X$. Let T, T' be S-schemes and $t : T \to T'$ a S-morphism, then we have the diagram

which is commutative since h_X is a functor to groups. Thanks to part (c) of the previous exercise, there exists an unique $m: X \times_S X \to X$ such that $h_m = \mu$. note that one can also define m using the fiber product:

$$\begin{array}{ccc} X \times_S X & \xrightarrow{m} & X \\ & \downarrow^m & \downarrow^p \\ & X & \xrightarrow{p} & S. \end{array}$$

To define i, one argue as before using the fact that for any S-scheme T, we have an inversion map

$$\iota(T): X(T) \to X(T).$$

Let us conclude defining e. One can see $\operatorname{id}_S : S \to S$ as an S-scheme. Then we define e as the zero element in $\operatorname{Hom}_S(S, X)$. To verify that the maps m, i, esatisfy the commutative diagrams is just a computation involving part (b), (c)of the previous exercise and the universal property of the fiber product.

(b) We have that

$$\mathbb{G}_m(T) = \operatorname{Hom}(T, \operatorname{Spec}(\mathbb{Z}[X, X^{-1}])) = \operatorname{Hom}(\mathbb{Z}[X, X^{-1}], \mathcal{O}_T(T)) = \mathcal{O}_T(T)^{\times},$$

and

where the second step follows from the fact that \mathbb{G}_m is an affine scheme. Hence, $\mathbb{G}_m(T)$ is a group for any scheme T. Let us check that $h_{\mathbb{G}_m}$ sends morphisms to group homomorphism: let T, T' be schemes and $t: T \to T'$ a morphism, and denote by $t^{\sharp}: \mathcal{O}_{T'}(T') \to \mathcal{O}_T(T)$. Then we have the map

$$h_{\mathbb{G}_m}(t): \begin{array}{ccc} \mathbb{G}_m(T') & \to & \mathbb{G}_m(T) \\ \psi & \mapsto & \psi \circ t. \end{array}$$

Using again the fact that $\mathbb{G}_m(T') = \operatorname{Hom}(\mathbb{Z}[X, X^{-1}], \mathcal{O}_{T'}(T'))$ and that $\mathbb{G}_m(T) = \operatorname{Hom}(\mathbb{Z}[X, X^{-1}], \mathcal{O}_T(T))$, we can rewrite $h_{\mathbb{G}_m}(t)$ as

$$h_{\mathbb{G}_m}(t): \frac{\operatorname{Hom}(\mathbb{Z}[X, X^{-1}], \mathcal{O}_{T'}(T')) \to \operatorname{Hom}(\mathbb{Z}[X, X^{-1}], \mathcal{O}_T(T))}{X \mapsto x \mapsto X \mapsto t^{\sharp}(x),}$$

i.e. $h_{\mathbb{G}_m}(t) = t_{|_{\mathcal{O}_{T'}^{\times}(T')}}^{\sharp} : \mathcal{O}_{T'}^{\times}(T') \to \mathcal{O}_{T}^{\times}(T)$. Thus, $h_{\mathbb{G}_m}(t)$ is a group homomorpism and we can conclude that \mathbb{G}_m is a group scheme thanks to part (a).

Let us describe m. First of all, observe that

$$\mathbb{G}_m \times \mathbb{G}_m = \operatorname{Spec}(\mathbb{Z}[X_1, X_1^{-1}] \otimes \mathbb{Z}[X_2, X_2^{-1}]).$$

Thus, we need to describe

$$m^{\sharp}: \mathbb{Z}[X, X^{-1}] \to \mathbb{Z}[X_1, X_1^{-1}] \otimes \mathbb{Z}[X_2, X_2^{-1}].$$

Let us consider the commutative diagram

From this diagram we get the following commutative diagram

$$\mathbb{Z}[X, X^{-1}] \xrightarrow{m^{\sharp}} \mathbb{Z}[X_1, X_1^{-1}] \otimes \mathbb{Z}[X_2, X_2^{-1}]$$

$$\downarrow^{m^{\sharp}} \xrightarrow{\mathrm{Id}} \downarrow^{\mathrm{Id}_1 \otimes e^{\sharp}} ,$$

$$\mathbb{Z}[X_1, X_1^{-1}] \otimes \mathbb{Z}[X_2, X_2^{-1}] \xrightarrow{\mathrm{Id}_2 \otimes e^{\sharp}} \mathbb{Z}[X, X^{-1}]$$

where for any $a, b \in \mathbb{Z}$ one has $\mathrm{Id}_i(aX_i) = aX$, $e^{\sharp}(bX_i) = b$ for i = 1, 2. Thus, $(\mathrm{Id}_1 \otimes e^{\sharp})(m^{\sharp(X)}) = (\mathrm{Id}_2 \otimes e^{\sharp})(m^{\sharp}(X)) = X$. On the other hand, we have that

$$m^{\sharp}(X) = \sum_{i,j=-1}^{1} a_{i,j}(X_{1}^{i} \otimes X_{2}^{j})$$

thus we get $a_{1,0} + a_{0,0} + a_{-1,0} = 0 = a_{0,1} + a_{0,0} + a_{0,-1}$, $a_{1,0} + a_{1,1} + a_{1,-1} = 1 = a_{0,1} + a_{1,1} + a_{-1,1}$ and $a_{-1,-1} + a_{-1,0} + a_{-1,1} = 0 = a_{-1,-1} + a_{0,-1} + a_{1,-1}$. Looking at the other diagram

one gets the relations $a_{1,-1} = a_{-1,1} = 0$, $a_{0,0} + a_{1,1} + a_{-1,-1} = 1$, $a_{1,0} + a_{0,-1} = a_{-1,0} + a_{0,1} = 0$. Putting all the conditions together we get that $a_{1,1} = 0$ and $a_{i,j} = 0$ for $(i, j) \neq (1, 1)$. Thus $m^{\sharp}(X) = X_1 \otimes X_2$ and this concludes the exercise.