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Prof. Emmanuel Kowalski .
Solutions Sheet 4

SCHEMES

1. Double Points. Let k be a field and Y < A2 be a closed subscheme with image
containing the origin (0,0) in A2 and such that Oy (Y) = kle]/(¢?). Denote by
¢ : k[z,y] — Oy(Y) the surjection defining the inclusion ¥ < A?. Prove that
the kernel of ¢ contains a non-zero element ax + [y for some o, € k. Write
Xop = Spec(k[z,y]/ ker(¢)) and show that X, s can also be characterized as the
composition of the natural morphism Spec(k[e]/(?)) — Spec(k[e]) = A} with the
inclusion of the line Al < AZ given by x — (fz, —ax).

Solution: You find this solution in the Book of Eisenbud and Harris, Examples
I11.9, I1.10.

2. Let k be an algebraically closed field and let Z := Spec(k[X1,...,X,]|/I) C
A7 be a closed subscheme of dimension 0 supported at the origin (i.e. VI =
(X1, ..., Xp)). Furthermore, suppose that k[X,...,X,]/I is a 3-dimensional k-
vector space. Prove that Z is isomorphic to either A := Spec(k[X]/(X?)) or to
B := Spec(k[X,Y]/(X? XY,Y?)) and that A and B are not isomorphic to each
other.

Solution: Let us start proving that A and B are not isomorphic. To show this it
is enough to prove that k[X]/(X?) and k[X,Y]/(X? XY,Y?) are not isomorphic
as rings. Let ¢ : k[X]/(X?) — Kk[X,Y]/(X? XY,Y?) be any ring homomor-
phism from k[X]/(X?) to k[X,Y]/(X? XY,Y?). Then p(X?) = ¢(X)*> =0. On
the other hand X? # 0 in A, thus Ker(p) # 0. It follows that k[X]/(X?) and
k[ X,Y]/(X? XY,Y?) can not be isomorphic since any homorphism from from
k[ X]/(X?) to k[X,Y]/(X? XY,Y?) is not injective.

Let us prove the other part of the Exercise. in the following, x; denotes the imagine
of X; in k[X1,...,X,]/I. Since VI = (Xy,..., X,,), then Spec(k[X1,..., X,]/I) =
{m} where m is the reduction of (X3, ..., X,,) modulo I. Moreover we have that

kX1, Xol/I=k®m
thus dimg(m) = 2. We claim that m®> = 0. Let us consider the chain
m D m® D m’.

Then m 2 m?, otherwise by Nakayama’s Lemma m = 0. Thus dimg(m?) < 1 If
dimy(m?) = 0 we have done, otherwise m* 2 m?® (again thanks to Nakayama’sd
Lemma) and then m® = 0. Now we have to distinguish to situation
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i) m? = 0. In this case we have that m = span,{x, ..., 7, }. Because dim(m) =
2, without loss generalities we may assume that span{x;,z5}. On the other
hand m? = 0 implies that 7 = 2,25 = 22 = 0. Hence the map

k’[X,Y}/(Xz,YQ,XY) - k[X177Xn]/I
X — X1
Y — X2,

is a ring isomorphism and so Z = B.

ii) m? # 0. We claim that there exists ¢ € {1,...,n} such that 2? # 0. By
contradiction assume this is not the case. Let z;,x; with ¢ # j such that
z;x; # 0 (we know that there exists at least one of these pairs because m? # 0
and we are assuming z? = 0 for any ¢ = 1,...,n). Then span,{z;, z;z;} = m:
let o, B € k such that

ax; + Brir; =0,
then
This implies a@ = 0, otherwise a + fz;z; is invertible in k[Xy,..., X,]/]
and so z; = 0 and this is not possible since we are assuming z;z; = 0.
On the other hand o = 0 implies 3 = 0 again because x;z; # 0. Then
dim(span,{z;, z;z;}) = 2 and so span,{z;, z;x;} = m. In particular there
exist «, 8 € k such that

xj; = ax; + Brz;.

Multiplying both sides by x; we get
© = azxj + B,
thus ax;x; = 0 which implies & = 0. So we have
l’j = Bl'z$]

implies z;(1—/fz;) = 0. On the other hand 1—f; is invertible in k[ X1, ..., X,,]/1,
thus z; = 0 and then x;2; = 0 and this is absurd since we are assum-
ing z;x; # 0. Hence, without loss of generality we may assume that z; is
such that 22 # 0. Then span,{x;,2?} = m: indeed if 22 = A\x; for some

A € kX then 23 = A\z; # 0 since 71 # 0. On the other hand 23 € m® = 0
and this leads to a contradiction. Thus z7 # 0 and z7 ¢ span,{z}, i.e.
span, {z1, 23} = m. Hence the map

KX]/(X3) — k[Xy,..., X,)/1
X — T

is a ring isomorphism and so Z = A.

2



Let us consider V' = span{z, ..., z, }, we have two possibilities:

i)

i)

dimg (V') = 2. With out loss of generalities we may assume V' = span{xy, z5}.
Then k[X1, ..., X,]/I = span{l, z1, 25}

3. Let X := A% \ {0} C AZ. Prove:

(a)
(b)

The restriction map Oz (AZ) — Ox(X) is an isomorphism.

The scheme X is not an afline scheme.

Solution:

()

We compute T'(AZ ~\ {0}, O4z). Since
A?‘c N {0} = A%,X U A%,Y
where

A% x =ALN{p:(X)Cp}, ALy =AZ~{p:(Y)Cp},

we have that T'(AZ \ {0}, Oy2) is the kernel of the map

F<A%,X70Ag)@F(A%,YaOA%) — F(A?C,XY?OA%)

(s,t) =S|,

_ t|A2 ,
C,XY C,XY

where A2 vy = AZ x NAZy. Let s € [(AZ x,042) and t € T(AZy, Oy2),
since (A2 x, Op2) = k[X,Y]x, T(Ay,0p2) = k[X,Y]y there exist two
polynomial f,g € k[X,Y] such that X 1 f, Y t g and s = Xim, g = 3=

for some m,n > 0. On the other hand F(Aéxy,OAé) = k[X,Y]xy, thus
S, —1, =0ifand only if

C,XY C,XY
fYr =g X",

and this is possible if and only if n = m = 0 and f = g. Hence T'(AZ \

By contradiction, assume AZ \ {0} affine scheme, then
A2 {0} = Spec(T(A2 ~ {0}, 0,2)) = Spec(k[X, Y]) = A2,

and this is absurd.



4. In the following if X is a scheme we denote by sp(X) the underlying topological
space of X. Let S be a scheme and 7 : X — S, p : Y — S be S-schemes.
Let sp(X) Xgp(s) sp(Y') be the fiber product of sets defined by 7 and p, endowed
with the topology induced by the product topology on sp(X) x sp(Y). We are
going to study some property concerning the relation between sp(X x Y) and

sP(X) Xsp(s) sp(Y)-
(a) Show that we have a canonical map f :sp(X xgY) = sp(X) Xgs)sp(Y).
(b) Show that f is surjective.

(c) Let us consider the example X =Y = SpecC and S = SpecR. Show that
X X5 Y = Spec(C @ C) and that f is not injective.

(d) Show that in the case of the previous Exercise, with X = Speck(u), Y =
Spec k(v) and S = Speck, the map f has infinite fibers.

(e) Let S = Speck be the spectrum of an arbitrary field. By studying the
example X =Y = A}, show that the image of an open subset under f is not
necessarily an open subset.

Solution:

(a) By definition of the fiber product of scheme we have two morphism A; :
X xgY = X and Ay : X XgY — Y such that diagram

X xgY 2 X

[

y —2 4 9
is commutative. Then we define

fisp(X xY) — sp(X) Xgps)sp(Y)
z = (M(2), Aa(2)).

(b) Let (z,y) € sp(X) xgp(s)sp(Y') we want to show that there exist z € sp(X xg
Y) such that f(z) = (x,y). Let us denote by k(x),k(y) the residue field
of x,y respectively. Since (x,y) € sp(X) Xgp(s) sp(Y) we have that 7(zx) =
ply) = s € S. Moreover we also get k(s) — k(z) and k(s) — k(y) since
m:X — Sand p:Y — S are morphisms. Since k(x), k(y) D k(s) we get
that k(r) Q) k(y) = k().k(y) the compositum field of k(x) and k(y). We
denote L := k(z)k(y) the compositum of k(z) and k(y). So we get the two
morphisms

fz:SpecL — X fy 1 Spec L =Y,



such that f,((0)) = = and f,((0)) = y. Thus we have the commutative
diagram of scheme

Spec L L x
ook
y —2 5.

Using the the universal property of X xgY there exists a morphism of scheme
fa X fy i Spec L — X xgY such that

is a commutative diagram. Then z := f, x f,((0)) is such that f(2) = (z,v),
indeed

M(2) = Ao fo x f,((0) = £o((0)) = @
and similarly for Ay and y.

Let X =Y = SpecC and S = SpecR. To show that X xgY = Spec(C & C)
it is enough to show that C g C = C @ C. An explicit isomorphism is given
for example by

CorC — CeC

z@w +— (z-w,z-W).

Then f is not injective since [sp(SpecC) Xgpspecr) SP(Spec C)| = 1 while
|sp(Spec C Xgpecr Spec C)| = 2.

We have that sp(Spec(k(u))) Xsp(specr) sp(Spec(k(v))) = {((0), (0)}, thus
F71((0),(0)) = Spec A. On the other hand |Spec A| = oo thanks to part
(d) of the previous exercise.

Since f is surjective it is enough to show that the image of a closed subset
under f is not necessarily closed. Let X =Y = A}, then we know that
A} xy Aj = A? with respect to the Zarisky topoly. On the other hand
the topology in sp(A}) Xsp(speck) SP(A}) is the product topology, i.e. Z C
SP(A}) Xspspeck) SP(A}) 1s closed if and only if Z = V(1) Xgp(speck) V (J),
where I, J C k[X] are ideals. Consider g = X + Y. Then we have that

fV((9) = {((X +a)(X —a)) - a € k} U{((0)(0))}
which is not of the for V(1) Xgpspeck) V(J). Thus g(V((g)) is not closed.



5. Let C be a category and X € Ob(C), one defines

5 C = (Sets)
XY Hom(Y, X)

(a) Show that hy is a controvariant functor.

(b) Show that any morphism f : X; — X5 induces a morphism of functors
h f: h X, —7 h X -

(c) Conversely, let ¢ : hx, — hx, be a morphism of functors. There is an unique
f Xy — Xy such that ¢ = hy.
Solution: This result is called Yoneda Lemma. You can find a proof of this
in Szamuely’s book ” Galois Groups and Fundamental Groups”, pp. 20, 21.

6. Let S be a scheme and consider the category C = (Schemes over S)

(a) If X — S is a scheme over S such that
hx : T — Homg (T, X) = X(T)
is a functor to groups then X has a structure of S-group scheme.
(b) Consider G,, := Spec(Z[X, X~]). Prove that
G (T) = Or(T)"

for any scheme T" and conclude that G,, is a group scheme. Moreover, describe
the morphism of rings corresponding to the multiplication

m: Gy, x G, = Gy,

Solution:

(a) We need to check the axioms of S-group scheme, i.e. we need tgo define three
maps
m: XxgX—=>X, e:§5—=X i:X—X,

subject to the commutative diagrams

Idxe

X xg X xg X 2™ x o X X X xg X
lmxld lm leXNIdJ lm
X xg X —2 X, X xg X —™ 5 X.



and A
X Idxz X X g X

X xgX —™ 3 X,

where p : X — S is the structure morphism. We start defining the map m.
For any S-scheme T, we know that X (7') is a group. Thus, we consider the
multiplication map, p(7"), over X (T):

w(T) : X(T) x X(T) = X(T).

On the other hand, for any S-scheme T one has that X(7T) x X(T) =
(X xg X)(T) (Remark 1.6 page 81 in Liu’s book ” Algebraic Geometry and
Arithmetic Curves”), thus for any S-scheme T we have a map

u(T) : (X x5 X)(T) = X(T).

Let us check that these maps define a functor p : hxxx — hx. Let T,T" be
S-schemes and ¢ : T'— T" a S-morphism, then we have the diagram

(X x5 X)(T') = X(T") x X(T") “2% x(17)
thxX(t) lhx(t)
(X x5 X)(T) = X(T) x X(T) 2 X(T),

which is commutative since hy is a functor to groups. Thanks to part (c)
of the previous exercise, there exists an unique m : X xg X — X such that
h., = p. note that one can also define m using the fiber product:

XxgX 5 X

P

X —— 8.

To define 7, one argue as before using the fact that for any S-scheme T', we
have an inversion map

u(T): X(T) — X(T).
Let us conclude defining e. One can see idg : S — S as an S-scheme. Then
we define e as the zero element in Homg(S, X). To verify that the maps m, i, e
satisfy the commutative diagrams is just a computation involving part (b), (c)
of the previous exercise and the universal property of the fiber product.

(b) We have that
G, (T) = Hom(T, Spec(Z[X, X '])) = Hom(Z[X, X '], Ox(T)) = O¢(T)*,
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where the second step follows from the fact that G,, is an affine scheme.
Hence, G,,(T') is a group for any scheme 7. Let us check that hg,, sends
morphisms to group homomorphism: let T',7" be schemes and ¢t : T' — T" a
morphism, and denote by t* : Op/(T") — O7(T). Then we have the map

Gn(T") — G,(T)
P —  ot.

Using again the fact that G,,(T") = Hom(Z[X, X !], O (T")) and that G,,,(T) =
Hom(Z[X, X '], 07(T)), we can rewrite hg,, (t) as

th (t) .

hee (1) - Hom(Z[X, X 1], 0r/(T")) — Hom(Z[X, X', Or(T))
Gn(t) : X =z — X = ti(z),

ie. hg, (t) =t : O7(T") — OF(T). Thus, hg,,(t) is a group homo-

lox, )
T/
morpism and we can conclude that G,, is a group scheme thanks to part (a).
Let us describe m. First of all, observe that

G X G, = Spec(Z[X1, X, ® Z[ Xy, X5')).
Thus, we need to describe

m?: Z[X, X7 = Z[X, XY @ Z[Xs, X571
Let us consider the commutative diagram

Idx
G,, ——— G, X G,

GmXGm— >G}m

From this diagram we get the following commutative diagram

ZIX, X7 —™ s 7(X,, X7 © Z[ Xy, X5

Id
lmﬁ \ ll(h el 5

21Xy, X{Y @ Z[X,, X771 — 9222 3 g0x, x]

aX, e (bX;) = bfori=1,2. Thus,

where for any a,b € Z one has 1d;(aX;) =
= X. On the other hand, we have that

(Id; ® €8)(m*™)) = (Idy @ ef) (m#(X))

1

mi(X) = ) ai(Xi® X))

ij=—1



thus we get a0 + aop +a—10 = 0 = ao1 + ago + ao,—1, G0+ a11 + @11 =
1= ap1t+ a1 +a_1; and a_1,-1+ta_1p0+a_11= 0= a_1,-1+ag_1+a_1.
Looking at the other diagram

Idxi
G, ——— G,, x Gy,

lN |

G X G, —2— G,

one gets the relations a1 1 =a_11 =0, app+aig+a_1,-1 =1, a190+ap_1 =
a—_10+ap; = 0. Putting all the conditions together we get that a;; = 0 and
a;; = 0 for (i,7) # (1,1). Thus m#(X) = X; ® X, and this concludes the

exercise.



