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Schemes

1. Double Points. Let k be a field and Y ↪→ A2
k be a closed subscheme with image

containing the origin (0, 0) in A2
k and such that OY (Y ) ∼= k[ε]/(ε2). Denote by

ϕ : k[x, y] → OY (Y ) the surjection defining the inclusion Y ↪→ A2. Prove that
the kernel of ϕ contains a non-zero element αx + βy for some α, β ∈ k. Write
Xα,β := Spec(k[x, y]/ ker(ϕ)) and show that Xα,β can also be characterized as the
composition of the natural morphism Spec(k[ε]/(ε2))→ Spec(k[ε]) ∼= A1

k with the
inclusion of the line A1

k ↪→ A2
k given by x 7→ (βx,−αx).

Solution: You find this solution in the Book of Eisenbud and Harris, Examples
II.9, II.10.

2. Let k be an algebraically closed field and let Z := Spec(k[X1, . . . , Xn]/I) ⊂
An
k be a closed subscheme of dimension 0 supported at the origin (i.e.

√
I =

(X1, ..., Xn)). Furthermore, suppose that k[X1, . . . , Xn]/I is a 3-dimensional k-
vector space. Prove that Z is isomorphic to either A := Spec(k[X]/(X3)) or to
B := Spec(k[X, Y ]/(X2, XY, Y 2)) and that A and B are not isomorphic to each
other.

Solution: Let us start proving that A and B are not isomorphic. To show this it
is enough to prove that k[X]/(X3) and k[X, Y ]/(X2, XY, Y 2) are not isomorphic
as rings. Let ϕ : k[X]/(X3) → k[X, Y ]/(X2, XY, Y 2) be any ring homomor-
phism from k[X]/(X3) to k[X, Y ]/(X2, XY, Y 2). Then ϕ(X2) = ϕ(X)2 = 0. On
the other hand X2 6= 0 in A, thus Ker(ϕ) 6= 0. It follows that k[X]/(X3) and
k[X, Y ]/(X2, XY, Y 2) can not be isomorphic since any homorphism from from
k[X]/(X3) to k[X, Y ]/(X2, XY, Y 2) is not injective.

Let us prove the other part of the Exercise. in the following, xi denotes the imagine
of Xi in k[X1, . . . , Xn]/I. Since

√
I = (X1, ..., Xn), then Spec(k[X1, . . . , Xn]/I) =

{m} where m is the reduction of (X1, ..., Xn) modulo I. Moreover we have that

k[X1, . . . , Xn]/I = k ⊕m

thus dimk(m) = 2. We claim that m3 = 0. Let us consider the chain

m ⊃ m2 ⊃ m3.

Then m ) m2, otherwise by Nakayama’s Lemma m = 0. Thus dimk(m
2) 6 1 If

dimk(m
2) = 0 we have done, otherwise m2 ) m3 (again thanks to Nakayama’sd

Lemma) and then m3 = 0. Now we have to distinguish to situation
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i) m2 = 0. In this case we have that m = spank{x1, ..., xn}. Because dimk(m) =
2, without loss generalities we may assume that span{x1, x2}. On the other
hand m2 = 0 implies that x21 = x1x2 = x22 = 0. Hence the map

k[X, Y ]/(X2, Y 2, XY ) → k[X1, ..., Xn]/I
X 7→ x1
Y 7→ x2,

is a ring isomorphism and so Z ∼= B.

ii) m2 6= 0. We claim that there exists i ∈ {1, ..., n} such that x2i 6= 0. By
contradiction assume this is not the case. Let xi, xj with i 6= j such that
xixj 6= 0 (we know that there exists at least one of these pairs because m2 6= 0
and we are assuming x2i = 0 for any i = 1, ..., n). Then spank{xi, xixj} = m:
let α, β ∈ k such that

αxi + βxixj = 0,

then
xi(α + βxixj) = 0.

This implies α = 0, otherwise α + βxixj is invertible in k[X1, . . . , Xn]/I
and so xi = 0 and this is not possible since we are assuming xixj = 0.
On the other hand α = 0 implies β = 0 again because xixj 6= 0. Then
dim(spank{xi, xixj}) = 2 and so spank{xi, xixj} = m. In particular there
exist α, β ∈ k such that

xj = αxi + βxixj.

Multiplying both sides by xj we get

x2j = αxixj + βxix
2
j ,

thus αxixj = 0 which implies α = 0. So we have

xj = βxixj.

implies xj(1−βxi) = 0. On the other hand 1−βxi is invertible in k[X1, . . . , Xn]/I,
thus xj = 0 and then xixj = 0 and this is absurd since we are assum-
ing xixj 6= 0. Hence, without loss of generality we may assume that x1 is
such that x21 6= 0. Then spank{x1, x21} = m: indeed if x21 = λx1 for some
λ ∈ k× then x31 = λ2x1 6= 0 since x1 6= 0. On the other hand x31 ∈ m3 = 0
and this leads to a contradiction. Thus x21 6= 0 and x21 /∈ spank{x1}, i.e.
spank{x1, x21} = m. Hence the map

k[X]/(X3) → k[X1, ..., Xn]/I
X 7→ x1

is a ring isomorphism and so Z ∼= A.
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Let us consider V = span{x1, ..., xn}, we have two possibilities:

i) dimk(V ) = 2. With out loss of generalities we may assume V = span{x1, x2}.
Then k[X1, . . . , Xn]/I = span{1, x1, x2}

ii) dimk(V ) = 1

3. Let X := A2
C r {0} ⊂ A2

C. Prove:

(a) The restriction map OA2
C
(A2

C)→ OX(X) is an isomorphism.

(b) The scheme X is not an affine scheme.

Solution:

(a) We compute Γ(A2
C r {0},OA2

C
). Since

A2
C r {0} = A2

C,X ∪ A2
C,Y

where

A2
C,X := A2

C r {p : (X) ⊂ p}, A2
C,Y := A2

C r {p : (Y ) ⊂ p},

we have that Γ(A2
C r {0},OA2

C
) is the kernel of the map

Γ(A2
C,X ,OA2

C
)⊕ Γ(A2

C,Y ,OA2
C
) → Γ(A2

C,XY ,OA2
C
)

(s, t) 7→ s|A2C,XY

− t|A2C,XY

,

where A2
C,XY = A2

C,X ∩ A2
C,Y . Let s ∈ Γ(A2

C,X ,OA2
C
) and t ∈ Γ(A2

C,Y ,OA2
C
),

since Γ(A2
C,X ,OA2

C
) = k[X, Y ]X , Γ(A2

C,Y ,OA2
C
) = k[X, Y ]Y there exist two

polynomial f, g ∈ k[X, Y ] such that X - f , Y - g and s = f
Xm , g = t

Y n

for some m,n > 0. On the other hand Γ(A2
C,XY ,OA2

C
) = k[X, Y ]XY , thus

s|A2C,XY

− t|A2C,XY

= 0 if and only if

f · Y n = g ·Xm,

and this is possible if and only if n = m = 0 and f = g. Hence Γ(A2
C r

{0},OA2
C
) = k[X, Y ].

(b) By contradiction, assume A2
C r {0} affine scheme, then

A2
C r {0} = Spec(Γ(A2

C r {0},OA2
C
)) = Spec(k[X, Y ]) = A2

C,

and this is absurd.
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4. In the following if X is a scheme we denote by sp(X) the underlying topological
space of X. Let S be a scheme and π : X → S, ρ : Y → S be S-schemes.
Let sp(X) ×sp(S) sp(Y ) be the fiber product of sets defined by π and ρ, endowed
with the topology induced by the product topology on sp(X) × sp(Y ). We are
going to study some property concerning the relation between sp(X × Y ) and
sp(X)×sp(S) sp(Y ).

(a) Show that we have a canonical map f : sp(X ×S Y )→ sp(X)×sp(S) sp(Y ).

(b) Show that f is surjective.

(c) Let us consider the example X = Y = SpecC and S = SpecR. Show that
X ×S Y ∼= Spec(C⊕ C) and that f is not injective.

(d) Show that in the case of the previous Exercise, with X = Spec k(u), Y =
Spec k(v) and S = Spec k, the map f has infinite fibers.

(e) Let S = Spec k be the spectrum of an arbitrary field. By studying the
example X = Y = A1

k, show that the image of an open subset under f is not
necessarily an open subset.

Solution:

(a) By definition of the fiber product of scheme we have two morphism λ1 :
X ×S Y → X and λ2 : X ×S Y → Y such that diagram

X ×S Y X

Y S

λ1

λ2 π

ρ

is commutative. Then we define

f : sp(X × Y ) → sp(X)×sp(S) sp(Y )
z 7→ (λ1(z), λ2(z)).

(b) Let (x, y) ∈ sp(X)×sp(S) sp(Y ) we want to show that there exist z ∈ sp(X×S
Y ) such that f(z) = (x, y). Let us denote by k(x), k(y) the residue field
of x, y respectively. Since (x, y) ∈ sp(X) ×sp(S) sp(Y ) we have that π(x) =
ρ(y) = s ∈ S. Moreover we also get k(s) ↪→ k(x) and k(s) ↪→ k(y) since
π : X → S and ρ : Y → S are morphisms. Since k(x), k(y) ⊃ k(s) we get
that k(x) ⊗k(s) k(y) = k(x).k(y) the compositum field of k(x) and k(y). We
denote L := k(x)k(y) the compositum of k(x) and k(y). So we get the two
morphisms

fx : SpecL→ X fy : SpecL→ Y,
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such that fx((0)) = x and fy((0)) = y. Thus we have the commutative
diagram of scheme

SpecL X

Y S.

fx

fy π

ρ

Using the the universal property of X×SY there exists a morphism of scheme
fx × fy : SpecL→ X ×S Y such that

SpecL

X ×S Y X

Y S

fx

fy

fx×fy
λ1

λ2 π

ρ

is a commutative diagram. Then z := fx× fy((0)) is such that f(z) = (x, y),
indeed

λ1(z) = λ1 ◦ fx × fy((0)) = fx((0)) = x

and similarly for λ2 and y.

(c) Let X = Y = SpecC and S = SpecR. To show that X ×S Y ∼= Spec(C⊕C)
it is enough to show that C⊗R C ∼= C⊕C. An explicit isomorphism is given
for example by

C⊗R C → C⊕ C
z ⊗ w 7→ (z · w, z · w).

Then f is not injective since |sp(SpecC) ×sp(SpecR) sp(SpecC)| = 1 while
|sp(SpecC×SpecR SpecC)| = 2.

(d) We have that sp(Spec(k(u))) ×sp(Spec k) sp(Spec(k(v))) = {((0), (0)}, thus
f−1((0), (0)) = SpecA. On the other hand | SpecA| = ∞ thanks to part
(d) of the previous exercise.

(e) Since f is surjective it is enough to show that the image of a closed subset
under f is not necessarily closed. Let X = Y = A1

k, then we know that
A1
k ×k A1

k = A2
k with respect to the Zarisky topoly. On the other hand

the topology in sp(A1
k) ×sp(Spec k) sp(A1

k) is the product topology, i.e. Z ⊂
sp(A1

k) ×sp(Spec k) sp(A1
k) is closed if and only if Z = V (I) ×sp(Spec k) V (J),

where I, J ⊂ k[X] are ideals. Consider g = X + Y . Then we have that

f(V ((g))) = {((X + a)(X − a)) : a ∈ k} ∪ {((0)(0))}

which is not of the for V (I)×sp(Spec k) V (J). Thus g(V ((g)) is not closed.
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5. Let C be a category and X ∈ Ob(C), one defines

hX :
C → (Sets)
Y 7→ Hom(Y,X)

.

(a) Show that hX is a controvariant functor.

(b) Show that any morphism f : X1 → X2 induces a morphism of functors

hf : hX1 → hX2 .

(c) Conversely, let ϕ : hX1 → hX2 be a morphism of functors. There is an unique
f : X1 → X2 such that ϕ = hf .

Solution: This result is called Yoneda Lemma. You can find a proof of this
in Szamuely’s book ”Galois Groups and Fundamental Groups”, pp. 20, 21.

6. Let S be a scheme and consider the category C = (Schemes over S)

(a) If X → S is a scheme over S such that

hX : T → HomS(T,X) = X(T )

is a functor to groups then X has a structure of S-group scheme.

(b) Consider Gm := Spec(Z[X,X−1]). Prove that

Gm(T ) = OT (T )×

for any scheme T and conclude that Gm is a group scheme. Moreover, describe
the morphism of rings corresponding to the multiplication

m : Gm ×Gm → Gm.

Solution:

(a) We need to check the axioms of S-group scheme, i.e. we need tgo define three
maps

m : X ×S X → X, e : S → X, i : X → X,

subject to the commutative diagrams

X ×S X ×S X X ×S X

X ×S X X.

Id×m

m×Id m

m

X X ×S X

X ×S X X.

Id×e

e×Id Id
m

m
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and

X X ×S X

X ×S X X,

Id×i

i×Id
e◦p

m

m

where p : X → S is the structure morphism. We start defining the map m.
For any S-scheme T , we know that X(T ) is a group. Thus, we consider the
multiplication map, µ(T ), over X(T ):

µ(T ) : X(T )×X(T )→ X(T ).

On the other hand, for any S-scheme T one has that X(T ) × X(T ) =
(X ×S X)(T ) (Remark 1.6 page 81 in Liu’s book ”Algebraic Geometry and
Arithmetic Curves”), thus for any S-scheme T we have a map

µ(T ) : (X ×S X)(T )→ X(T ).

Let us check that these maps define a functor µ : hX×X → hX . Let T, T ′ be
S-schemes and t : T → T ′ a S-morphism, then we have the diagram

(X ×S X)(T ′) = X(T ′)×X(T ′) X(T ′)

(X ×S X)(T ) = X(T )×X(T ) X(T ),

µ(T ′)

hX×X(t) hX(t)

µ(T )

which is commutative since hX is a functor to groups. Thanks to part (c)
of the previous exercise, there exists an unique m : X ×S X → X such that
hm = µ. note that one can also define m using the fiber product:

X ×S X X

X S.

m

m p

p

To define i, one argue as before using the fact that for any S-scheme T , we
have an inversion map

ι(T ) : X(T )→ X(T ).

Let us conclude defining e. One can see idS : S → S as an S-scheme. Then
we define e as the zero element in HomS(S,X). To verify that the maps m, i, e
satisfy the commutative diagrams is just a computation involving part (b), (c)
of the previous exercise and the universal property of the fiber product.

(b) We have that

Gm(T ) = Hom(T, Spec(Z[X,X−1])) = Hom(Z[X,X−1],OT (T )) = OT (T )×,
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where the second step follows from the fact that Gm is an affine scheme.
Hence, Gm(T ) is a group for any scheme T . Let us check that hGm sends
morphisms to group homomorphism: let T, T ′ be schemes and t : T → T ′ a
morphism, and denote by t] : OT ′(T ′)→ OT (T ). Then we have the map

hGm(t) :
Gm(T ′) → Gm(T )
ψ 7→ ψ ◦ t.

Using again the fact that Gm(T ′) = Hom(Z[X,X−1],OT ′(T ′)) and that Gm(T ) =
Hom(Z[X,X−1],OT (T )), we can rewrite hGm(t) as

hGm(t) :
Hom(Z[X,X−1],OT ′(T ′)) → Hom(Z[X,X−1],OT (T ))

X 7→ x 7→ X 7→ t](x),

i.e. hGm(t) = t]|O×
T ′

(T ′)
: O×T ′(T ′) → O

×
T (T ). Thus, hGm(t) is a group homo-

morpism and we can conclude that Gm is a group scheme thanks to part (a).
Let us describe m. First of all, observe that

Gm ×Gm = Spec(Z[X1, X
−1
1 ]⊗ Z[X2, X

−1
2 ]).

Thus, we need to describe

m] : Z[X,X−1]→ Z[X1, X
−1
1 ]⊗ Z[X2, X

−1
2 ].

Let us consider the commutative diagram

Gm Gm ×Gm

Gm ×Gm Gm

Id×e

e×Id Id
m

m

.

From this diagram we get the following commutative diagram

Z[X,X−1] Z[X1, X
−1
1 ]⊗ Z[X2, X

−1
2 ]

Z[X1, X
−1
1 ]⊗ Z[X2, X

−1
2 ] Z[X,X−1]

m]

m] Id
Id1⊗e]

Id2⊗e]

,

where for any a, b ∈ Z one has Idi(aXi) = aX, e](bXi) = b for i = 1, 2. Thus,
(Id1⊗ e])(m](X)) = (Id2⊗ e])(m](X)) = X. On the other hand, we have that

m](X) =
1∑

i,j=−1

ai,j(X
i
1 ⊗X

j
2)
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thus we get a1,0 + a0,0 + a−1,0 = 0 = a0,1 + a0,0 + a0,−1, a1,0 + a1,1 + a1,−1 =
1 = a0,1 + a1,1 + a−1,1 and a−1,−1 + a−1,0 + a−1,1 = 0 = a−1,−1 + a0,−1 + a1,−1.
Looking at the other diagram

Gm Gm ×Gm

Gm ×Gm Gm,

Id×i

i×Id
e◦p

m

m

one gets the relations a1,−1 = a−1,1 = 0, a0,0 +a1,1 +a−1,−1 = 1, a1,0 +a0,−1 =
a−1,0 + a0,1 = 0. Putting all the conditions together we get that a1,1 = 0 and
ai,j = 0 for (i, j) 6= (1, 1). Thus m](X) = X1 ⊗ X2 and this concludes the
exercise.

9


