
REPRESENTATION THEORY OF LIE GROUPS EXERCISES

Exercise 1. Let G be a finite group. Deduce from the Peter–Weyl theorem that

#G =
∑

(dimV )2,

with the sum taken over the isomorphism classes of finite-dimensional irreducible represen-
tations of G.

Solution 1. Peter–Weyl says that the characters of the irreducible representations π give
an orthonormal basis for the space of class functions f , thus ‖f‖2=

∑
π|〈f, χπ〉|2. Taking

f(g) = 1 if g = e and 0 otherwise gives ‖f‖2= 1/#G and 〈f, χπ〉 = χπ(1)/#G = dim(π)/#G.
Summing over π gives what we want.

Alternatively, use the decomposition of the coefficient ring A(G) as the direct sum of A(π)
over irreducibles π, use that A(π) ∼= End(π)∗, and compare dimensions: dimA(G) = #G,
while dim End(π)∗ = (dimπ)2.

Exercise 2. Let G1, G2 be compact groups. For j = 1, 2, let πj be a finite-dimensional
representation of Gj. The external tensor product π1 � π2 is the representation of G1 × G2

defined by (g1, g2)(v1 ⊗ v2) := g1v1 ⊗ g2v2. Compute χπ1�π2 in terms of χπ1 and χπ2. Show
that the map

(π1, π2) 7→ π1 � π2

induces a bijection between Irr(G1)× Irr(G2) and Irr(G1×G2); here, as usual, we denote by
Irr(G) the set of isomorphism classes of irreducible finite-dimensional representations of a
compact group G.

Solution 2. Let {ui}i and {vj} be two ONBs of π1 and π2, respectively. So that, {ui⊗vj}i,j
is an ONB of π1 � π2. Hence,

χπ1�π2(g1, g2) =
∑
i,j

〈π1 � π2(g1, g2)ui ⊗ vj, ui ⊗ vj〉π1�π2

=
∑
i,j

〈π1(g1)ui, ui〉π1〈π2(g2)vj, vj〉π2

= χπ1(g1)χπ2(g2).

First we show that the map is well-defined, that is, π1 � π2 is irreducible, if π1 and π2 are.
To check that we use the irreducibly criteria of the character that it is a unit in L2. Indeed,

‖χπ1�π2‖L2(G1×G2)= ‖χπ1‖L2(G1)‖χπ2‖L2(G2)= 1.
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Next, to check injectivity, let π1 � π2
∼= π′1 � π′2, so that

χπ1(g1)χπ2(g2) = χπ′1(g1)χπ′2(g2), ∀gi ∈ Gi.

Choosing g2 = 1 we get χπ1 = cχπ′1 . From irreducibility of πi one gets that c = 1, hence
π1
∼= π2. Similarly, π2

∼= π′2.
Finally, to check surjectivity we invoke Peter-Weyl. Let π be an irreducible representation

of G1 ×G2 which is not isomorphic to any π1 � π2 for πi ∈ Irr(Gi). So

χπ ⊥ χπ1�π2 , ∀πi ∈ Irr(Gi).

But {χπi}πi∈Irr(Gi) is an ONB of L2(Gi), so that, {χπ1χπ2} is an ONB of L2(G1 × G2). But
then, χπ ⊥ L2(G1 ×G2), which is a contradiction.

Exercise 3. For n ≥ 1, let V be the regular representation of Z/nZ, thus V consists of
functions f : Z/nZ→ C. Define a linear map T : V → V by

Tf(x) :=
f(x− 1) + f(x+ 1)

2
.

Define f0 ∈ V by

f0(x) :=

{
1 if x = 0,

0 otherwise.

Define fk inductively by fk+1 := Tfk.

(1) Verify that T is equivariant.
(2) Decompose V as a sum of inequivalent irreducible invariant subspaces W , and com-

pute the eigenvalue of T on each W .
(3) Suppose that n is odd. Show that there exist positive constants C, c (not depending

upon n or k) so that∑
x∈Z/nZ

|fk(x)− 1/n|2≤ Cn2 exp(−ck/n2).

Thus, informally, fk is rather uniform for k a bit larger than n2. [Hint: write the
LHS in terms of the eigenvalues of T on the nontrivial W .]

(4) What happens if n is even?

Solution 3. (1) We compute

T ◦ π(y)f(x) =
π(y)f(x− 1) + π(y)f(x+ 1)

2

=
f(x+ y − 1) + f(x+ y − 1)

2
= Tf(x+ y) = π(y) ◦ Tf(x).

Hence T is equivariant.
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(2) As the group is abelian the irreducible representations are one dimensional. We claim
that {ek}k∈Z/nZ are all possible characters, where ek(x) := e2πixk/n. Consequently,

V = ⊕k∈Z/nZCek.
The claim follows from the fact that the characters are inequivalent and by the Fourier
inversion formula any f ∈ L2(Z/nZ) can be written as

f(x) =
∑
l∈Z/nZ

f̂(l)el(x),

where the Fourier transform is as defined in the lecture.
Finally, we compute the T -eigenvalues:

Tel(x) =
el(x− 1) + el(x+ 1)

2
= el(x) cos(2lπ/n).

(3) Let us start by writing f0 in its Fourier expansion as

f0(x) =
1

n

∑
x∈Z/nZ

f̂(l)el(x) =
1

n

∑
l∈Z/nZ

el(x).

Thus from (2),

fk(x) = T kf0(x) =
1

n

∑
l∈Z/nZ

cosk(2πl/n)el(x).

Hence using that for n odd

|cos(2πl/n)|≤ 1− c/n2 ≤ exp(−c/n2),

for some positive constant c. Thus

∑
x∈Z/nZ

|fk(x)− 1/n|2 =
1

n2

∑
x∈Z/nZ

∣∣∣∣∣∣
∑

0 6=l∈Z/nZ

cosk(2πl/n)el(x)

∣∣∣∣∣∣
2

≤ n(n− 1)2)

n2
exp(−ck/n2),

by Cauchy-Schwarz and trivially bounding all the characters.

Exercise 4. For the representations Symk(Cn) and
∧k(Cn) of U(n), describe the weights,

determine the lexicographically highest weight, and use the Weyl character formula to prove
that these representations are irreducible.

Solution 4. We work out the
∧k(Cn) case, Symk(Cn) would be similar (also done as a

sketch in the notes). We recall that

χ∧k(Cn)(t) =
∑

i1<···<ik

ti1 . . . tik .
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Thus the highest weight is λ := (1, . . . , 1). Thus the dimension of the irreducible sub-
representation Vλ attached to the highest weight, by the Weyl dimension formula, is

k∏
i=1

n∏
j=k+1

1 + j − i
j − i

=

(
n

k

)
= dim(

k∧
(Cn).

Thus
∧k(Cn) = Vλ hence the claim follows.

Exercise 5. Use the Weyl character formula to describe the decomposition into irreducibles
of the representations Symk1(C2)⊗ Symk2(C2) of U(2).

Solution 5. We know the character of Symk(C2) is given by

χk(diag(t1, t2)) =
k∑
i=0

ti1t
k−i
2 =

tk+1
1 − tk+1

2

t1 − t2
.

Let WOLG k1 ≤ k2. Hence for characters χki of Symki(C2) we get

χk1(t)χk2(t) =
tk2+1
1 − tk2+1

2

t1 − t2

k1∑
i=0

ti1t
k1−i
2

=

k1∑
i=0

tk2+1+i
1 tk1−i2 − tk1−i1 tk2+1+i

2

t1 − t2
=

k1∑
i=0

(t1t2)k1−i
tk2+1−k1+2i
1 − tk2+1−k1+2i

2

t1 − t2
= χk1+k2(t) + t1t2χk1+k2−2(t) + (t1t2)2χk1+k2−4(t) . . . .

Thus

Symk1(C2)⊗ Symk2(C2) =

min(k1,k2)⊕
l=0

(det)i ⊗ Symk1+k2−2i(C2).

It is easy to check (by Irreducibility criteria) that the representations in the summands are
irreducible.

Exercise 6. For 0 ≤ k ≤ n, establish the existence of the following isomorphism of repre-
sentations of U(n):

k∧
(Cn) ∼=

n−k∧
(Cn)∗ ⊗ det .

Solution 6. We check by the equality of the characters in the both sides.

χ∧k(Cn)(t) =
∑

i1<···<ik

ti1 . . . tik ,

and
χ∧n−k(Cn)∗(t) =

∑
i1<···<in−k

t−1
i1
. . . t−1

in−k
.

The claim follows immediately from det(g) =
∏

i ti.
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Exercise 7. Recall that SU(n) = ker(det : G → U(1)). Let Z ∼= U(1) denote the center of
U(n), and set PU(n) := U(n)/Z. Let µn ⊆ Z denote the subgroup of nth roots of unity, so
that µn = Z ∩ SU(n). Observe that

• given a representation of PU(n), we obtain a representation of U(n) by pullback, i.e.,
by composing with the projection U(n) � PU(n), and
• given a representation of U(n), we obtain a representation of SU(n) by restriction,

i.e., by composing with the inclusion SU(n)→ U(n).

Show that the operations of pullback and restriction just described preserve irreducibility,
inducing an injective map

Irr(PU(n)) ↪→ Irr(U(n))

and a surjective map

Irr(U(n)) � Irr(SU(n)).

Show that the latter maps and the bijection Irr(U(n)) ↔ {dominant elements of Zn} as in
the Weyl character formula are compatible with bijections

Irr(SU(n))↔ {dominant elements of Zn/Z(1, . . . , 1)}
and

Irr(PU(n))↔ {dominant elements of (Zn)0 := {λ ∈ Zn :
∑
j

λj = 0}}.

Solution 7. Let πi ∈ Irr(PU(n)) for i = 1, 2 such that π̃1
∼= π̃2 where π̃i is the represen-

tation of U(n) obtained by pulling back. Thus, χπ̃1 = χπ̃2 on U(n), hence equal on PU(n).
Consequently, π1

∼= π2. If π is irreducible then ‖χπ‖L2(PU(n))= 1. Note that, by definition
of the pull back map the center Z acts trivially on π̃. Thus χπ̃(zg) = χπ̃(g). We calculate
under a probability Haar measure of U(n)∫

U(n)

|χπ̃(g)|2=

∫
Z

∫
PU(n)

|χπ̃(zg)|2=
1

vol(PU(n))

∫
PU(n)

|χπ(g)|2 1

vol(Z)

∫
Z

1 = 1.

Thus π̃ is irreducible.
Let π be a representation of U(n) with π̄ corresponding restriction representation of

SU(n). We check irreducibility in a similar way as previous. Let π be irreducible, so that
‖χπ‖L2(U(n))= 1. Note that, for α ∈ U(1) = U(n)/SU(n) we have χπ(αg) = χ(det(α))χπ(g),
for some unitary character χ of U(1). Obviously, χπ̄(g) = χπ(g) for g ∈ SU(n). Thus under
a probability Haar measure of U(n)∫

U(n)

|χπ(g)|2=

∫
U(1)

∫
SU(n)

|χπ(αg)|2=

∫
SU(n)

|χπ̄(g)|2
∫

U(1)

|χ(det(α))|2=
1

vol(SU(n))

∫
SU(n)

|χπ̄(g)|2.

Thus π̄ is irreducible. To check surjectivity let π ∈ Irr(SU(n)). We define π̃ ∈ Irr(U(n)) by

π̃(g) = det(g)π(g/(det(g)1/n).

Clearly, ¯̃π = π. Irreducibility follows from the previous computation.
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Let π ∈ Irr(SU(n)). We construct π̃ ∈ Irr(U(n)), as previous, so that π̃ restricts on SU(n)
as π. Let λ ∈ Zn is such that χπ̃ = sλ. For t ∈ T ∩ SU(n), so that det(t) = 1, we get ∀k ∈ Z

χπ(t) = sλ(t) = sλ−(k,...,k).

Thus π|SU(n) corresponds to λ+ Z(1, . . . , 1), hence the correspondence is compatible.
Similarly, if π ∈ Irr(PU(n)), we pull back π to π̃ ∈ Irr(U(n)). Let λ ∈ Zn so that χπ̃ = sλ.

As ∀z ∈ Z we have χπ̃(zg) = χπ̃(g), we obtain

z
∑

i λisλ(t) = sλ(zt) = sλ(t), ∀t ∈ T.

Thus
∑
λi = 0, i.e., the correspondence is compatible.

Exercise 8. (Knapp, Exercise 11.4) Fix n ≥ 2. For nonnegative integers p, q, let Vp,q denote
the space of polynomials f ∈ C[z1, . . . , zn, z1, . . . , zn] that are bihomogeneous of degree (p, q)
with respect to the zi’s and the zj’s, that is to say,

Vp,q := ⊕i1≤···≤ip
j1≤···≤jq

Czi1 · · · zipzj1 · · · zjq .

We may identify Vp,q with a space of functions f : Cn → C given by polynomials in the real
and imaginary parts of the argument. Regarding Cn as the space of row vectors (z1, . . . , zn),
the group SU(n) acts on Vp,q by the rule g · f(z) := f(zg).

(1) Verify that Vp,q actually defines a representation of SU(n).
(2) Write down a natural isomorphism

(0.1) Vp,q ∼= Symp(Cn)⊗ Symq((Cn)∗).

Determine the weights of Vp,q.
(3) Show that the Laplacian ∆ :=

∑
j

∂
∂zj

∂
∂zj

defines a equivariant surjection ∆ : Vp,q →
Vp−1,q−1.

(4) Let Hp,q ≤ Vp,q denote the space of harmonic polynomials, i.e., the kernel of ∆.
Show that Hp,q is an invariant subspace. Compute its dimension and lexicographically
highest weight. Show that it is irreducible.

(5) Show that every irreducible representation of SU(n) is isomorphic to some Hp,q if and
only if n ≤ 3.

Solution 8. (1) This is clear if we check that if f is a monomial of degree (p, q) then
f(zg) is a bihomogeneous polynomial of degree (p, q). Let f =

∏n
i=1 z

si
i z̄

ti
i with∑

i si = p and
∑
ti = q. Then

f(zg) =
n∏
i=1

(
∑
j

gijzj)
si(
∑
j

gijzj)
ti .

Each factor is bihomogeneous of degree (k, l), so is f(zg).
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(2) Let {ei} and {e∗i } be the standard basis of Cn and C∗n. The idea is to “map zi to
ei”. Choose the standard basis in Vp,q to be

{
n∏
i=1

zsii z̄
ti
i |
∑
i

si = p,
∑

ti = q}.

We claim that
n∏
i=1

zsii z̄
ti
i 7→ ⊗ni=1e

⊗si
i e∗⊗tii

is SU(n)-equivariant. We note that, as g ∈ SU(n) we have g−t = ḡ, so that, SU(n)
acts on C∗n by ḡ. Finally we see

n∏
i=1

(
∑
j

gijzj)
si =

∑
gs
∏
i

z
s′i
i 7→

∑
gs ⊗i e

⊗s′i
i = ⊗i(gei)⊗si .

Similarly, we work out the dual action. This proves the natural isomorphism.
We use the isomorphism to calculate the characters. Hence for t ∈ T ∩ SU(n)

χ(t) =

 ∑
i1≤...ip

ti1 . . . tip

 ∑
j1≤...jq

t−1
j1
. . . t−1

jq

 .

Thus the weights form the set

{λ ∈ (Z ∩ [−q, p])n |
∑
i

λi = p− q}/Z(1, . . . , 1).

(3) It is easy to see that ∆ has image in Vp−1,q−1 just by differentiation and surjectivity
follows form “integrating”, and from the fact that differentiation and integration pre-
serve homogeneity. Equivariance can be checked by explicit calculation, as previous.

(4) If f ∈ Hp,q then from the previous part

∆(π(g)f) = π(g)∆(f) = 0.

Hence, Hp,q is invariant.
As Hp,q is the kernel of the surjection Vp,q → Vp−1,q−1. So its dimension is

dim(Vp,q)− dim(Vp−1,q−1) =

(
n+ p− 1

p

)(
n+ q − 1

q

)
−
(
n+ p− 2

p− 1

)(
n+ q − 2

q − 1

)
= (n− 1)(p+ q + n− 1)

(n+ p− 2)! (n+ q − 2)!

p! q! (n− 1)!2
.
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Highest weight is (p, 0, . . . ,−q). Using Weyl character formula we check that the
dimension of the representation attached to the highest weight is

p+ q + n− 1

n− 1

n−1∏
i=2

n− i+ q

n− i

n−1∏
j=2

p− 1 + j

j − 1

= (n− 1)(p+ q + n− 1)
(n+ p− 2)! (n+ q − 2)!

p! q! (n− 1)!2
.

Thus Hp,q is irreducible.
(5) Let π irreducible representation of SU(3) with highest weight of the form (p, q, r)/Z(1, 1, 1)

which is same as (p− q, 0, r− q). Thus π is isomorphic to Hp−q,r−q. Similar happens
for SU(2). Finally if n ≥ 4 then there exists irreducible representation with highest
weight λ/Z(1, 1, 1, 1) with λ2 6= λ3, thus clearly can not be isomorphic to any Hp,q.
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Exercise 9. For a compact group G, prove that any subrepresentation (i.e., closed irreducible
subspace) of the representation of G×G on L2(G) is of the form EΠ := ⊕̂π∈ΠA(π) for some
subset Π of Irr(G). Give an analogous description for subrepresentations of (say) the right
regular representation of G on L2(G).

Solution 9. Let (ρ, V ) ⊆ (ρ0, L
2(G)) be a subrepresentation of G × G. Using an isotypic

decomposition of V (theorem 4.11) we get

V = ⊕̂σ∈Irr(G×G)V [σ],

where V [σ] is the σ isotypic component of V . Thus it is enough to show that if V [σ] 6= 0
then ∃π ∈ Irr(G) such that A(π) = V [σ]. We recall (Lemma 3.3) that A(π) ∼= π � π̃, and
the Peter-Weyl theorem

L2(G) = ⊕̂π∈Irr(G)A(π).

We also recall that π(ατ ) is a projector on the τ -isotypic space for ατ = dim(τ)χτ and
π ∈ Irr(G) (theorem 4.9). Now let σ = π1 � π2. But ρ0(ασ) |A(π)= 0 unless π1 = π and
π2 = π̃, in particular, π2 = π̃1. In other words, L2(G)[σ] = A(π) if σ = π � π̃ and zero
otherwise. But ρ(ασ) = ρ0(ασ) |V , which concludes the proof of the claim.

Exercise 10. Let G be a unimodular locally compact group and π a compact-type unitary
representation of G. Show that

π ∼= ⊕̂πj,
where πj are irreducible and #{k | πj ∼= πk} < ∞, for all j. [A proof is recorded in the
lecture notes at the end of §4, so the homework problem is basically to study and rewrite that
proof.]

Solution 10. First we show that there exists at least one irreducible subspace of π. Let
f ∈ Cc(G) with f(g) = f(g−1), so that π(f) is a self-adjoint, nonzero, compact operator.
Thus by the psectral theory π(f) has an eigenvalue, call λ, with eigenvector v. We consider

the cyclic representation 〈v〉 generated by v. Let 〈v〉 is not irreducible and has a orthogonal

decomposition of the form 〈v〉 = V ⊕ V ⊥ with v = v1 + v′1, where V and its orthogonal
compliment are G-invariant. So they are also π(f) − λ invariant. This implies that v1 and
v′1 are also π(f) eigenvectors with eigenvalue λ. We confirm that none of the vi are zero.

Because otherwise V would lie in a proper subspace of 〈v〉 contrary to the construction.
Thus if Vλ is the λ eigenspace of π(f) then we obtained

Vλ ∩ 〈v1〉 ( Vλ ∩ 〈v〉.
As LHS has a strictly smaller dimension than the RHS and the RHS is a finite dimensional
space after finitely many steps we will obtain a nonzero irreducible subspace.

By Zorn’s lemma we can find a maximal collection of mutually orthogonal collection {πj}
of irreducible subrepresentation. We claim that ⊕πj is dense in π. If not we can take the
orthogonal compliment of the above which would satisfy the same hypothesis without any
irreducible subrepresentation, contradicting the previous argument.
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For πj we choose a self adjoint compact integral operator π(f) having an eigenvector in
πj. if πj ∼= πk then π(f) will have an eigenvector in πk with the same eigenvalue. But the
eigenspaces of π(f) are finite dimensional, which concludes the proof of the claim.

Exercise 11. Let G be a unimodular Lie group, equipped with some Haar measure dg. Let
(π, V ) be a Hilbert representation. Say that v ∈ V is a smooth vector if the map G→ V given
g 7→ gv is smooth (i.e., infinitely differentiable, with the same definition as for scalar-valued
functions). Show that:

(1) For f ∈ C∞c (G), the map G→ L1(G) given by g 7→ [x 7→ f(g−1x)] is smooth.
(2) For each v ∈ V and f ∈ C∞c (G), the vector π(f)v is smooth.
(3) The space of smooth vectors is dense in V .

Solution 11. (1) Let X ∈ g := Lie(G). Then the induced action by X on f is given by

Xf : x 7→ ∂t=0f(exp(−tX)x).

As f is smooth the Xf exists and f being compact supported confirms that Xf ∈
L1(G).

(2) Note that the composed map G → L1(G) → V given by g 7→ f(g−1.) 7→ π(f(g−1.))
is smooth, as the first map is smooth by (1) and the second map is Lipschitz. Now
by differentiating under the integral sign and a change of variable

Xπ(f)v = ∂t=0

∫
G

f(x)π(exp(tX)x)vdg

=

∫
G

∂t=0f(exp(−tX)x)π(x)vdg = π(Xf)v.

The last equality holds from (1) and implies that v is differentiable, hence smooth
by repeating the same argument.

(3) Let ε > 0. Note that for any v ∈ V there exists a neighbourhood U of the identity
such that by the continuity of the representation we can obtain

‖π(u)v − v‖V< ε, ∀u ∈ U.

By C∞ Urysohn’s lemma there exists f ∈ C∞c (U) with ‖f‖1= 1. Then

‖π(f)V − v‖≤
∫
U

|f(g)|‖π(g)v − v‖< ε.

But π(f)v is smooth by (2), hence we conclude.

Exercise 12. Let G be a reductive complex algebraic group, and V a finite-dimensional
vector space. Show that any holomorphic representation G → GL(V ) is algebraic. [You
may use that if Ω is a connected open subset of Cn that intersects Rn, then any holomorphic
function Ω→ C that vanishes on Rn is identically zero.]
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Solution 12. We start by recalling the Caratn decomposition G = K exp(p). Note that if
π is a holomorphic representation of G then for g = k exp(X) we have

π(g) = π(k)π(exp(X)) = π(k) exp(dπ(X)) = π(k) exp(idπ(X/i)),

where dπ is the differentiated representation of Lie(G) which is C-linear if π is holomorphic,
and the second equality follows from the uniqueness of one parameter flow with given velocity.
Now we recall that p = ik, thus X/i ∈ k. In other words, π 7→ π |K is injective. Finally,
we recall that C[G] ∼= A(K), in particular, algebraic representations of G are in bijection
with finite dimensional representation of K (theorem 5.13). As V is finite dimensional there
exists an algebraic representation τ of G such that τ |K= π |K . But the injectivity implies
that π ∼= τ , hence algebraic.

Exercise 13. Let GC be a complex reductive algebraic group, embedded in GLn(C) in such
a way that Θ(GC) = GC. Set G := GC ∩ GLn(R) and K := GC ∩ O(n). The groups G
that arise in this way turn out to be the reductive real algebraic groups. Extend the Cartan
decomposition, as proved in lecture for reductive complex algebraic groups, to the real case,
as follows.

(1) Set k := Lie(K), g := Lie(G) and p := {x ∈ g : xt = x}. Show that g = k ⊕ p and
that the map K × p→ G is a diffeomorphism.

(2) Take p, q ≥ 1 and GC := U(p, q). Show that G = O(p, q) and K = O(p) × O(q).
Describe k, p and the decomposition of g explicitly. Assuming the fact that O(n) has
two connected components, show that G has four connected components. Can you
describe these explicitly?

Solution 13. (1) Let θ := dΘ, so that, θ(Lie(GC)) = Lie(GC). Also g = Lie(GC)∩gln(R)
and θ |g: x 7→ −xt. We also note that, k := {x ∈ g | xt = −x} as k = Lie(GC) ∩ o(n).
As θ is an involution we can decompose g in ±1 eigenspace of θ. In particular, we
can write

g 3 x = x+ + x−, x± :=
x± θ(x)

2
.

Hence, g = k⊕ p.
G, K, and p are intersections of smooth manifolds with closed subsets. So the

restriction of the corresponding diffeomorphism in GC would yield a diffeomorphism
in the real group.

(2) Recall that, for J :=

(
Ip
−Iq

)
U(p, q) := {g ∈ GLp+q(C) | g∗Jg = J}.

Clearly,

U(p, q) ∩GLp+q(R) = {g ∈ GLp+q(R) | gtJg = J} = O(p, q).
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We write an element g ∈ K in p + q block matrix form, that is, k =

(
A B
C D

)
with

A ∈ Matp×p, B ∈ Matp×q, etc.. As k ∈ O(p+ q) ∩O(p, q) we have

ktk = Ip+q, ktJk = J,

we obtain

AtA = Ip, D
tD = Iq, B

tA = 0 = DtC =⇒ A ∈ O(p), D ∈ O(q), B = 0 = C.

Thus k ∈ O(p)×O(q). The reverse inclusion is obvious.
By differentiating we obtain

g = {X ∈ glp+q(R) | X tJ + JX = 0} =: o(p, q).

From the description as θ eigenspaces we can calculate

k = {X ∈ glp+q(R) | JXJ = −X t = X}.
Doing a similar calculation as the above one obtains

k = o(p)× o(q).

Similarly,

p = {
(

X
−X t

)
| X ∈ Matp×q(R)}.

Using Cartan decomposition, K = O(p) × O(q) is the deformation retract of G =
O(p, q). Thus K has same number of connected component as G, which is 4. They are
given by Ki exp(p), where Ki are of form O(p)◦×O(q)◦, O(p)1×O(q)◦, O(p)◦×O(q)1,
and O(p)1 ×O(q)1, where O(n)1 = O(n) \O(n)◦.

Exercise 14. Following the hint given in lecture, show that for any compact connected Lie
group K and torus S ≤ K, the centralizer ZK(S) is the union of all the maximal tori
containing S.

Solution 14. We want to show that

ZK(S) =
⋃

torus T⊇S

T.

Note that, “⊇” is obvious; as T is abelian and contains S, T clearly centralizes S. We prove
“⊆”. Let g ∈ ZK(S). This implies that S ⊂ ZK(g)◦ as S is connected. Let S ′ ⊆ ZK(g)◦ be
a maximal torus containing S. by theorem 6.21 we have Z(ZK(g)◦) ⊂ S ′. But from theorem
6.19 we know that g ∈ ZK(g)◦, hence g ∈ Z(ZK(g)◦). Choosing T to be a maximal torus of
K which contains S ′, we conclude.

Exercise 15. Let K be the compact connected group SON(R). Let {ei} be the standard basis
of RN .

(1) Give a description of the complexified Lie algebra g of K.
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(2) Show that with a maximal torus T ≤ K can be represented by block diagonal matrices
(t1, . . . , tn, [1]) where each tk is a 2× 2 matrix of form(

cos θ − sin θ
sin θ cos θ

)
, θ ∈ R,

where [1] denotes 1× 1 block which arises only when N = 2n+ 1 odd.
(3) Compute the root space decomposition of g. For a given root α compute Xα, Yα, Hα,

and the root reflection sα.
(4) Compute the Weyl group W generated by sα. Check that that indeed coincides with

N(T )/T .

Solution 15. A summary of the solution is given here. We realize SON(R) acting on RN

equipped with the standard inner product. We check that T is indeed a torus (compact,
connected, abelian), in fact, is homeomorphic to (S1)r for r = [N/2] when θ is restricted to
R/2πZ. We want to show that it is a maximal torus. It is enough to show that ZK(T ) ⊆ T .
Let A ∈ ZK(T ). We consider an element tk := diag(1, 1, . . . ,−1,−1, . . . , 1, 1) where (−1,−1)

lies in (2k − 1, 2k)th position. Let Ae2k−1 =
∑N

i=1 aiei. Then

tkAe2k−1 = a1e1 + · · · − a2k−1e2k−1 − a2ke2k + · · ·+ aNeN ,

and

Atke2k−1 = −Ae2k−1 = −a1e1 − · · · − aNeN .

Hence ai = 0 for i 6= 2k − 1, 2k. In other words A is a rotation in the plane generated by
e2k−1e2k, thus must be of the form tk. So T is a maximal torus.

Now we complexify T and K, and denote them H and G respectively. We will now describe
H. We construct a new basis

fj :=
e2j−1 + e2j√

2
, fn+j :=

e2j−1 − e2j√
2

; 1 ≤ j ≤ n; (f2n+1 = e2n+1).

The above basis is an eigenbasis and digaonalize T over C to

{diag(eiθ1 , e−iθ1 , . . . , eiθn , e−iθn , [1]) | θi ∈ C}.

For future purpose we define H to be a permutation of the above

H := {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn , [1]},

which can be obtained by conjugating by a permutation matrix from SON(C).
We now note that the complexified Lie algebrag := soN(C) can be written in the split

form as

soN(C) := {X ∈MN(C) | X tJ + JX = 0},
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where

J =



(
In

In

)
, if N = 2n In

In

1

 , if N = 2n+ 1

.

For instance, a generic matrix in so2n+1(C) is given by

 a b x
c −at y
−yt −xt 0

 with a, b, c ∈Mn(C)

and x, y ∈ Cn, and bt = −b, ct = −c.
Now we compute the root space decomposition. We have to compute the action of ad(H)

for H ∈ h where

h := {H := diag(θ1, . . . , θn,−θ1 . . . ,−θn, [0]) | θi ∈ C}.
We fix a basis of h to be {Ei,i−En+i,n+i}. Let the dual basis of h∗ is given by {λi} such that
that θi = λi(H). Now we calculate the eigenvectors of ad(Ei,i − En+i,n+i). We list the roots
α ∈ Φ, Xα ∈ gα, Yα ∈ g−α, and Hα = [Xα, Yα].

Φ = {±(λj ± λk) | j < k} t {±λj},
where the second part arises when N = 2n+ 1.

α Xα Yα Hα

λj − λk Ej,k − En+k,n+j Ek,j − En+j,n+k Ej,j − Ek,k − En+j,n+j + En+k,n+k

λj + λk Ej,n+k − Ek,n+j En+k,j − En+j,k Ej,j + Ek,k − En+j,n+j − En+k,n+k

−λj − λk En+j,k − En+k,j Ek,n+j − Ej,n+k −Ej,j − Ek,k + En+j,n+j + En+k,n+k

λj Ej,2n+1 − E2n+1,n+j 2(E2n+1,j − En+j,2n+1) 2Ej,j − 2En+j,n+j

−λj E2n+1,j − En+j,2n+1 2(Ej,2n+1 − E2n+1,n+j) −2Ej,j + 2En+j,n+j

The last two rows appear only when N = 2n+ 1. A positive system of roots can be given by

Φ+ = {λj ± λk | j < k} t {λj},
where the second part appears only when N = 2n+ 1. simple system of roots is given by

∆ = {λj − λj+1 | 1 ≤ j ≤ n, λn+1 = 0,−λn−1, for N odd or even, resp.}.
The root space decomposition can be checked by means of the formula

ad(H)Xα = α(H)Xα, ad(H)Yα = −α(H)Yα.

Let us choose following “standard” chamber C ⊆ hR:

C := {diag(θ1, . . . , θn,−θ1 . . . ,−θn, [0]) | θ1 > · · · > θn[> 0]}.
With respect to this chamber the positive roots in Φ would be

λj ± λk, 1 ≤ j < k ≤ n,



REPRESENTATION THEORY OF LIE GROUPS EXERCISES 15

for N = 2n, and

λj ± λk, λk, 1 ≤ j < k ≤ n,

for N = 2n + 1. We claim that ∆ as described above is a system of simple roots. First
we check that they are indeed simple root. Then we check that ∆ is linearly independent:
If
∑
ci(λi − λi+1) = 0, then ci = 0 invoking linear Independence of λi. Finally, we check

that Φ+ can be obtained by a Z≥0 span of ∆. To check this we note (for N = 2n + 1), for
example,

λj + λk = (λj − λj + 1) + · · ·+ (λk−1 − λk) + 2(λk − λk+1) + · · ·+ 2λn.

Rest of them can be proved similarly.
Now we turn to find the reflections sα for α ∈ Φ. Recall the map Fα whose differential

dFα sends

(
1
)

to Xα so that sα = Fα(

(
1

−1

)
)T . Note that

Fα(

(
1

−1

)
) = Fα(

(
cosπ/2 sinπ/2
− sin π/2 cos π/2

)
) = Fα(exp

(
π/2

−π/2

)
)

= exp(
π

2
dFα(

(
1

−1

)
)) = exp(

π

2
(Xα − Yα)).

The Weyl group is generated by {sα}α∈∆.
Now we construct the Weyl group analytically. We claim the following:

• For N = 2n+ 1, W ∼= (Z/2Z)n o Sn.
• For N = 2n, W ∼= Hn o Sn, where Hn is the hyperplane in (Z/2Z)n defined by∑

εi = 0.

First we construct the map explicitly. We understand CN as complexification of the standard
representaion of SON(R) on RN . We checked that the torus T acts on CN by distinct
characters e±iθj for j = 1..n. Thus any g ∈ NK(T ) permutes the eigenlines. But the action
of g is defined on R so it preserves the complex conjugation, in the sense that, if g maps
eiθ to eiθ

′
then it should map e−iθ to e−iθ

′
. Thus NK(T ) naturally acts as a permutation on

{±1, . . . ,±n} such that σ(−k) = −σ(k). We also have permutations in n pairs of {−j, j}.
Group of such permutation is (Z/2Z)n o Sn.

Now we show the injectivity. Let g acts trivially on every eigenline. As g preserves every
one dimensional subspace it must be diagonal. Thus it commutes with T . Hence g ∈ ZK(T ).
But maximality of T implies that ZK(T ) = T 3 g. Thus the map is injective.

To show surjectivity we need divide into parities. Let N = 2n + 1 first. For given (σ, ε),
where σ ∈ Sn and ε = (ε1, . . . , εn) ∈ (Z/2Z)n, we first choose the permutation matrix which
permute the eigenplanes Pj := R(e2j−1⊕+e2j) to pk such that σ(j) = k. Then we transpose
between a line and its conjugate line according to epsilon. We need to to make sure that
this matrix lie in SO2m+1, that is, it has det = 1. For that we choose action on Re2n+1 by
(−1)

∑
εi. Clearly this matrix lie in NK(T ). We prove the even case similarly. Because the

codomain only contains ε with
∑
εi = 0 the det = 1 property is immediate.
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Exercise 16. Say that a pair of chambers C,C ′ are adjacent if they are separated by exactly
one root hyperplane β⊥; in other words, there is a root β so that

• β(C) > 0,
• β(C ′) < 0, and
• α(C) and α(C ′) have the same sign for any α ∈ Φ−Qβ.

We say in that case that β is a wall of C and also of C ′.

(1) Interpret Lemma 6.39 in terms of these notions.
(2) Show that if the chambers C,C ′ are adjacent with common wall β⊥, then sβC = C ′

and sβC
′ = C.

(3) Let β ∈ Φ+(C). Show that the following are equivalent:
(a) β⊥ is a wall of C (in the sense defined above).
(b) β ∈ ∆(C).
(c) β⊥ ∩ C contains a nonempty open subset of the hyperplane β⊥.

(4) With notation and assumptions as in the conclusion of Lemma 6.39, show that there
exist β1, . . . , βn ∈ ∆(C) so that C = sβj · · · sβ1Cj for j = 0..n.

(5) Show that for any Weyl chamber C, the root reflections sβ taken over β ∈ ∆(C)
generate W .

Solution 16. (1) Left for the reader.
(2) Let x ∈ C. Then

β(sβ(x)) = β(x)− β(x)β(Hβ) = β(x) < 0.

We know that sβ reflects with respect to β⊥ and sβ is continuous so sβ(C) ⊆ C ′.
Similarly, sβ(C ′) ⊆ C. Thus sβ(C) = C ′ and sβ(C ′) = C.

(3) (a) =⇒ (b): By the part (1) if β⊥ is a wall of C then C and sβ(C) are adjacent.
So that β⊥ is the only root hyperplane between C and sβ(C) such that the three
conditions of the adjacency hold. Let β(C) > 0 and β = α1 + α2 where αi 6= Qβ.
Then αi(C) > 0 and αi(sβ(C)) > 0 which contradicts that β(sβ(C)) < 0.
(b) =⇒ (c): Let β ∈ ∆(C). We claim that there exists x ∈ C so that β(x) = 0 but
γ(x) > 0 for all γ ∈ ∆(C)−{β}. Then x admits a small convex neighborhood U that
doesn’t intersect any root hyperplane other than β⊥. Moreover, sβU ∩U contains x,
hence is nonempty. We may assume also that U is small enough that γ(U) > 0 for
all γ ∈ ∆(C)− {β}, hence that U ∩ β⊥ ⊆ C. But U ∩ β⊥ is open in U , so this gives
(c).
(c) =⇒ (a): We essentially follow the proof of Lemma 6.39.

(4) We induct on j. Note that C ′′ := sβj · · · sβ1Cj+1 is adjacent to C0. Let β⊥j+1, with
βj+1 ∈ ∆(C0), be their common wall. Then sβj+1

C ′′ = C0, as required.
(5) We know that W acts freely on the Weyl chambers. As from part (4) we conclude

that for given C,C ′ = w(C), w ∈ W Weyl chambers, there exist αi ∈ ∆(C) such that
sα1 . . . sαj

(C) = C ′. Hence w = sα1 . . . sαj
.
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Exercise 17. A root system is a finite dimensional Euclidean space (V, 〈, 〉), equipped with

a spanning subset Φ ⊂ V s.t. ∀α ∈ Φ, sα : V → V defined by v 7→ v − 2 〈α,v〉〈α,α〉 , satisfies

sα(Φ) = Φ and 2 〈α,β〉〈α,α〉 ∈ Z for α, β ∈ Φ. A root system is called reduced if Cα ∩ Φ = {±α}.
(1) Show that if (V, 〈, 〉,Φ) is a (reduced) root system then (X,Φ, X̌, Φ̌) is a (reduced)

root datum, where either
Simply Connected: Weight lattice:

X := {λ ∈ V | 〈λ, α〉 ∈ Z,∀α ∈ φ},
and coroot lattice:

X̌ :=
∑
α∈Φ

Zα̌, α̌ = 2
〈α, 〉̇
〈α, α〉

.

Adjoint: Root lattice:

X :=
∑
α∈Φ

Zα,

and coweight lattice:

X̌ := {z ∈ V ∗ | z(α) ∈ Z,∀α ∈ Φ}.
(2) Show that there exists a unique (up to isomorphism) simply connected compact group

with root system of G2 type.


