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The first minutes. In mathematics and related fields, one often encounters vector spaces
V , such as

• the vector space V = L2(X,µ) consisting of functions f : X → C on some nice
topological space X that are square-integrable with respect to some measure µ, or
• the space of solutions φ to some linear differential equation Dφ = 0,

and so on. The inputs to the construction of V are sometimes invariant by some symmetry
group G. In the first example, G might have a measure-preserving action on (X,µ). In the
second, G might commute with the operator D (for instance, many of the basic equations of
mathematical physics are invariant by something like the rotation group SO(3)). In either
case we obtain a linear action of G on V , i.e., a homomorphism G→ GL(V ). The case that
G is a Lie group is simultaneously one of the most interesting cases (because of the many
examples) and accessible (because, e.g., connected Lie groups are in many respects simpler
than finite groups, thanks to powerful tools from calculus and linear algebra).
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0. Prerequisites

We recall here some of the basics from linear algebra, topology, differential geometry, Lie
theory, and functional analysis that will be used throughout the course.

We won’t assume any prior knowledge of representation theory.

0.1. Conventions. In this course,

“topological space” := “separable Hausdorff topological space.”

The examples we consider will moreover be locally compact, but we will mention this hy-
pothesis explicitly when it is used. Similarly

“vector space” := “complex vector space”

unless we specify otherwise.

0.2. Topological groups.

Definition 0.1. A topological group is a group G equipped with a topology such that the
maps

G×G→ G

(x, y) 7→ xy

and
G→ G

x 7→ x−1

are continuous. Similarly, a topological vector space is a vector space equipped with a topol-
ogy such that the maps

V × V → V

(x, y) 7→ x+ y

and
C× V → V

(λ, x) 7→ λx

are continuous. We write in that case GL(V ) for the group of continuous linear maps
φ : V → V that admit a continuous two-sided inverse.

For instance, any finite group (always equipped with the discrete topology) is a topological
group, as is any Lie group; any finite-dimensional vector space is naturally a topological
vector space, as is any Hilbert space or Banach space.

0.3. Lie theory. We’ll assume a large number of facts from basic Lie theory. For instance,
a Lie group G has a Lie algebra g. A continuous homomorphism G1 → G2 between two
Lie groups is automatically smooth, or even analytic, and differentiates to a Lie algebra
homomorphism g1 → g2. For a finite-dimensional vector space V , the group GL(V ) is a Lie
group with Lie algebra End(V ).
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0.4. Haar measure. We abbreviate “locally compact topological group” to “locally com-
pact group,” and similarly for “compact group.”

Definition 0.2. Let G be a locally compact group. Recall that a Radon measure dg on G is
a functional

Cc(G)→ C

f 7→
∫
G

f dg =

∫
g∈G

f(g) dg

such that f ≥ 0 =⇒
∫
G
f dg ≥ 0.1 For each such f and each h ∈ G, we denote by λhf and

ρhf the left and right translates of G, normalized so that λh1h2 = λh1λh2 and ρh1h2 = ρh1ρh2 :

λhf(g) := f(h−1g), ρhf(g) := f(gh−1).

Recall that dg is a left Haar measure if
∫
G
f dg =

∫
G
λhf dg for all h ∈ G. The notion of a

right Haar measure is defined analogously using ρh. We say that dg is a Haar measure if it
is both a left Haar measure and a right Haar measure.

Theorem 0.3. Let G be a locally compact group. Then left Haar measures exist, and any
two are positive multiples of one another. Similarly for right Haar measures.

Suppose moreover that G is compact. Then Haar measures exist, and assign finite volume
to G.

In particular, there is a unique Haar measure dg on G such that vol(G, dg) = 1; we call
it the probability Haar measure on G. We will often denote integration with respect to the
probability Haar simply by

∫
G
f :=

∫
G
f dg, omitting the dg when it is clear by context.

For example, if G is finite, then the probability Haar dg is given by the normalized counting
measure: ∫

G

f dg =
1

|G|
∑
g∈G

f(g).

0.5. Spectral theory for compact self-adjoint operators. Let V = (V, 〈, 〉) be a Hilbert
space and T : V → V a bounded operator. Recall that T is

• self-adjoint if 〈Tv1, v2〉 = 〈v1, T v2〉 for all v1, v2 ∈ V , and
• compact if it maps the unit ball to a precompact set, or equivalently, if each bounded

sequence vn in V has a subsequence vnk such that the sequence Tvnk converges.

A basic example is when T is diagonalized by an orthonormal basis e1, e2, . . . of V , thus
Tej = λjej for some λj ∈ C; then T is compact precisely when λj → 0 as j →∞.

Theorem 0.4. Let T be compact and self-adjoint. Then every eigenvalue λ of T is real.
For each such λ, let Vλ ⊆ V denote the λ-eigenspace. Then V is the Hilbert direct sum
⊕̂λVλ, i.e., the closure of the algebraic direct sum ⊕λVλ. Moreover, for each ε > 0, the space
⊕λ:|λ|≥εVλ is finite-dimensional. In particular, if V is nonzero, then T has an eigenvector.

1 The continuity and related conditions follow from the positivity, see e.g. the Wikipedia entries on
“Radon˙measure” and “Riesz-Kakutani representation theorem”
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Proof sketch. Let’s note first that the finite-dimensionality of the spaces ⊕λ:|λ|≥εVλ is auto-
matic: if any such space were infinite-dimensional, then we could find an infinite sequence
of unit vectors vn for which ‖Tvn‖≥ ε, contrary to the assumed compactness of T .

Turning to the main point of the proof, let W denote the orthogonal complement of ⊕λVλ.
We know that T acts on W and has no eigenvectors in W , while our task is to show that
W = {0}. The main point is thus to show that any compact self-adjoint operator on a
nonzero Hilbert space admits an eigenvector. See for instance §9.2 of my “Lie Groups” notes
on the course homepage. �

Recall also from linear algebra the following consequence of (e.g.) the Jordan normal form:

Lemma 0.5. Any linear operator on a nonzero finite-dimensional (complex) vector space
has an eigenvector.

0.6. Linear algebra. Let V, V1, V2 be finite-dimensional vector spaces. We can then con-
struct some additional vector spaces:

(1) The dual space V ∗ = Hom(V,C) consisting of linear functionals ` : V → C. For
` ∈ V ∗ and v ∈ V , we sometimes write 〈`, v〉 = `(v) for the natural pairing.

(2) The conjugate space V . By definition, this is a set equipped with a bijection V → V ,
denoted v 7→ v. We define the vector space structure on V by requiring that v 7→ v
commute with addition (i.e., v1 + v2 = v1 + v2) and intertwine scalar multiplication
with conjugation, thus for λ ∈ C,

λv := (λv).

(3) The space Hom(V1, V2) of linear maps T : V1 → V2.
(4) The space End(V ) := Hom(V, V ) of linear operators T : V → V .
(5) The direct sum V1⊕V2, for which linear maps f : V1⊕V2 → V are in natural bijection

with pairs (f1, f2) of linear maps fi : Vi → V .
(6) The tensor product V1 ⊗ V2, for which linear maps f : V1 ⊗ V2 → V are in natural

bijection with bilinear maps f : V1 × V2 → V .

We have an isomorphism

V ∗1 ⊗ V2 → Hom(V1, V2)

given by

`1 ⊗ v2 7→ [w1 7→ `1(w1)v2]

The inverse map is described by taking coefficients of T with respect to bases. In more
detail, fix bases e1, . . . , em of V1 and f1, . . . , fn of V2 together with dual bases e∗1, . . . , e

∗
m of

V ∗1 and f ∗1 , . . . , f
∗
n of V ∗2 , so that 〈e∗i , ej〉 = 〈f ∗i , fj〉 = δij. Then for any T ∈ Hom(V1, V2) and

v ∈ V1, we have

v =
∑
i

〈e∗i , v〉ei
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and
Tej =

∑
i

〈f ∗i , T ej〉︸ ︷︷ ︸
=:aij

fi,

so that
Tv =

∑
i,j

aij〈e∗j , v〉fi,

and thus
Hom(V1, V2) 3 T ↔

∑
i,j

aije
∗
j ⊗ fi ∈ V ∗1 ⊗ V2.

In particular, we may identify

End(V ) ∼= V ∗ ⊗ V.
Under this identification,

trace : End(V )→ C
corresponds to the linear map

V ∗ ⊗ V → C
`⊗ v 7→ 〈`, v〉.
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1. Introduction

1.1. Representations.

Definition 1.1. Let G be a topological group and V a topological vector space. A represen-
tation π of G on V is a group homomorphism

π : G→ GL(V )

for which the map
G× V → V

(g, v) 7→ π(g)v =: gv

is continuous.

Rather than saying “(π, V ) is a representation of G,” we might simply say “let V be a
representation of G” or “let G act linearly on V ,” with the action map π = πV defined im-
plicitly and its continuity conditions imposed by default; we will then often denote the action
by juxtaposition, gv := πV (g)v, as above. Other times we’ll say “let π be a representation of
G,” with the underlying vector space V = Vπ defined implicitly. Eventually we’ll often write
simply π both for the action and the underlying vector space, but we’ll avoid doing that for
now.

Remark 1.2. Suppose that G is a Lie group and V is finite-dimensional, so that GL(V ) is
a Lie group with Lie algebra End(V ). Then a theorem from “Lie groups” implies that π is
automatically smooth, hence differentiates to a Lie algebra homomorphism g := Lie(G) →
End(V ).
Example 1.3.

(1) Let X be a locally compact space equipped with a Radon measure µ. Suppose that
G acts on X, preserving µ (i.e., there is a continuous map G × X → X, satisfying
the axioms for a group action, such that for each g ∈ G, the induced map g : X → X
satisfies g∗µ = µ). Then G acts linearly on L2(X,µ), i.e., we have a representation
π : G → GL(L2(X,µ)). These representations provide some of the most important
examples.

In more detail, if we are given a left action denoted “gx,” then for g ∈ G and
f ∈ L2(X,µ), we set

(1.1) (π(g)f)(x) := f(g−1x),

while if we are instead given a right action denoted “xg,” then we should take

(1.2) (π(g)f)(x) := f(xg).

As an exercise, check in either case that π(g1)π(g2) = π(g1g2) for all g1, g2 ∈ G.
Check for instance for G = R acting on X = R by translation, and with µ Lebesgue

measure, that the action map

(1.3) R× L2(R)→ L2(R)
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is continuous; on the other hand, for any nonzero x ∈ R there exists f ∈ L2(R)
with ‖f‖= 1 so that ‖π(x)f − f‖≥ 1 (e.g., take for f a bump function supported
in [−|x|/10, |x|/10]), so that the map from R to the space GL(L2(R)) equipped with
the operator norm is not continuous. These observations motivate the definition of
“representation” given above.

Suppose for instance that G is a compact group, equipped with its probability
Haar measure dg. Then the action of G on itself by right multiplication preserves dg.
The above discussion specialized to (X,µ) = (G, dg) gives a representation

ρ : G→ GL(L2(G, dg))

given by right translation as in (1.2). This representation is called the right regular
representation. We may similarly define the left regular representation

λ : G→ GL(L2(G, dg))

using left translation as in (1.1). Note that if G is finite, then L2(G, dg) is just
the space CG of functions f : G → C. Note also that we didn’t really require
compactness: on any locally compact group, we can define the right (resp. left)
regular representation using any right (resp. left) Haar measure.

(2) The trivial representation of a group G on the one-dimensional vector space C is the
map G→ GL(C) = GL1(C) given by g 7→ 1.

(3) The zero representation of G on the zero-dimensional vector space {0}. This repre-
sentation is unimportant, and will practically never be considered in this course; we
mention it for now just to disambiguate it from the (very important) trivial repre-
sentation.

(4) Most of the classical groupsG that one encounters in Lie theory (e.g., GLn(R),GLn(C),O(n),U(n)
and Sp(n) for n even) come with a “standard representation” G → GLn(C) =
GL(Cn).

(5) For a finite-dimensional vector space V , the group GL(V ) is a Lie group. Its finite-
dimensional representations

ρ : GL(V )→ GL(W )

play a special role in the theory: given any representation

π : G→ GL(V ),

we may compose it with ρ to get a new representation

ρ ◦ π : G→ GL(W ).

For example, we may take for ρ the determinant representation det : GL(V ) →
GL1(C) = C×, and form the determinant det ◦π : G → C× of a representation
π : G→ GL(V ).



REPRESENTATIONS OF LIE GROUPS ETH ZÜRICH, SPRING 2019 11

(6) A Lie group G defined over the reals has a Lie algebra g, which is a real vector
space; its complexification gC := g ⊗R C is a complex vector space, and the adjoint
representation Ad : G→ GLR(g) defines in particular a (complex) representation

Ad : G→ GL(gC).

(If we start with a Lie group G over the complex numbers, like GLn(C), then we
get a representation Ad : G → GL(g) in the sense of this course without having to
complexify.)

(7) The symmetric group S(n) comes with a standard representation

π : S(n)→ GLn(C)

on Cn, given by permuting the standard basis elements e1, . . . , en: for g ∈ S(n), we
define π(g)ej := eg(j). This is just the representation of elements of the symmetric

group by permutation matrices; for n = 2 we get

(
1

1

)
,

(
1

1

)
, for n = 3 we get1

1
1

,

 1
1

1

, and so on. We can compose π with the determinant map

det : GLn(C)→ C× to get the sign representation

sgn := det ◦π : S(n)→ {±1} ⊆ C×.

Equivalently, sgn(g) = (−1)k if g = τ1 · · · τk, with each τj a transposition. We will
sometimes use the notation

(−1)g := sgn(g)

for g ∈ S(n).
(8) Most of the standard operations from linear algebra (e.g., those recalled in §0.6) in-

duce corresponding operations on representations. For instance, given finite-dimensional
representations (π, V ), (π1, V1), (π2, V2) of G, we may form:
• the dual (or contragredient) representation (π∗, V ∗) on the dual space V ∗ by

setting

(π∗(g)`)(v) := `(π(g)−1v),

so that

〈π∗(g)`, π(g)v〉 = 〈`, v〉,
• the conjugate representation (π, V ) by

π(g)v := π(g)v,

• the direct sum (π1 ⊕ π2, V1 ⊕ V2) by

g(v1, v2) := (gv1, gv2),
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• the tensor product (π1 ⊗ π2, V1 ⊗ V2) by

g(v1 ⊗ v2) := gv1 ⊗ gv2,

and
• the representation (Hom(π1, π2),Hom(V1, V2)) by, for g ∈ G and f ∈ Hom(V1, V2),

gf := [V1 3 v1 7→ π2(g)f(π1(g)−1v1) ∈ V2].

1.2. Unitarity.

Definition 1.4. Let π : G→ GL(V ) be a representation as above. Suppose that V is equipped
with an inner product 〈, 〉 (e.g., if V is a Hilbert space). We say then that π is unitary (with
respect to 〈, 〉) if

〈gv1, gv2〉 = 〈v1, v2〉

for all g ∈ G and v1, v2 ∈ V ; we might equivalently say that the inner product 〈, 〉 is invariant
for the action of G. We say in general that π is unitarizable if there exists an invariant inner
product, i.e., an inner product 〈, 〉 on V with respect to which π is unitary.

We can already prove a basic theorem:

Theorem 1.5. Let G be a compact group. Let V be a finite-dimensional representation, or
a Hilbert space representation. Then V is unitarizable.

Proof. In the finite-dimensional case, let 〈, 〉0 be any inner product on V ; in the Hilbert
case, let it denote the “given” inner product; in either case, note that it defines a continuous
map V × V → V . The idea is to average this inner product using the Haar measure to
get an invariant inner product. Turning to details, recall that the action map G × V → V
is assumed continuous. For v1, v2, the function G 3 g 7→ 〈gv1, gv2〉0 is then a continuous
function on a compact set, hence is bounded, and in particular integrable with respect to
the probabilty Haar dg. We set

〈v1, v2〉 :=

∫
g∈G
〈gv1, gv2〉0 dg.

It’s easy to see that 〈, 〉 defines an inner product; for instance, if v 6= 0, then 〈v, v〉0 > 0,
hence (by continuity) 〈gv, gv〉0 > 0 for all g in some neighborhood of the identity element,
hence (by regularity of Radon measures) 〈v, v〉 > 0. Using the right-invariance of dg, we
verify for h ∈ G that

〈hv1, hv2〉 =

∫
g∈G
〈ghv1, ghv2〉0 dg =

∫
g∈G
〈gv1, gv2〉0 dg = 〈v1, v2〉.

Thus the representation V is unitary with respect to the inner product 〈, 〉. �
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1.3. Morphisms, equivariant maps, intertwiners, isomorphisms, equivalences, and
so on.

Definition 1.6. Let (π1, V1) and (π2, V2) be representations of G. By a morphism of repre-
sentations φ : V1 → V2 we will mean a continuous linear map that is compatible with the
given representations in the sense that π2(g)φ(v1) = φ(π1(g)v1) for all v1 ∈ V1 and g ∈ G.
The following phrases will be used interchangeably with “morphism”:

• G-equivariant map, or simply equivariant map.
• intertwining operator.

We denote by

HomG(V1, V2)

the set of such φ. This set is a vector space.
This definition endows the set of representations of a given group G with the structure of

a category.
An isomorphism (or sometimes “equivalence”, etc.) of representations is a morphism that

admits a two-sided inverse morphism; in the case of finite-dimensional representations, an
isomorphism is the same thing as a bijective morphism.
Example 1.7.

(1) For finite-dimensional representations V1, V2 of G, the isomorphism of vector spaces
V ∗1 ⊗V1

∼= Hom(V1, V2) (as recalled in §0.6) defines an isomorphism of representations.
(2) Let G = Z/nZ; thus G is the finite cyclic group of order n. Take for (π1, V1) the right

regular representation on V1 = CG, thus

π1(g)f(x) = f(x+ g).

Take V2 = Cn, with π2 the representation assigning to each g ∈ G the diagonal matrix
π2(g) with entries 1, e(g/n), e(2g/n), e(3g/n), . . . , e((n− 1)g/n), where e(x) := e2πix.
Then (π1, V1) and (π2, V2) are equivalent representations; an isomorphism is given by
the finite Fourier transform

φ : V1 → V2

φ(f) := (f̂(0), f̂(1), . . . , f̂(n− 1)),

f̂(x) :=
∑
y∈Z/n

f(y)e(−xy/n).

2

We pause to introduce, for any representation (π, V ), the notation

(1.4) V G := {v ∈ V : π(g)v = v for all g ∈ G}

2End of lecture #1, Tuesday, 19 Feb 2019
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for the G-fixed subspace of V . Recall that we have defined for any representations V1, V2 a
representation Hom(V1, V2); it thus makes sense to speak of the fixed subspace of the latter
representation, and we verify readily from the definitions that

(1.5) Hom(V1, V2)G = HomG(V1, V2).

We defined earlier the dual of any finite-dimensional representation. More generally, for
any representation for which the underlying vector space is given the structure of a Hilbert
space, we define the dual representation using the continuous dual, which is then itself a
Hilbert space.

Lemma 1.8. Let (π, V ) be a representation of G such that

• V is a Hilbert space (V, 〈, 〉), and
• π is unitary.

Then π is isomorphic to its conjugate dual, and the conjugate and dual of π are isomorphic
to each other:

π ∼= π∗, π ∼= π∗.

Proof. Since V is a Hilbert space, we have (by what is sometimes called the “Riesz repre-
sentation theorem”) an isomorphism of vector spaces

V → V
∗

v 7→ 〈v, ·〉.
Since π is unitary, this isomorphism is equivariant. This establishes the first isomorphism;
the second is obtained similarly. �

1.4. Reduction and decomposition.

Definition 1.9. Let (π, V ) be a representation of G. A closed invariant subspace W ⊆ V is
a closed subspace such that π(g)W ⊆ W for all g ∈ G. We note that:

• A subspace W ⊆ V is closed if and only if the quotient space V/W , equipped with
the quotient topology, is Hausdorff. If V is finite-dimensional, then every subspace
W is closed. We will practically never discuss non-closed subspaces in this course.
• The condition π(g)W ⊆ W , applied both to g and g−1, implies that in fact π(g)W =
W .

To each closed invariant subspace W ⊆ V we may associate a subrepresentation π : G →
GL(W ) and a quotient representation π : G → GL(V/W ). We will often use “subrepresen-
tation” as a synonym for “closed invariant subspace.”

For instance, if dim(W ) = 2 and dim(V ) = 5, then we can extend a basis e1, e2 for W to
a basis e1, . . . , e5 for V , and the matrix entries of our representation expressed in terms of



REPRESENTATIONS OF LIE GROUPS ETH ZÜRICH, SPRING 2019 15

this basis look like

π(g) =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗

 .

The upper-left 2× 2 block corresponds to the subrepresentation on W , the lower-right 3× 3
block to the quotient representation on V/W .

Example 1.10. (1) For any representation (π, V ) of G, the fixed subspace V G ⊆ V is a
closed invariant subspace.

(2) If G acts in a measure-preserving fashion on some measured space (X,µ) of finite
volume, then the representation V = L2(X,µ) contains the closed invariant subspace
C consisting of constant functions.

Definition 1.11. Let (π, V ) be a nonzero representation (thus V is not the zero-dimensional
space {0}; it might be the one-dimensional trivial representation).

We say that V is reducible if there exists a closed invariant subspace W ⊆ V with W 6=
{0}, V . We say otherwise that V is irreducible; this means that {0} and V are the only
closed invariant subspaces.

Example 1.12. “Most” V considered previously are reducible. If dim(V ) = 1, then V is
irreducible.

The irreducible representations are a bit like the prime numbers, with closed invariant
subspaces playing the role of divisors and the zero space {0} a bit like the unit element 1.

Theorem 1.13 (Schur’s lemma). Let (π1, V1) and (π2, V2) be irreducible finite-dimensional
representations of some group G. Then

(1.6) dim HomG(V1, V2) =

{
1 if V1

∼= V2,

0 otherwise,

where “V1
∼= V2” means “isomorphic as representations of G.” If moreover V = V1 = V2,

then EndG(V ) := HomG(V, V ) is the space C id of scalar multiples of the identity id : V → V .

Proof. Let φ be a nonzero element of HomG(V1, V2). Then image(φ) ⊆ V2 and ker(φ) ⊆ V1 are
invariant subspaces. Since φ 6= 0, we must have image(φ) 6= 0 and ker(φ) 6= V1. Thus by the
irreducibility of V1, V2, we have image(φ) = V1 and ker(φ) = 0. Thus φ is an isomorphism.
In particular, if V1, V2 are non-isomorphic, then HomG(V1, V2) = {0}. If V1 and V2 are
isomorphic, then the spaces HomG(V1, V2) ∼= HomG(V1, V1) are isomorphic via composition
with an isomorphism V1 → V2, so in particular dim HomG(V1, V2) = dim HomG(V1, V1); we
thereby reduce to establishing the final assertion concerning φ ∈ EndG(V ). (Note: this
last step was treated incorrectly in lecture!) Since V is a nonzero finite-dimensional
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vector spaces over the complex numbers, the operator φ has an eigenvalue λ. Let Vλ denote
the corresponding eigenspace. For any g ∈ G and v ∈ Vλ, we have

(1.7) φ(π(g)v) = π(g)φ(v) = π(g)λv = λπ(g)v,

thus π(g)v ∈ V λ, i.e., V λ is a nonzero invariant subspace; since V is irreducible, it follows
that V λ = V , and so φ = λ · id, as required. �

Remark 1.14. Inserted to keep numbering consistent with the numbering that I messed up
in lecture; maybe I’ll think of something clever to put here later.

Remark 1.15. Same.

Corollary 1.16. Suppose that G is abelian and (π, V ) is finite-dimensional and irreducible.
Then dim(V ) = 1.

Proof. Let h ∈ G. Then for all g ∈ G, π(h)π(g) = π(hg) = π(gh) = π(g)π(h). Thus π(h) ∈
EndG(V ) = C id, and so π(h) stabilizes every line in V . Thus any line in V is a nonzero
invariant subspace; by irreducibility, any such line is equal to V , and so dim(V ) = 1. �

As a matter of notation, we now define for a compact group G the set

Irr(G) := {isomorphism classes of finite-dimensional irreducible representations π = (π, Vπ) of G}.

Theorem 1.17. Let G be compact and (π, V ) finite-dimensional. Then there exists for
each σ = (σ,Wσ) ∈ Irr(G) a nonnegative integer n(σ) so that we have an isomorphism of
representations

(1.8) V ∼= ⊕σ∈Irr(G)W
⊕n(σ)
σ .

(Here W⊕n := W ⊕ · · · ⊕W , with n copies.) The n(σ) are determined uniquely by V .

Proof. Since G is compact, we may equip V with an invariant inner product 〈, 〉. We may
assume also that V is nonzero, since the conclusion of the theorem holds in that case. Then
there exist nonzero invariant subspaces U1 of V , such as V itself. Choose a minimal such
subspace U1. Then the orthogonal complement U⊥1 is an invariant subspace, since for v ∈ U⊥1
and g ∈ G, we have for each u ∈ U1 that likewise g−1 ∈ U1, and so

〈gv, u〉 = 〈v, g−1u〉 = 0.

By choosing (if possible) another minimal nonzero invariant subspace U2 ≤ U⊥1 and inducting
on dimension (note that dim(U⊥1 ) < dim(V ) < ∞), we see that we may write V as the
(orthogonal) direct sum

(1.9) V = U1 ⊕ U2 ⊕ · · · ⊕ Un,
where each Uj is an irreducible invariant subspace. We now group the Uj according to
their isomorphism class, giving a partition of {1, . . . , n} by Irr(G); this gives the required
decomposition.

The uniqueness of the n(σ) may be deduced as in the proof of the Jordan–Hölder theorem;
we will give an alternative proof later. �
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This last result suggests two problems for a given G:

• Determine the set Irr(G) explicitly.
• Explicitly decompose “interesting” V in the above sense.

1.5. Characters. Throughout this section we take G compact and (π, V ) finite-dimensional.

Definition 1.18. The character of π is the function

χπ : G→ C
g 7→ trace(π(g)).

We sometimes write χV for χπ.
A class function f : G → C is a function that is constant on conjugacy classes, thus

f(g−1xg) = f(x) for all x, g ∈ G. Note that characters are class functions (because trace is
conjugation-invariant).

The idea is that, given a linear operator on a finite-dimensional vector space, the only way
to linearly assign to that operator a scalar without choosing a basis is to take the trace (or
a multiple thereof). We’re looking to study isomorphism classes of representations, which
suggests looking at their characters. Here are some basic properties:

Lemma 1.19. Let π, π1, π2 be finite-dimensional representations of the compact group G, as
above.

(1) χπ depends only upon the isomorphism class of π.
(2) χπ = χπ
(3) χπ1⊕π2 = χπ1 + χπ2
(4) χπ1⊗π2 = χπ1χπ2
(5) χπ∗ = χπ = χπ
(6) χHom(π1,π2) = χπ1χπ2

Proof. The only “tricky” part is that since G is compact, π is unitarizable, and so (by Lemma
1.8) π ∼= π∗, thus χπ∗ = χπ. We also use that Hom(π1, π2) ∼= π∗1 ⊗ π2. �

The key to unlocking the power of characters in the case of compact groups is the following
identity between the dimension of the fixed subspace and the average value of the character:

Lemma 1.20. Define a linear map
p : V → V

v 7→
∫
g∈G

π(g)v dg.

(Here dg denotes as usual the probability Haar, and we are integrating a function g 7→ π(g)v
valued in the finite-dimensional vector space V ; this can be defined by choosing a basis and
integrating each coordinate, for instance.) Then

(1.10) dim(V G) = trace(p) =

∫
g∈G

χπ(g) dg.
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Proof. We check readily that p(V ) ⊆ V G and that p restricts to the identity on V G, so that
p is a projection onto V G; its trace is thus the dimension of that subspace, giving the first
identity.

The second identity follows from the linearity of the trace map. (In more detail, let’s
fix a basis e1, . . . , en for V and dual basis e∗1, . . . , e

∗
n and write πij(g) := 〈e∗j , π(g)ei〉 for the

coefficients of π(g) with respect to that basis. Let pij := 〈e∗j , pei〉 denote the coefficients of

p. By definition, pij = 〈e∗j ,
∫
g∈G π(g)ei dg〉. The coefficients of a vector-valued integral are

obtained by integrating the coefficients, i.e., 〈e∗j ,
∫
g∈G π(g)ei dg〉 =

∫
g∈G〈e

∗
j , π(g)ei〉 dg, thus

pij =
∫
g∈G πij(g) dg. Summing over i = j gives trace(p) =

∑
i pii =

∑
i

∫
g∈G πii(g) dg =∫

g∈G
∑

i πii(g) dg =
∫
G
χπ, as required. �

Theorem 1.21. (1) Let π, π′ ∈ Irr(G). Then

(1.11) 〈χπ, χπ′〉L2(G) =

{
1 if π ∼= π′,

0 otherwise.

Thus {χπ : π ∈ Irr(G)} is an orthonormal subset of

L2(G)class := {class functions in L2(G)}.
(2) Let (π, V ) be any finite-dimensional representation, with decomposition

V = ⊕σ∈Irr(G)W
⊕n(σ)
σ

as before. Then

(1.12) n(σ) = 〈χπ, χσ〉.
In particular, χπ determines π up to isomorphism.

Proof. (1) By definition, 〈χπ, χπ′〉 =
∫
G
χπχπ′ . We have seen that χπχπ′ = χHom(π′,π), and

that the average value of the latter is the dimension of Hom(π′, π)G = HomG(π′, π);
the required conclusion now follows from Schur’s lemma.

(2) We have χπ =
∑

σ n(σ)χσ, so the conclusion follows from (1.11).
�

Theorem 1.22 (Part of the Peter–Weyl theorem). Recall that G is compact. The orthonor-
mal subset {χπ : π ∈ Irr(G)} of L2(G)class is in fact an orthonormal basis, i.e., has dense
span.

Proof. We postpone this proof until a bit later in the course; it is not so difficult, but we
prefer to compute some actual characters first. �

Corollary 1.23. If G is finite, then Irr(G) is a finite set whose cardinality is the number of
conjugacy classes C of G.

Proof. In that case L2(G)class has a basis given by the characteristic functions 1C of each
such C. �
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1.6. The connected compact abelian case. Let’s illustrate the content of Peter–Weyl
by explicating it completely in the case of a connected compact abelian Lie group. In such
a group, conjugation is trivial, so “class function” just means “function;” also, we have
seen that any irreducible finite-dimensional representation is one-dimensional, hence may be
identified with a group homomorphism π : G→ GL1(C) = C×, which is thus the “same” as
its character, i.e., π(g) and χπ(g) are the same complex scalar for all g ∈ G. Recall that

U(1) := {z ∈ C× : |z|= 1} ∼= R/Z,

e(θ) := e2πiθ ← [ θ.

Lemma 1.24. Let G be a compact connected abelian Lie group of dimension n ≥ 0. Then

G ∼= U(1)n ∼= (R/Z)n ∼= Rn/Zn.

One has a bijection

Irr(G)↔ Zn

given by associating to each λ = (λ1, . . . , λn) ∈ Zn the one-dimensional representation

(1.13) U(1)n 3 z = (z1, . . . , zn) 7→ zλ := zλ11 · · · zλnn ∈ U(1) ⊆ GL1(C).

Proof. We verify first that G ∼= U(1)n:

(1) Set g = Lie(G). Since G is abelian, exp : g→ G is a homomorphism.
(2) Since G is connected and exp is a homomorphism whose image contains a neighbor-

hood of the identity element of G, it follows that exp is surjective.
(3) The kernel Λ ⊆ g of exp is a subgroup. Using that the exponential map is a local

diffeomorphism near the origin, we see that Λ is discrete. (Indeed, if there were a
sequence vn ∈ Λ that converged to some element of Λ, then the sequence of differences
vn+1 − vn would converge to 0.)

(4) By general theory on quotients of Lie groups (see e.g. Theorem 157 in my Fall 2016
notes), we have G ∼= g/Λ. In particular, Λ is cocompact.

(5) It’s not hard to see that for every discrete cocompact subgroup Λ of an n-dimensional
Euclidean space g there exists an isomorphism g ∼= Rn under which Λ identifies with
Zn. (Indeed, induct on n. We may assume that n ≥ 1. Fix an arbitrary Euclidean
norm on g. Since Λ is discrete, we can find a nonzero element e1 ∈ V of minimal
norm. We might suppose having normalized our norm so that the norm of e1 is
exactly 1. In any event, the minimality of this norm implies that Re1 ∩ Λ = Ze1.
Let W be a subspace of g complementary to Re1 (e.g., the orthogonal complement),
and let p : V → W be the projection with kernel Re1. We then have a short exact
sequence of Z-modules

0→ Ze1 → Λ→ p(Λ)→ 0.

We claim that p(Λ) ⊆ W is a discrete subgroup; it follows then inductively that p(Λ)
is a finite free Z-module of rank at most dim(W ) = n − 1, hence that Λ is a free
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Z-module of rank at most n; the assumed compactness of g/Λ then forces the rank
to equal n, and so Λ ∼= Zn with respect to some coordinates.

To verify the claim, it suffices to bound from below the norms of nonzero elements
of p(Λ) (this implies that such elements can’t accumulate at the origin, hence neither
can their differences, giving the required discreteness). So let v ∈ Λ with p(v) 6= 0,
i.e.,

v /∈ Re1.

The difference v − p(v) then lies in Re1. We can find an integral multiple me1 of e1

that “best approximates” this difference in the sense that

v − p(v)−me1 ∈ [−1/2, 1/2]e1.

We have v 6= me1, so v−me1, being a nonzero element of Λ, has norm bounded from
below by 1 (the minimal norm of any such element). But elements of [−1/2, 1/2]e1

have norm at most 1/2. The triangle inequality thus forces p(v) to have norm at
least 1/2.)

Having proved that G ∼= U(1)n, we turn to classifying its irreducible finite-dimensional
representations π. By Corollary 1.16, any such π is one-dimensional, and so may be regarded
as a homomorphism

(1.14) π : G→ GL1(C) = C×.

Compose this with the isomorphism

(1.15) Rn/Zn 3 θ = (θ1, . . . , θn) 7→ e(θ) := (e(θ1), . . . , e(θn)) ∈ G

to get a morphism of Lie groups

(1.16) τ : Rn/Zn 3 θ 7→ π(e(θ)) ∈ C×.

Differentiate this to obtain a morphism of Lie algebras

(1.17) Rn 3 θ 7→ dτ(θ) ∈ Lie(C×) = C.

Any such morphism is of the form

dτ(θ) = λ1θ1 + · · ·+ λnθn for some λ = (λ1, . . . , λn) ∈ Cn.

By the compatibility between Lie group morphisms, Lie algebra morphisms and the expo-
nential map, we have

τ(θ) = e(λ1θ1 + · · ·+ λnθn).

Since τ(Zn) = {1}, we have in particular

(1.18) e(λ1) = · · · = e(λn) = 1,

and so λ1, . . . , λn ∈ Z, as required.
We note finally that all of the one-dimensional representations of G = U(1)n that we have

defined are inequivalent; for instance, we verify readily that they (and hence, what amounts
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to the same, their characters) are orthogonal to one another in L2(G), thanks to repeated
application of the basic identity: for ` ∈ Z,

(1.19)

∫
θ∈[0,1]

e(`θ) dθ =

{
1 if ` = 0,

0 otherwise.

�

The content of Peter–Weyl in the setting of the compact connected abelian Lie groups
U(1)n is thus that, as λ varies over Zn, the “trigonometric polynomials” U(1)n 3 z 7→ zλ

have dense span in L2(U(1)n). This may be a familiar fact from abelian Fourier analysis. It
can be established using (e.g.) the Stone–Weierstrass theorem, or a bit of functional analysis.
The proof of the general case of the Peter–Weyl theorem, to be given a bit later, will involve
similar arguments.3

3End of lecture #2, Thursday, 21 Feb 2019
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2. Character theory of compact unitary groups

2.1. Recap. Before beginning, let’s pause to attach some vocabulary to results from last
time.

Definition 2.1. A torus T is a compact connected abelian Lie group.

We saw last time that any n-dimensional torus T is isomorphic to U(1)n, and that its
irreducible representations are indexed by λ ∈ Zn and given by

eλ : U(n)→ U(1)

t = (t1, . . . , tn) 7→ tλ := (tλ11 , . . . , t
λn
n ).

2.2. Conjugacy classes in U(n).

Definition 2.2. The compact unitary group U(n) is defined by

(2.1) U(n) := {g ∈ GLn(C) : 〈gv, gw〉 = 〈v, w〉 for all v, w ∈ Cn},
where 〈v, w〉 :=

∑n
j=1 vjwj denotes the standard inner product. We can also describe it as

the group of matrices g = (gij) whose rows (or columns) form an orthonormal basis, i.e.,

U(n) = {g :
∑
k

gikgjk = δij} = {g :
∑
k

gkigkj = δij}.

From the second description we see in particular that each |gij|≤ 1, hence that U(n) is
compact.

Henceforth set
G := U(n).

We’re interested in studying (finite-dimensional) representations π of G. As we saw last
time, we can do this by studying their characters χπ. Characters are class functions, so we
might get started by recalling what the conjugacy classes in G look like.

Let T ≤ G denote the subgroup of diagonal elements. Then

T ∼= U(1)nt1 . . .
tn

↔ (t1, . . . , tn).

Let W ≤ G denote the subgroup of permutation matrices, i.e., the image of the permu-
tation representation of the symmetric group discussed previously. Then W acts on T by
conjugation, permuting coordinates:

w · t := wtw−1 = (tw−1(1), tw−1(2), . . . , tw−1(n)).

Here in writing w−1(j) we regard w as a permutation of {1, . . . , n}. We have |W |= n!.

Lemma 2.3. Every conjugacy class in G intersects T , and two elements of T are conjugate
in G precisely when they have the same W -orbit.
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Proof. This is presumably known from a linear algebra course as the “spectral theorem for
unitary operators,” but perhaps it won’t hurt to recall the proof:

Let g ∈ G. We can then find an orthonormal basis v1, . . . , vn for Cn consisting of eigen-
vectors for g. (Take for v1 any eigenvector, normalize it to have norm 1, observe that the
unitarity of g implies that g stabilizes the orthogonal complement v⊥1 , take for v2 any norm
one eigenvector of g in v⊥1 , and so on. Alternatively, let Γ denote the closure of the group
generated by g; then Γ is a compact abelian group to which Theorem 1.17 applies. The “two
proofs” are basically the same, of course.) Let h ∈ G have rows v1, . . . , vn. Let e1, . . . , en
denote the standard orthonormal basis of Cn. Then hej = vj, so t := h−1gh is a diagonal
element of G, i.e., t ∈ T . This shows that every conjugacy class in G intersects T . If two
elements of T lie in the same W -orbit, then they are obviously conjugate in G, because
W ≤ G. Conversely, if two elements of T are conjugate in G, then they have the same
multiset of eigenvalues, so we can find a permutation w ∈ W sending one to the other. �

Corollary 2.4. Restriction defines a bijection

{class functions on G} ↔ {W -invariant functions on T}.

2.3. Weight space decompositions of representations of U(n). In particular, let (π, V )
be any finite-dimensional representation of G. Then its character χπ : G→ C is a class func-
tion, hence determined by its restriction χπ|T to T , which is W -invariant. The restriction
χπ|T may be regarded as the character of the restriction π|T : T → GL(V ) of the represen-
tation π. By our general discussion of representations of tori (Lemma 1.24) and of compact
groups (Theorem 1.17), we may decompose π|T as a direct sum of irreducible representations
eλ : t 7→ tλ of T , each occurring with some multiplicities mπ(λ) ∈ Z≥0 (denoted “n(σ)” in
the cited theorem). Of course dim(π) =

∑
λmπ(λ), so only finitely many of the mπ(λ) are

nonzero. Thus for t ∈ T ,

(2.2) χπ(t) =
∑
λ

mπ(λ)tλ.

Setting

V λ := {v ∈ V : π(t)v = tλv for all t ∈ T},
we have

dimV λ = mπ(λ)

and

V = ⊕λV λ.

If mπ(λ) > 0 (equivalently, V λ 6= 0), we say that λ is a weight of π and refer to mπ(λ) as
the multiplicity of λ in π, to V λ as the corresponding weight space, and to nonzero elements
of V λ as weight vectors.

Some examples will presumably clarify matters. In what follows we identify characters
with functions on T as above. We also write, e.g., tj as shorthand for the map T 3 t 7→ tj.
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Example 2.5. (1) The trivial representation π has character 1, so the only weight is λ = 0,
with multiplicity 1.

(2) The standard representation Cn has a basis of weight vectors e1, . . . , en (the stan-
dard basis) with corresponding weights t1, . . . , tn and each of multiplicity 1, so the
character is t1 + · · ·+ tn.

(3) The dual (Cn)∗ of the standard representation, with basis of weight vectors e∗1, . . . , e
∗
n

(the dual of the standard basis, i.e., 〈e∗i , ej〉 = δij) with corresponding weights
t−1
1 , . . . , t−1

n each of multiplicity 1, hence character given by t−1
1 + · · ·+ t−1

n .
(4) The complexified adjoint representation Ad : G → GLR(g) → GL(gC). Here gC ∼=

gln(C) because gln(C) ∼= g ⊕ ig via the map x 7→ (1
2
(x − xt), 1

2
(x + xt)). We can

thus identify gC with the space of n × n complex matrices, which has a standard
basis Eij. The action is described in this optic by Ad(g)x = gxg−1. We have
Ad(t)Eij = (ti/tj)Eij, so the character is given by

∑
i,j ti/tj, which we may rewrite

as n+
∑

i 6=j ti/tj. Thus the trivial character of T is a weight with multiplicity n. The
nontrivial weights are indexed by i 6= j, occur with multiplicity one, and are given
by εi − εj : t 7→ ti/tj. (These, the nontrivial weights for the adjoint action, are in
general called roots.)

We note incidentally that the representation Ad : G → GL(gC) is isomorphic
to End(Cn), i.e., to the tensor product Cn ⊗ (Cn)∗ of the standard representation
and its dual; this isomorphism is reflected in the character identity

∑
i,j ti/tj =

(
∑

i ti)(
∑

j t
−1
j ).

(5) The kth symmetric power Symk(Cn) of the standard representation has a basis
of weight vectors ei1 · · · eik indexed by i1 ≤ · · · ≤ ik, with corresponding weights
ti1 · · · tik , each occurring with multiplicity one; the character is

(2.3)
∑

i1≤···≤ik

ti1 · · · tik .

(6) The kth exterior power Λk(Cn) of the standard representation has a basis of weight
vectors ei1 ∧ · · · ∧ eik indexed by i1 < · · · < ik, with corresponding weights ti1 · · · tik ,
each occurring with multiplicity one; the character is∑

i1<···<ik

ti1 · · · tik ,

which is often called the kth elementary symmetric function.
(7) The kth tensor power (Cn)⊗k of the standard representation has basis of weight

vectors ei1 ⊗ · · · ⊗ eik indexed by any i1, . . . , ik, with corresponding weights ti1 · · · tik .
The character is ∑

i1,...,ik

ti1 · · · tik = (t1 + · · ·+ tn)k,
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i.e., the kth power of the character of the standard representation, as we could have
predicted from Lemma 1.19. Note that nontrivial multiplicities mπ(λ) occur in gen-
eral, and are given by multinomial coefficients.

Note that in all of these examples, we indeed obtained a W -invariant Laurent polynomial∑
λmπ(λ)tλ.

2.4. The Weyl integral formula for U(n). Enough examples for now. Our goal is to use
the orthogonality relations for characters of irreducible representations to derive formulas
for them. Since we’ve seen that the characters assume a particularly simple form when
we restrict them to T , we might try first to understand how the integral over G of a class
function may be expressed in terms of the restriction of that function to T .

Theorem 2.6 (Weyl integral formula). For a continuous class function f : G→ C, we have∫
G

f =
1

|W |

∫
T

|∆|2f,

where
∆(t) :=

∏
i<j

(ti − tj).

Here both integrals are taken with respect to probability Haar measures. More generally, for
any continuous f : G→ C, we have∫

G

f =
1

|W |

∫
g∈G

∫
t∈T
|∆(t)|2f(gtg−1) dt dg.

This should be thought of as a bit like the formula for integrating in polar coordinates in
R3. We give the proof below. For further reading, see

• Weyl’s original treatment (see section V.17 of “Group theory and quantum mechan-
ics” in the course references),
• the treatment given in sections I.5 and IV.1 of BTD (the course reference with those

author initials)
• section VIII.5 of Knapp’s “Lie groups beyond and introduction,”
• section 6.4 of Rossmann’s book,
• and others from the reference list.

Proof. We first review some basics concerning integration on manifolds. Let M be a con-
nected N -manifold, and let ω be a nowhere vanishing differential N -form on M . Then ω
defines an orientation and a volume measure Cc(M) 3 f 7→

∫
M
f dω: for any function f

supported in an oriented coordinate chart (x1, . . . , xN), we set

(2.4)

∫
M

f dω :=

∫
x1,...,xN

f(x1, . . . , xN)ω(x1 ∧ · · · ∧ xN) dx1 · · · dxN ,

and then extend this definition to general f via a suitable partition of unity. If (M,ω) and
(M ′, ω′) are two such pairs and φ : M → M ′ is a differentiable map, that we may express
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the pullback φ∗ω′ as det(φ)ω for some function det(φ) : M → R (the determinant of φ with
respect to ω and ω′). If φ is a diffeomorphism, then we have the change of variables formulas:
for f ∈ Cc(M ′),

(2.5)

∫
M ′
f dω′ =

∫
M

(f ◦ φ) · |det(φ)| dω.

Also, determinant is multiplicative with respect to composition in the obvious sense.
We next recall how to integrate on a compact Lie group using differential forms. Let ω

be a nonzero element of ΛN(g)∗. Then, via the correspondence between g and left-invariant
vector fields on G, we may identify ω with a left-invariant N -form ω̃ on G. For each g ∈ G,
the right translation map Rg : G → G has some determinant det(Rg) (defined with respect
to ω̃ both on source and target). We check readily that g 7→ det(Rg) defines a continuous
homomorphism G → R×+, but since G is compact, any such map is trivial. Thus ω̃ is both
left and right invariant, and so the corresponding volume measure is a Haar measure. We
assume ω normalized so that

∫
G
dω̃ = 1; then f 7→

∫
G
f dω̃ is the probability Haar on G.

The two-sided invariance means that for any g1, g2 ∈ G, the local chart g1e
xg2 7→ x ∈ g at

g1g2 has determinant one at g1g2.
We may similarly realize the probability Haar on T as f 7→

∫
T
fd α̃, where α̃ corresponds

to some nonzero element α ∈ Λn(t)∗.
Equip g with any Ad(T )-invariant scalar product (e.g., by averaging), and let g/t denote

the orthogonal complement to t. Then g = t⊕g/t. The complexification (g/t)C of g/t is then
an Ad(T )-invariant complement to tC in gC; by our discussion of the adjoint representation
above, we see that

(2.6) (g/t)C = ⊕i 6=jCEij,

i.e., it is the space of matrices whose diagonal entries vanish.
There is a unique β ∈ ΛN−n(g/t)∗ so that ω = α ∧ β. For t ∈ T , the operator Ad(t)∗

sends β to det(Ad(t)|g/t)β, but (either by explicit calculation, or using the compactness of
T ) the determinant in question is trivial, so β is Ad(T )∗-invariant. It thus corresponds to a

G-invariant (N−n)-form β̃ on the (N−n)-dimensional manifold G/T , whose corresponding
volume form is invariant under left translation by G. Fubini’s theorem applied in local
coordinates implies that for any f ∈ Cc(G),

(2.7)

∫
G

f dω̃ =

∫
g∈G/T

(

∫
t∈T

f(gt) dα̃(t)) dβ̃(g).

(Alternatively, note that the RHS defines a Haar probability measure on G, hence equals the
LHS by uniqueness of Haar measures.) Applying this relation with f = 1 gives in particular

that
∫
G/T

dβ̃ = 1, hence that the integral of a function G/T → R with respect to dβ̃ is the

same as the integral of its pullback to G with respect to the probability Haar. We can now
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restate the desired integral formula as

(2.8)
1

|W |

∫
g∈G/T

(

∫
t∈T
|∆(t)|2f(gtg−1) dα̃(t)) dβ̃(g) =

∫
G

f dω̃.

The basic idea of the proof is that the map

φ : G/T × T → G

(gT, t) 7→ gtg−1

is generically |W |-to-1 and has determinant |∆|2(t).
Turning to rigorous details, let’s compute det(φ) with respect to the differential forms

β̃ × α̃ on G/T × T and ω̃ on G. The scalar det(φ)(gT, t) is the same as the determinant at
the origin of the composition

g/t⊕ t
(x,y)7→(g exp(x)T,exp(y)t)
99999999999999999K G/T × T φ−→ G

g exp(x′+y)tg−1 7→(x′,y)
9999999999999999K g/t⊕ t,

since in this composition the outermost two arrows have determinant one at the relevant
argument by construction. (A dashed arrow denotes a partial map, defined on a suitable
open.) But since

(gex)(eyt)(gex)−1 ' g exp(x− Ad(t)x+ y)tg−1,

where ' means ignoring terms that depend quadratically or higher upon x and y, we see
that the above composition has the same determinant at the origin as the linear map

(x, y) 7→ (x− Ad(t)x, y).

We may compute the determinant of the operator x 7→ x−Ad(t)x on g/t after complexifying
and using the explicit basis of weight vectors Eij. We obtain in this way that

(2.9) det(φ)(gT, t) =
∏
i 6=j

(1− ti/tj) = |∆|2(t).

We observe next that the function |∆|2: T → R>0 extends to a conjugacy-invariant func-
tion on G sending g ∈ G to the product of the squared magnitudes of the differences between
its distinct eigenvalues, with |∆|2(g) = 0 precisely when g has a repeated eigenvalue. Let
Gsing denote the singular subset consisting of g ∈ G having a repeated eigenvalue; it is
the zero locus of |∆|2, hence a compact subset of G. The function |∆|2 is real-analytic
(e.g., because it is a polynomial in the coefficients of the characteristic polynomial) and not
identically zero on G, so its zero locus Gsing has measure zero; moreover, the volume of
{g ∈ G : |∆|2< ε} tends to zero as ε → 0. By an approximation argument, we can thus
reduce to establishing (2.8) in the special case that f is supported on {g ∈ G : |∆|2≥ ε} for
some ε > 0. In particular, we may assume that f is supported on a compact subset of the
regular subset Greg := G−Gsing consisting of g ∈ G having distinct eigenvalues.

Set Treg := Greg∩T . We observe that it consists of those t ∈ T having trivial W -stabilizer.
(This turns out to be a special feature of G = U(n); what’s essential is that the subset
of t ∈ Treg with trivial W -stabilizer has full measure.) We observe that for t ∈ Treg, its
G-centralizer is T (indeed, any centralizing element must stabilize its eigenspaces, which are
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the one-dimensional spaces Cej). From this and the fact (Lemma 2.3) that the conjugates of
x in T lie in a single W -orbit, we deduce that w · (gT, t) := (gw−1T,wtw−1) defines a simply-
transitive action of W on the fiber {(gT, t) : gtg−1 = x} above x ∈ Greg. In particular, the
fibers all have cardinality |W |. On the other hand, we see from (2.9) that the induced map

(2.10) φ : G/T × Treg → Greg

has everywhere nonvanishing differential. By the inverse function theorem, it follows that φ
defines |W |-fold covering map. By a partition of unity, we may assume that f is supported
in a small connected neighborhood U ⊆ Greg of some x ∈ Greg over which φ−1(U) → U
is the trivial |W |-fold cover. We conclude by applying (2.5) and (2.9) on each connected
component of φ−1(U). �

4

2.5. Primer on symmetric polynomials. We have encountered already several elements
of the ring of Laurent polynomials in the variable t1, . . . , tn. For their further study, it will
be convenient to denote that ring by some letter:

L := Z[t±1
1 , . . . , t±n ]

As a Z-module, L has the basis consisting of the monomials eλ : t 7→ tλ = tλ11 · · · tλnn
considered previously, thus

L = ⊕λ∈ZnZeλ.
As above, we refer to the λ as weights.

The symmetric group W ∼= S(n) acts on L by w · f(t1, . . . , tn) := f(tw(1), . . . , tw(n)).

Definition 2.7. We say that f ∈ L is symmetric if w · f = f for all w ∈ W , and alternating
if w · f = (−1)wf for all w ∈ W . We denote by Lsym and Lalt the respective spaces of
symmetric and alternating Laurent polynomials.

We have seen that for any finite-dimensional representation π of G = U(n), the restriction
χπ|T to T of its character χπ is a symmetric polynomial. To be pedantic, χπ|T is the function
U(1)n → C associated to a unique symmetric polynomial; we will identify polynomials with
their associated functions freely in what follows. We will also abbreviate the restriction χπ|T
simply by χπ, keeping in mind that the character is determined by its restriction in view of
Corollary 2.4. Subject to these identifications, χπ ∈ Lsym.

On the other hand, the discriminant polynomial ∆(t) =
∏

i<j(ti − tj) that appeared in
the Weyl character formula is alternating. One can make this more visible by using the
Vandermonde determinant formula ∆(t) = det(tn−ji )i,j=1..n. We can see that ∆ ∈ Lalt by
recalling that the determinant changes sign when we swap a pair of its rows or columns.

The monomial symmetric polynomials are defined for λ ∈ Zn by

Mλ :=
∑
µ∈W ·λ

eµ.

4End of lecture #3, Tuesday, 26 Feb 2019
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They obviously belong to Lsym. Note that we sum over the W -orbit of λ without multiplicity.
Note also that Mλ(t) is symmetric not only with respect to the argument t, but also with
respect to the index λ, i.e., Mw·λ = Mλ. For example, if n = 2, then M(7,6)(t) = t71t

6
2 + t61t

7
2 =

M(6,7)(t), while M(7,7)(t) = t71t
7
2. We get a basis for Lsym from the Mλ’s by considering one λ

from each W -orbit on Zn. It will be convenient to choose an explicit set of representatives:

Definition 2.8. We say that λ ∈ Zn is dominant if λ1 ≥ · · · ≥ λn, and strictly dominant if
λ1 > · · · > λn.

Thus the dominant λ give a set of representatives for the W -orbits on Zn, and so the Mλ

for dominant λ give a basis for Lsym.
The elementary symmetric polynomials are defined for k = 1, . . . , n by

σk(t) :=
∑

1≤i1<···<ik≤n

ti1 · · · tik .

For example, σ1 = t1 + · · ·+tn, σ2 = t1t2 +t1t3 ++ · · ·+tn−1tn, while σn = t1 · · · tn. We might
recall from §2.3 that σk is the character of the kth exterior power Λn(Cn) of the standard
representation Cn. The σk together with the inverse of σn are well-known to generate Lsym;
for completeness we state this below and sketch the proof.

Lemma 2.9. We have

Lsym = ⊕λ:dominantZMλ = Z[σ1, σ2, . . . , σn−1, σn, 1/σn].

Proof. The first identity was noted earlier. For the second identity, the containment “⊇”
is clear; we must verify the reverse containment “⊆”, i.e., that Mλ belongs to the RHS
for all dominant λ. Replacing Mλ with Mλ/σ

λn
n has the effect of replacing λ with (λ1 −

λn, λ2 − λn, . . . , λn−1 − λn, 0). We may reduce in this way to the case that λn = 0. Having
performed this reduction, we now induct on λ with respect to lexicographical ordering (i.e.,
ordering first by λ1, then using λ2 to break the tie if necessary, and so on). For the base case
λ = (0, . . . , 0) we have Mλ = 1 ∈ Z. In general, we observe that

Mλ(t) = tλ11 · · · tλnn = tλ1−λ21 (t1t2)λ2−λ3 · · · (t1 · · · tn−1)λn−1−λn

= σλ1−λ21 σλ2−λ32 · · ·σλn−1−λn
n−1 (t) + · · · ,

where · · · denotes an integral linear combination of Mµ taken over dominant µ lexicographi-
cally lower than λ. By our inductive hypothesis, Mµ/σ

µn
n belongs to Z[σ1, . . . , σn−1] for each

such µ, hence also Mλ ∈ Z[σ1, . . . , σn−1], as required. �

The monomial alternating polynomials are defined by

Aλ :=
∑
w∈W

(−1)wew·λ.

They obviously define elements of Lalt. The discriminant ∆ arises in this way. Indeed, we
may expand the determinental formula for ∆(t) noted earlier as

∑
w∈W (−1)w

∏
j t
n−j
w(j) or as



30 PAUL D. NELSON∑
w∈W (−1)w

∏
i t
n−w(i)
i . Introducing the notation

(2.11) ρ := (n− 1, n− 2, . . . , 2, 1, 0) ∈ Zn,
so that tρ = tn−1

1 tn−2
2 · · · t2n−2tn−1, we obtain ∆(t) =

∑
w∈W (−1)wtw·ρ, that is to say,

∆ = Aρ.

As in the case of monomial symmetric polynomials, the Aλ are alternating not just with
respect to their argument but also their index: Aw·λ = (−1)wAλ. In particular, if λi = λj
for some i 6= j, then Aλ = 0. For instance, if n = 2, then M(7,6)(t) = t71t

6
2− t61t72 = −M(6,7)(t),

while M(7,7)(t) = t71t
7
2 − t71t72 = 0. (To established the required vanishing in general, take for

w the transposition swapping i and j, so that w · λ = λ; then Aλ = (−1)wAw·λ = −Aλ,
i.e., 2Aλ = 0, and so Aλ = 0. Alternatively, consider cosets in W of the two-element group
generated by w, and note that the sum in the definition of Aλ vanishes over each such coset.)
If λ has distinct components, then Aλ 6= 0; indeed, its lexicographically highest term is eλ.

As λ runs over the W -orbits of λ ∈ Zn having distinct components, the Aλ furnish a
basis for Lalt. The strictly dominant λ give a system of representatives for such orbits. An
equivalent system is given by the λ + ρ for dominant λ, noting that the map λ 7→ λ + ρ
induces a bijection between dominant and strictly dominant weights. Thus

(2.12) Lalt = ⊕λ:strictly dominantZAλ = ⊕λ:dominantZAλ+ρ.

Lemma 2.10. Multiplication by ∆ induces an isomorphism of Z-modules

(2.13) Lsym f 7→∆f−−−→ Lalt.

Proof. The indicated map is clearly defined (because w·(∆f) = (w·∆)(w·f) = (−1)w∆f) and
injective, so the content here is that any alternating Laurent polynomial h may be divided
by ∆ inside the ring of Laurent polynomials. After clearing denominators by multiplying h
by a sufficiently large power of t1 · · · tn, it suffices to show that any alternating polynomial
h is divisible by ∆ in the ring Z[t1, . . . , tn] of ordinary polynomials. For this we induct on
n. The case n ≥ 1 is tautological, because then ∆ = 1, so suppose n ≥ 2. We note (since 2
is not a zerodivisor in Z) that the alternating condition on h implies that it vanishes under
any substitution ti := tj (i 6= j). (Indeed, from some perspectives it would be better to
take this property as the definition of alternating.) On the other hand, by division with
remainder in the variable tn, we may write h = (tn − t1)q + r where q ∈ Z[t1, . . . , tn] and
r ∈ Z[t1, . . . , tn−1], but then substituting tn := t1 shows that r = 0, and so h = (tn − t1)q.
Since h vanishes under the substitution tn := t2 and our polynomial rings are integral
domains, we see that q vanishes under the substitution tn := t2. We may thus iterate the
above division with remainder argument to see that h = (tn − t1)(tn − t2) · · · (tn − tn−1)q′

for some q′ ∈ Z[t1, . . . , tn]. We may expand q′ in powers of tn as
∑
ajt

j
n, with coefficients

aj ∈ Z[t1, . . . , tn−1]. We may likewise expand h in powers of tn; each coefficient in this
expansion is then an alternating polynomial in the variables t1, . . . , tn−1, so the same holds
for the aj. By our inductive hypothesis, aj is divisible by

∏
i<j≤n−1(ti − tj). It follows as

required that f is divisible by ∆. �
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In particular, the division in the following definition makes sense:

Definition 2.11. The Schur polynomial attached to a dominant λ ∈ Zn is

sλ :=
Aλ+ρ

Aρ
∈ Lsym.

If t is regular in the sense that ti 6= tj for i 6= j, then

(2.14) sλ(t) =
det(t

λj+n−j
i )∏

i<j(ti − tj)
.

Otherwise, sλ(t) must be understood by continuity, or by first simplifying the above rational
function to a polynomial. For instance, when n = 2, we have for λ1 ≥ λ2 that

s(λ1,λ2)(t) =

det

(
tλ1+1
1 tλ21

tλ1+1
2 tλ22

)
t1 − t2

=
tλ1+1
1 tλ22 − tλ21 t

λ1+1
2

t1 − t2
= tλ11 t

λ2
2 + tλ1−1

1 tλ2+1
2 + · · ·+ tλ21 t

λ1
2 .

Since the Aλ+ρ give a basis for Lalt, we deduce:

Lemma 2.12. The sλ give a basis for Lsym:

Lsym = ⊕λ:dominantZsλ.
We’ll need later the computation of the values of the Schur polynomials at the identity

element t = 1 = (1, . . . , 1) ∈ U(1)n:

Lemma 2.13. Let λ ∈ Zn be dominant. Temporarily abbreviate λ′ := λ + ρ, i.e., λ′j :=
λj + n− j. Then

sλ(1) =
∏
i<j

λ′i − λ′j
j − i

.

In particular, sλ(1) > 0.

Proof. A direct attempt via (2.14) gives “0/0,” so we need to take a limit along some sequence
of regular elements t tending to 1. A clever choice is given by tj := zn−j, where z ∈ U(1)
traverses a sequence tending to 1. The numerator then simplifies to another Vandermonde
determinant:

det(t
λj+n−j
i ) = det(z(n−i)λ′j) =

∏
i<j

(zλ
′
i − zλ′j).

Using that za − zb ∼ log(z)(a− b), we arrive at the required formula. �

We record some inner product formulas:

Lemma 2.14. Let 〈, 〉 denote the inner product in L2(T ) taken with respect to the probability
Haar, so that 〈eλ, eµ〉 = δλµ. For strictly dominant λ, µ, we have

〈∆sλ,∆sµ〉 = 〈Aλ+ρ, Aµ+ρ〉 = |W |δλµ.
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Proof. Immediate. �

2.6. Weyl character and dimension formulas for U(n).

Theorem 2.15. Let (π, V ) belong to the set Irr(U(n)) of (isomorphism classes of) irreducible
finite-dimensional representations of U(n).

(1) There exists a unique dominant weight λ ∈ Zn so that (the restriction to the torus
of) the character χπ is equal to the Schur polynomial sλ. We write in this case
(π, V ) = (πλ, Vλ). The weight space V λ is one-dimensional, while V µ = {0} for any
lexicographically larger weight µ.

(2) Every dominant weight λ arises in this way, giving a bijection

Irr(U(n))↔ {dominant λ ∈ Zn}.

Proof. We first prove part (i). Recall the notation G := U(n) ≥ T ∼= U(1)n. Write
χπ =

∑
µmπ(µ)eµ as before. Let λ be the lexicographically highest weight for which

mπ(λ) 6= 0. Since χπ is W -invariant, we know that λ is dominant, as otherwise it would be
lexicographically smaller than something in its W -orbit. In any event,

(2.15) χπ = mπ(λ)eλ + · · · ,
where · · · denotes the contribution from lexicographically smaller weights. Since also ∆ =
eρ + · · ·, it follows that

(2.16) ∆χπ = mπ(λ)eλ+ρ + · · · .
Since the Laurent polynomial ∆χπ is alternating, we may group its terms into monomial
alternating functions, giving

(2.17) ∆χπ = mπ(λ)Aλ+ρ + · · · ,
where · · · denotes a linear combination of Aµ+ρ taken over dominant µ lexicographically
lower than λ. We combine this expansion with the orthogonality relations for characters
(Theorem 1.21), the Weyl integral formula (Theorem 2.6), and the inner product formulas
for monomial alternating functions (Lemma 2.14) to see that

(2.18) 1 = 〈χπ, χπ〉G =
1

|W |
〈∆χπ,∆χπ〉T ≥

1

|W |
〈mπ(λ)Aλ+ρ,mπ(λ)Aλ+ρ〉T = |mπ(λ)|2.

But since mπ(λ) is a positive integer, it follows that mπ(λ) = 1 and also that equality holds
in each step. In particular, the remainder terms “· · ·” in (2.17) must vanish identically, i.e.,
∆χπ = Aλ+ρ, giving the required formula χπ = sλ. The uniqueness of λ is clear from the
orthogonality relations for the Schur polynomials.

We give two proofs that every dominant weight λ arises in this way:

(1) Assume for the sake of contradiction that λ does not arise, i.e., that χπ 6= sλ for all
π ∈ Irr(G). We may uniquely extend the W -invariant function sλ on T to a class
function on G. For each π ∈ Irr(G), we may write χπ = sλ′ for some dominant λ′ 6= λ.
By the orthogonality relations for the Schur polynomials, it follows then that sλ is
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orthogonal to χπ in L2(G). But this contradicts the Peter–Weyl theorem (Theorem
1.22).

(2) Let W denote the following representation of G, whose definition may be motivated
by the proof of Lemma 2.9:

W := Λ(Cn)⊗λ1−λ2 ⊗ Λ2(Cn)⊗λ2−λ3 ⊗ · · · ⊗ Λn−1(Cn)⊗λn−1−λn ⊗ Λn(Cn)λn .

(Note that Λn(Cn) is the one-dimensional determinant representation, so it makes
sense to raise it to any integral power λn, giving the one-dimensional representation
U(n) 3 g 7→ det(g)λn ∈ U(1) denoted above by Λn(Cn)λn .) Thus, as before,

χW = σλ1−λ21 σλ2−λ32 · · ·σλn−1−λn
n−1 σλnn = eλ + · · · ,

where · · · denotes the contribution of lexicographically smaller weights. On the other
hand, we may decompose W into irreducible subspaces (Theorem 1.21), taking into
account the recently-established description of Irr(U(n)):

W = ⊕dominant µV
⊕n(µ)
µ .

(By convention, here we sum only over those µ which we as yet know to arise from
Irr(U(n)).) At the level of characters, this decomposition reads χW =

∑
µ n(µ)χµ.

Multiplying through by ∆ = eρ + · · · and taking into account the formula ∆χµ =
Aµ+ρ = eµ+ρ + · · ·, we obtain

eλ+ρ + · · · = n(λ)eλ+ρ + · · · .
Thus n(λ) = 1, that is to say, Vλ occurs (exactly once) as a subrepresentation of W .
In particular, the representation Vλ exists in the first place, as required.

(A third proof, closely related to the second: if sλ is orthogonal to the character
of every irreducible representation, then it is orthogonal in particular to any of the
ring Z[σ1, . . . , σn−1, σn, 1/σn] generated by the characters of the exterior powers of
the standard representation and the inverse of the determinant, but we have seen
that this ring is equal to Lsym .)

�

We note incidentally that the second proof given above of the surjectivity of the map
Irr(U(n)) → {dominant λ ∈ Zn} gives an independent proof of the Peter–Weyl theorem in
this case. We note also that, with notation as in that proof, we may realize Vλ inside W
explicitly, as follows. The proof shows that the weight space W [λ] is one-dimensional, hence
coincides with the one-dimensional weight space Vλ[λ]. Consequently, Vλ is the representation
generated by (i.e., spanned by the G-orbit of) any nonzero element of W [λ], such as e⊗λ1−λ21 ⊗
(e1 ∧ e2)⊗λ2−λ3 ⊗ · · ·.

This result gives a satisfying description of the character theory of U(n). It has some
immediate applications:

(1) A formula for the multiplicity in mπλ(µ) of the weight µ in the representation πλ, as
the coefficient of eµ in sλ = Aλ+ρ/∆. One way to “evaluate” this further is to write
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∆(t) = tρ
∏

i<j(1− tj/ti) and expand (1− tj/ti)−1 as a geometric series (look up the

Kostant partition formula).
(2) A formula for the coefficients of the decomposition of a tensor product of irreducible

representations of U(n): writing

(2.19) Vλ′ ⊗ Vλ′ ∼= ⊕λn(λ)Vλ,

we have χλ′χλ′′ =
∑

λ n(λ)χλ, hence∑
λ

n(λ)Aλ+ρ = ∆χλ′χλ′′ =
Aλ′+ρAλ′′+ρ

∆
.

We may then determine n(λ) as the coefficient of eλ+ρ on both sides. (Look up the
Steinberg multiplicity formula.)

(3) A proof of the irreducibility of several of the representations considered in §2.3,
such as Symk(Cn) or Λk(Cn). (A direct “algebraic” proof of their irreducibility is
not very difficult, so the present argument should be regarded as an alternative
“analytic” proof.) For example, consider V = Symk(Cn). By “stars and bars,” we
have dim(V ) =

(
k+n−1
n−1

)
=
(
n+k−1

k

)
. On the other hand, λ = (k, 0, . . . , 0) is the

lexicographically highest weight of V . Thus λ is lexicographically highest among
the dominant weights µ contributing to the decomposition χV =

∑
µ n(µ)χµ, and so

Vλ must occur as an irreducible subrepresentation of V . In particular, dim(Vλ) ≤
dim(V ). On the other hand, a short calculation with the dimension formula gives
readily the “numerical coincidence” dim(Vλ) = dim(V ) (see the homework), from
which we deduce that V ∼= Vλ; in particular, V is irreducible. A similar argument
applies to the exterior powers.

5

2.7. Some groups closely related to U(n). Set

(2.20) SU(n) := {g ∈ U(n) : det(g) = 1}.
Let

(2.21) Z := {

z · · ·
z

 ∈ U(n) : z ∈ U(1)} ∼= U(1)

denote the center of U(n), and let

(2.22) PU(n) := U(n)/Z

denote the corresponding quotient. Observe that

• given a representation of PU(n), we obtain a representation of U(n) by pullback, i.e.,
by composing with the projection U(n)� PU(n), and

5End of lecture #4, Thursday, 28 Feb 2019
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• given a representation of U(n), we obtain a representation of SU(n) by restriction,
i.e., by composing with the inclusion SU(n)→ U(n).

Theorem 2.16. The operations of pullback and restriction just described preserve irreducibil-
ity, inducing an injective map

Irr(PU(n)) ↪→ Irr(U(n))

and a surjective map
Irr(U(n))� Irr(SU(n)).

The latter maps and the bijection Irr(U(n)) ↔ {dominant elements of Zn} as in the Weyl
character formula are compatible with bijections

Irr(SU(n))↔ {dominant elements of Zn/Ze0}, e0 := (1, . . . , 1)

and
Irr(PU(n))↔ {dominant elements of Zn0 := {λ ∈ Zn :

∑
j

λj = 0}}.

Proof. We leave most of this to the homework; here we just record a few remarks that
hopefully make the description of what happens under restriction to SU(n) seem plausible.
Observe that if λ, µ are dominant elements of Zn differing by a multiple of e0, say λ = µ+`e0,
then the corresponding irreducible representations πλ, πµ of U(n) satisfy

(2.23) πλ ∼= πµ ⊗ det`.

Indeed, we may check this by comparing the characters of these representations, and we have

(2.24) χλ(t) =
det(t

λj+n−j
i )

∆(t)
= (t1 · · · tn)`︸ ︷︷ ︸

det(t)`

det(t
µj+n−j
i )

∆(t)
.

It follows that πλ and πµ have isomorphic restrictions to SU(n− 1). �

2.8. The case of SU(2).

Theorem 2.17. We have bijections

(2.25) Irr(SU(2))↔ Z≥0 ↔ {dominant λ = (λ1, λ2) ∈ Z2/Z(1, 1)}

πλ ↔ λ↔ (the class of (λ, 0))

such that the character χλ of πλ is given by

(2.26) χλ

(
t
t−1

)
=

det

(
tλ+1 1
t−λ−1 1

)
t− t−1

= tλ + tλ−2 + tλ−4 + · · ·+ t−λ.

We have dim(πλ) = λ+ 1. We have

(2.27) πλ ∼= Symλ(C2) ∼= Symλ((C2)∗),
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where C2 denotes as usual the standard representation of SU(2). If we let x, y ∈ (C2)∗ denote
the standard basis elements of the dual given in coordinates z = (z1, z2) by x : z 7→ z1, y : z 7→
z2, then πλ ∼= Symλ((C2)∗) identifies with the space C[x, y](λ) of homogeneous polynomials

f of degree λ in the variables x and y, with the action of g =

(
a b
c d

)
∈ SU(2) given by

g ·f(x, y) = f((x, y)g) = f(xa+yc, xb+yd); a basis of weight vectors for T =

{(
t
t−1

)}
≤

SU(2) is given by

(2.28) xλ, xλ−1y, xλ−2y2, . . . , yλ,

with corresopnding weights

(2.29)

(
t
t−1

)
7→ tλ, tλ−2, tλ−4, . . . , t−λ.

Finally, we have the Clebsch–Gordan rule: for λ, µ ∈ Z≥0,

(2.30) πλ ⊗ πµ ∼= πλ+µ ⊕ πλ+µ−2 ⊕ πλ+µ−4 ⊕ · · · ⊕ π|λ−µ|.

Proof. Almost every assertion follows immediately from Theorem 2.16 and the description
(2.3) of the weights of symmetric powers of the standard representation, together with the
analogous description of those of its dual. To verify the existence of the isomorphism (2.30),
we just need to check that χλχµ = χλ+µ+· · ·+χ|λ−µ|, which is easy to derive from (2.26). �

2.9. Branching problems. Given compact groups H ≤ G and a representation (π, V ) of
G, we may form the restricted representation π|H : H → GL(V |H) of H; here V |H is just V ,
but regarded as a representation of H. The branching problem is to describe this restriction
in terms of π.

We assume henceforth that π is irreducible. Its restriction is then “typically” not irre-
ducible, but may in any event be decomposed as

(2.31) V |H∼= ⊕σ∈Irr(H)W
⊕nπ(σ)
σ

for some nonnegative integers nπ(σ), called “branching coefficients.” The problem is to
describe these.

We start with some examples that are either basic or have already been discussed implicitly.

(1) If H = G, then nπ(σ) is 1 if σ ∼= π and 0 otherwise.
(2) If H = {1} is the trivial subgroup, then Irr(H) is a singleton consisting of the trivial

representation σtrivial, and we have nπ(σtrivial) = dim(π).
(3) If G = U(n) and H ∼= U(1)n is the diagonal subgroup, then σ is the one-dimensional

representation σ = σµ := eµ : t 7→ tµ = tµ11 · · · tµnn attached to some weight µ ∈ Zn.
The branching coefficient nπ(σ) is just the weight multiplicity mπ(µ) considered in
§2.3 and onwards. These integers are typically > 1 when n ≥ 3 (cf. homework).
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(4) If G = U(n) and H = SU(n), then Theorem 2.16 implies that for each π there is
exactly one σ (namely, the restriction of π) for which nπ(σ) is nonzero, and for that
σ, we have nπ(σ) = 1.

The overall theme here is that the larger the subgroup H, the more likely the represen-
tations of G are to have irreducible restriction to H, or at least to have “mild” branching
coefficients. This theme is supported further by the example

(2.32) H := U(n− 1) ↪→ G := U(n)

h 7→
(
h 0
0 1

)
,

which we now address. As a matter of notation, for dominant elements λ ∈ Zn and µ ∈ Zn−1,
let us write πλ ∈ Irr(U(n)) and σµ ∈ Irr(U(n − 1)) for the corresponding irreducibles, and
nλ(µ) := nπλ(σµ) for the branching coefficient. We say that µ interlaces λ, denoted µ ≺ λ, if

(2.33) λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn.

Theorem 2.18. We have nλ(µ) = 0 unless µ ≺ λ, in which case nλ(µ) = 1.

Proof. We must verify that

(2.34) πλ|U(n−1)
∼= ⊕µ≺λσµ.

It suffices to check that the representations of U(n − 1) appearing on both sides have
the same character. It suffices to compare their characters on the representatives t =
diag(t1, . . . , tn−1, 1) for the conjugacy classes in U(n − 1) ≤ U(n). We’ll undertake this
comparison in detail when n = 3; the general case is similar, but with many occurrences of
(· · ·). By the character formula, our task is to show that

(2.35)
1

(t1 − t2)(t1 − 1)(t2 − 1)
det

tλ1+2
1 tλ2+1

1 tλ31

tλ1+2
2 tλ2+1

2 tλ32

1 1 1

 =
1

t1 − t2

∑
µ≺λ

det

(
tµ1+1
1 tµ21

tµ1+1
2 tµ22

)
.

We simplify the 3×3 determinant using elementary column operations, replacing its columns
a, b, c with a− b, b− c, c. That determinant then simplifies to

(2.36) det

tλ1+2
1 − tλ2+1

1 tλ2+1
1 − tλ31 tλ31

tλ1+2
2 − tλ2+1

2 tλ2+1
2 − tλ32 tλ32

0 0 1

 = det

(
tλ1+2
1 − tλ2+1

1 tλ2+1
1 − tλ31

tλ1+2
2 − tλ2+1

2 tλ2+1
2 − tλ32

)
.

Using that the determinant is linear in the rows, and expanding out the definition of “µ ≺ λ,”
our task reduces to checking that

(2.37) det

 t
λ1+2
1 −tλ2+1

1

t1−1

t
λ2+1
1 −tλ31
t1−1

t
λ1+2
2 −tλ2+1

2

t2−1

t
λ2+1
2 −tλ32
t2−1

 =
∑

λ1≥µ1≥λ2≥µ2≥λ3

det

(
tµ1+1
1 tµ21

tµ1+1
2 tµ22

)
.

This identity follows from the linearity of the determinant with respect to columns and

geometric series identities such as
t
λ1+2
1 −tλ2+1

1

t1−1
=
∑

λ1≥µ1≥λ2 t
µ1+1. �
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Groups (G,H) with the property that every branching coefficient nπ(σ) belongs to {0, 1}
are called strong Gelfand pairs ; we may discuss them in more detail later.

2.10. Gelfand–Tsetlin bases. We now describe briefly how to deduce from the formulas for
the branching coefficients for U(n− 1) ≤ U(n) a canonical decomposition of any irreducible
representation of U(n). Let µ ∈ Zn be dominant, and (πµ, Vµ) ∈ Irr(U(n)) the corresponding
representation. The decomposition (2.34) implies that for each dominant ν ∈ Zn−1 that
interlaces µ, there is a unique U(n − 1)-subrepresentation Vµ

ν

 of Vµ of parameter ν, and

moreover

(2.38) Vµ = ⊕ν≺µVµ
ν

.

The idea is now to iterate this decomposition using the chain of subgroups U(n− 2),U(n−
3), . . . , all the way down to U(1), whose irreducible representations are all one-dimensional.
In preparation for this iteration, we set λ(n) := µ and denote by λ(j) a dominant element of
Zj. With this notation, (2.38) now reads

(2.39) Vµ|U(n−1)= ⊕λ(n−1)≺λ(n)=µV
 λ(n)

λ(n−1)

.

We now apply the same reasoning to the restriction to U(n − 2) of each representation
V λ(n)

λ(n−1)

 of U(n− 1) arising above, giving

(2.40) Vµ|U(n−2)= ⊕λ(n−2)≺λ(n−1)≺λ(n)=µV

λ(n)

λ(n−1)

λ(n−2)


.

Proceeding, we eventually obtain a canonical decomposition of Vµ into one-dimensional sub-
spaces:

(2.41) Vµ = ⊕λ(1)≺λ(2)≺···≺λ(n)=µV
λ(n)

· · ·
λ(1)


.

Let’s formalize things a bit:

Definition 2.19. A Gelfand–Tsetlin pattern of order n ≥ 1 is a column vector λ =

λ(n)

· · ·
λ(1)

,

with λ(j) ∈ Zj, so that λ(1) ≺ · · · ≺ λ(n). For instance, if n = 3, then we can visualize GT(n)
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as the space of all triangular arrays

(2.42) λ =

λ
(3)
1 λ

(3)
2 λ

(3)
3

λ
(2)
1 λ

(2)
2

λ
(1)
1


satisfying the interlacing conditions

(2.43) λ
(3)
1 ≤ λ

(2)
1 ≤ λ

(3)
2 ≤ λ

(2)
2 ≤ λ

(3)
3

and

(2.44) λ
(2)
1 ≤ λ

(1)
1 ≤ λ

(2)
2 .

We denote by GT(n) the set of all Gelfand–Tsetlin patterns λ of order n, and by

(2.45) GT(n)µ := {λ ∈ GT(n) : λ(n) = µ}
the subset of Gelfand–Tsetlin patterns having “top row” equal to µ.

Theorem 2.20. For each dominant µ ∈ Zn there is a unique decomposition

Vµ = ⊕λ∈GT(n)µVλ

of Vµ ∈ Irr(U(n)) into one-dimensional subspaces Vλ, indexed by λ ∈ GT(n)µ, with the
property that for each j ∈ {1..n} and ν ∈ Z(j), the subspace

⊕λ∈GT(n)µ:λ(j)=νVλ

of Vµ is U(j)-invariant and isomorphic as a representation of U(j) to a direct sum of iso-
morphic copies of Vν ∈ Irr(U(j)); it is then the maximal subspace with this property.

Proof. More-or-less immediate from the above discussion; ask me if anything seems unclear.
�

This decomposition can be refined further by choosing basis elements for the one-dimensional
spaces Vλ and describing the representation explicitly in terms of that basis, but we will not
pursue such refinements here.
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3. Matrix coefficients for compact groups and the Peter–Weyl theorem

3.1. Spaces of matrix coefficients. LetG be a compact group and (π, V ) a finite-dimensional
representation. So far, our main tool for saying anything interesting about π has been via
its character χπ : G→ C, defined as the composition

(3.1) G
π−→ GL(V ) ↪→ End(V )

trace−−→ C.

To say more, we replace the trace map by a general linear functional α ∈ End(V )∗. We
denote by πα : G→ C the resulting composition

(3.2) G
π−→ GL(V ) ↪→ End(V )

α−→ C.

Definition 3.1. A matrix coefficient of π = (π, V ) is a function G → C of the form πα for
some α ∈ End(V ). We denote by

(3.3) A(π) := {πα : α ∈ End(V )∗}

the space of matrix coefficients of π.

For example, if α is the trace map, then πα = χπ, so the character χπ ∈ A(π) is a matrix
coefficient.6

3.2. Uniqueness of invariant inner products. It will be convenient in discussing matrix
coefficients to suppose that our representations are unitary, so that we can work simply
with orthonormal bases for a given representation rather than bases and dual bases for a
representation and its dual. In making this assumption it’s convenient to know the following:

Lemma 3.2. For (π, V ) ∈ Irr(G), any two invariant inner products 〈, 〉1 and 〈, 〉2 on V
differ by a positive scalar: there exists C > 0 so that 〈u, v〉1 = C〈u, v〉2 for all u, v ∈ π.

Proof. We may identify inner products 〈, 〉 with certain linear maps

V → V
∗

v 7→ 〈v, ·〉.

The inner product is invariant if and only if the linear map is equivariant, i.e., defines an
element of the space HomG(π, π∗). But Schur’s lemma implies that the latter space is one-
dimensional. Hence any two invariant inner products differ by a scalar. Positive-definiteness
forces the scalar to be positive. �

6End of lecture #5, Tuesday, 5 March
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3.3. Matrix entries as a basis for the space of matrix coefficients. We suppose

henceforth that π is unitary, and fix an orthonormal basis {ei}dim(π)
i=1 for V . Each T ∈

End(V ) then defines a matrix with entries Tij = 〈Tej, ei〉. Write εij ∈ End(V )∗ for the map
End(V ) → C assigning to an operator T the matrix entry Tij. Then the εij give a basis
for End(V )∗, and so the functions πij := πεij span the space A(π) of matrix coefficients of
π. (They need not in general be linearly independent: consider for instance a direct sum of
copies of the trivial representation, for which πii(g) = 1 for all i and g.) The numbers πij(g)
are the matrix entries of π(g). We may write the map trace : End(V ) → C as the sum of
diagonal matrix entries

∑
i εii, so that χπ =

∑
i πii.

3.4. Special functions as matrix coefficients. “Most” interesting special functions in
mathematics and mathematical physics (Bessel, Whittaker, Legendre, Laguerre, . . . ) arise
as matrix coefficients of representations, and may be profitably studied from this perspective.
For instance, G = R/2πZ has a representation π on V = C2 given by the rotations

π(θ) =

(
cos θ sin θ
− sin θ cos θ

)
=

(
π11(θ) π12(θ)
π21(θ) π22(θ)

)
,

whose matrix coefficients are thus the trigonometric functions. Their addition law is ob-
tained by writing the homomorphism property π(θ1 + θ2) = π(θ1)π(θ2) as πij(θ1 + θ2) =∑

k πik(θ1)πkj(θ2), i.e.,

(3.4)

(
cos(θ1 + θ2) sin(θ1 + θ2)
− sin(θ1 + θ2) cos(θ1 + θ2)

)
=

(
cos θ1 sin θ1

− sin θ1 cos θ1

)(
cos θ2 sin θ2

− sin θ2 cos θ2

)
,

giving a convenient way to remember the formulas cos(θ1+θ2) = cos(θ1) cos(θ2)−sin(θ1) sin(θ2)
and sin(θ1 + θ2) = cos(θ1) sin(θ2) + sin(θ1) cos(θ2). See the book by Vilenkin for many more
examples like this.

3.5. Some actions of G×G. Anyway, the association α 7→ πα defines a map

(3.5) End(V )∗ → A(π).

The spaces involved in this map are naturally representations of the product group G×G:
For (g1, g2) ∈ G×G and α ∈ End(V )∗, we denote by (g1, g2) · α the functional

End(V )→ C
T 7→ α(π(g1)−1Tπ(g2))

Another way to arrive at the same definition is via the external tensor product V1 � V2 of
representations V1 of G1 and V2 of G2 as in the homework. This is the representation on
the tensor product space given by (g1, g2) · (v1 ⊗ v2) = g1v1 ⊗ g2v2. We have equivariant
identifications

(3.6) End(V )∗ ∼= (V ∗ � V )∗ ∼= V ∗ � V.

For any function f : G→ C, we write (g1, g2) · f for the function

G→ C
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x 7→ f(g−1
1 xg2).

This definition applies to f ∈ A(π), and the space A(π) is G×G-invariant. The map (3.5)
is equivariant for these actions of G×G.

We denote by ∆G the diagonal subgroup {(g, g) : g ∈ G} of G × G. Then the fixed
subspace L2(G)∆G is the space of class functions L2(G)class.

3.6. Burnside’s lemma. The spaces of matrix coefficients are particularly well-behaved in
the case of an irreducible representation:

Lemma 3.3. Let (π, V ) ∈ Irr(G). Then

(i) End(V )∗ and A(π) define irreducible representations of G×G, and the map End(V )∗ →
A(π) is an isomorphism.

(ii) The ∆G-fixed subspace (End(V )∗)∆G is the one-dimensional space C trace of multiples
of trace : End(V )→ C, whereas A(π)∆G is the one-dimensional space Cχπ of multiples
of the character of π.

(iii) (Burnside’s lemma) The matrix entries πij define linearly independent functions on G.
The set {π(g) : g ∈ G} spans End(V ).

Proof. (i) From the homework, we know that if V1 and V2 are irreducible representations
of the (compact) groups G1 and G2, then V1 � V2 is an irreducible representation of
G1 ×G2. From this and (3.6) we deduce that End(V )∗ is G×G-irreducible. The map
End(V )∗ → A(π) is equivariant, surjective (by definition) and nonzero (since its image
contains χπ), hence its kernel W is a proper invariant subspace of End(V )∗, but since
End(V )∗ is irreducible, we must have W = {0}. Therefore the map in question is an
isomorphism; in particular, A(π) is irreducible.

(ii) It’s clear that trace and χπ define nonzero elements of End(V ∗)∆G and A(π)∆G, so we
just need to check that the latter two spaces are at most one-dimensional. Part (i)
implies that they are isomorphic, so we may conclude via the identification End(V )∗ ∼=
End(V ∗) and Schur’s lemma in the form dim EndG(V ∗) ≤ 1.

(iii) The πij are the images of the basis elements εij under the isomorphism End(V )∗ →
A(π), so they are linearly independent. For the second assertion, let W ≤ End(V )
denote the span of {π(g) : g ∈ G}. If W 6= End(V ), then we can find a nonzero
α ∈ End(V )∗ vanishing on W . Then πα(g) = α(π(g)) ∈ α(W ) = {0} for all g ∈ G, so
πα = 0, contrary to (i).

�

3.7. Schur orthogonality.

Definition 3.4. The space End(V )∗ comes with a natural G × G-invariant inner product
(“dual of the Hilbert–Schmidt inner product”) given explicitly in coordinates by requiring
that the εij be an orthonormal basis, i.e.,

(3.7) 〈
∑

aijεij,
∑

bijεij〉 =
∑

aijbij
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and more invariantly as the composition

(3.8) End(V )∗ ⊗ End(V )∗ ∼= V ⊗ V ∗ ⊗ V ⊗ V ∗ → C

where the second arrow sends v1⊗v2⊗v3⊗v4 to 〈v1, v3〉V 〈v2, v4〉V ∗ , where V ∗ is equipped with

the inner product obtained from that on V via the duality isomorphism V 37→ 〈v, ·〉 ∈ V ∗

induced by the given inner product on V .

Another inner product on End(V )∗ is obtained from that on L2(G) by taking matrix
coefficients. It’s natural to ask how the two inner products compare:

Theorem 3.5 (Schur orthogonality relations). Let (π, V ), (π′, V ′) ∈ Irr(G), with G compact
as usual. Then for α ∈ End(V )∗ and β ∈ End(V ′)∗,

(3.9) 〈πα, π′β〉 =

{
0 if π 6∼= π′,

1
dim(π)

〈α, β〉 if (π, V ) = (π′, V ′),

where the inner product on the left is in L2(G) with respect to the probability Haar, while
〈α, β〉 denotes the dual Hilbert–Schmidt inner product defined above. Explicitly,

(3.10) 〈πij, π′k`〉 =
1

dim(π)
δπ,π′δi,kδj,`.

Proof. The proof is basically as in Lemma 3.3. If π is not G-isomorphic to π′, then End(π)∗

is likewise not G × G-isomorphic to End(π′)∗ (as may be checked for instance by verifying
that their characters are orthogonal, as on the homework), but the map

End(V )∗ → End(V ′)∗
∗ ∼= End(V ′)∗

α 7→ [β 7→ 〈πα, πβ〉]
is G × G-equivariant, so Schur’s lemma implies that it vanishes identically. In the case
(π, V ) = (π′, V ′), we use Lemma 3.3 (a basic consequence of Schur’s lemma) to write

〈πα, πβ〉 = C〈α, β〉

for some C > 0, which may depend upon π, but not upon α and β. To compute C, we take

α = β = trace,

so that

πα = πβ = χπ,

and note that

〈trace, trace〉 = 〈
∑

εii,
∑

εii〉 = dim(π)

and recall that 〈χπ, χπ〉 = 1. �
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3.8. The coefficient ring of a compact group. Having now studied in detail the matrix
coefficients of irreducibles, we piece them together as follows.

Definition 3.6. Let G be, as usual, a compact group. The coefficient ring of G is defined to
be the set

A(G) := ∪(π,V ) finite-dimensionalA(π) ⊆ L2(G).

The terminology is justified by:

Theorem 3.7. (i) A(G) is a C-algebra, closed under complex conjugation, and G × G-
invariant.

(ii) A(G) is the orthogonal direct sum in L2(G) of the subspaces A(π) for π ∈ Irr(G). The
functions

(3.11)
√

dim(π)πij : G→ C,
for π running over Irr(G) and i, j = 1.. dim(π), form an orthonormal basis of A(G).
Similarly, A(G)∆G is the orthogonal direct sum in L2(G)class of the subspaces Cχπ. In
particular, Irr(G) is at most countably infinite.

(iii) For any f ∈ L2(G), the following are equivalent:
(a) f ∈ A(G)
(b) f is right-finite: dim span{f(·g) : g ∈ G} <∞.
(c) f is left-finite: dim span{f(g−1·) : g ∈ G} <∞.
(d) f is bi-finite, or simply finite: dim span{f(g−1

1 · g2) : g1, g2 ∈ G} <∞.

Proof. (i) The proof is similar to what we did for characters (Lemma 1.19): The conjugate
of a matrix coefficient is a matrix coefficient for the conjugate representation, namely,
for α ∈ End(π)∗, we have πα = πα with α ∈ End(π)∗ ∼= End(π)∗, so A(G) is closed
under complex conjugation. Similarly, the sum (resp. product) of two matrix coeffi-
cients is a matrix coefficient for the direct sum (resp. product) of the corresponding
representations, i.e., πα + πβ′ = (π ⊕ π′)α⊕β and παπβ′ = (π ⊗ π′)α⊗β where α ⊕ β ∈
End(π)∗⊕End(π′)∗ ↪→ End(π⊕π′)∗ and α⊗β ∈ End(π)∗⊗End(π′)∗ ↪→ End(π⊗π′)∗.

(ii) We have seen that finite-dimensional (π, V ) may be assumed unitary and then de-
composed as orthogonal direct sums W1 ⊕ · · · ⊕ Wm of irreducibles σ1, . . . , σm. For

each k = 1..m, fix an orthonormal basis {e(k)
i }i for Wk. Then A(π) is spanned by the

functions
G 3 g 7→ 〈e(k)

i , ge
(`)
j 〉.

We have ge
(`)
j ∈ W`, which is orthogonal to e

(k)
i unless k = `, in which case the above

function belongs to A(σk). Thus A(π) = A(σ1) + · · · + A(σk). Taking unions, we
obtain A(G) =

∑
π∈Irr(G)A(π). The required orthogonality follows from the Schur

orthogonality relations.
(iii) If f ∈ A(G), then f ∈ A(π) for some finite-dimensional π, so the G × G-span of f

is contained in the space A(π) whose dimension is finite (e.g., bounded by dim(π)2).
To complete the proof it suffices to verify that if a function f is right- or left-finite,
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then it belongs to A(G). We treat the case that f is right-finite, the other case being
similar. Let V denote the span of the right translates f(·g) of f , so that dim(V ) <∞
by assumption. Take for π the representation of G on V given by right translation.
(Note as I did not in lecture that this is actually a representation: V is a finite-
dimensional subspace of L2(G), hence is closed, and so the continuity of the action of
G on V follows from that of G on L2(G).)

We attempt now to define the “act on f , then evaluate at identity” functional α ∈
End(V )∗ by the formula

(3.12) α(T ) := (Tf)(e),

with e ∈ G denoting the identity element. (Note as I did not in lecture that this
definition does not obviously make sense, because f is merely an “L2-function,” and
so is not obviously defined pointwise except off some unspecified set of measure zero.
However, as we will verify below (non-circularly) in §4.4.1, our assumptions imply that
every element of V is actually represented by a continuous function, to which the
definition applies.) Then πα(g) = (π(g)f)(e) = f(eg) = f(g), so f = πα ∈ A(π) ⊆
A(G), as required.

�

3.9. Peter–Weyl theorem: statement and proof sketch. We can now state the more
complete form of Theorem 1.22:

Theorem 3.8 (Peter–Weyl theorem). Let G be a compact group.

(i) A(G) is dense in the space C(G) of continuous functions on G equipped with the topology
defined by the supremum norm.

(ii) A(G) is dense in L2(G), hence L2(G) = ⊕̂π∈Irr(G)A(π); here ⊕̂ denotes the “Hilbert
direct sum,” i.e., the closure of the “ordinary” or “algebraic” direct sum ⊕. Thus the
functions (3.11) give an orthonormal basis (in the sense of Hilbert space) for L2(G).

(iii) A(G)∆G = ⊕π∈Irr(G)Cχπ is dense in L2(G)class (thus L2(G)class = ⊕̂π∈Irr(G)Cχπ) and
also dense in C(G)class.

(iv) If (π, V ) is any irreducible representation of G on any space V such that “one has
a reasonable theory of V -valued integrals” (e.g., Hilbert, Banach, Frechet, or “locally
convex quasi-complete”), then dim(V ) <∞.

The main assertion here is that A(G) is dense in L2(G); we will deduce the remaining
assertions either from this one or via easy modifications of its proof. As “warm-up,” we
observe some easy special cases:

• If G is a finite group, then both A(G) and L2(G) consist of all functions G→ C, so
there is nothing to show.
• A profinite group G is a compact group which admits an open basis U at the identity

element consisting of compact open normal subgroups U . (This might not be the
standard definition, but is equivalent to it, and suits the purposes of our discussion.)
For instance, the group G = GLn(Zp), which may be identified with the inverse limit
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of the groups Γk = GLn(Z/pkZ) as k runs over the positive integers, is profinite, with
the compact open normal subgroups Uk := ker(G→ Γk) giving a neighborhood basis
of the identity.

For any profinite G and any U ∈ U , the quotient group G/U is finite; indeed, G
is compact and G = ∪g∈G/UgU is an open cover. Because continuous functions on a
compact space are uniformly continuous, we may find for each f ∈ C(G) and ε > 0
a subgroup U ∈ U so that f varies by at most ε on each coset of U , i.e.,

|f(gu)− f(g)|≤ ε for all g ∈ G and u ∈ U.
Let C(G)U ⊆ C(G) denote the space of functions G → C that are constant on the
cosets of U , and let fU ∈ C(G)U be defined by averaging f over U -cosets, i.e.,

fU(g) := Eu∈Uf(gu),

where E denotes the integral with respect to the probability Haar on the compact
group U . Then sup|f − fU |≤ ε. Thus ∪U∈UC(G)U is dense in C(G). On the other
hand, the spaces C(G)U are finite-dimensional and G×G-invariant, hence contained
in A(G). It follows that A(G) is dense in C(G).

The proof for general compact groups G will be similar to what we just did in the profinite
case, but a bit more technically involved because we don’t in general have such a spectac-
ularly convenient neighborhood basis of subgroups. (Think of U(1), which visibly has no
nontrivial subgroups contained in {z ∈ U(1) : |z− 1|< 1/10}.) We’ll construct instead some
“approximate analogues” of the maps f 7→ fU by convolving f with functions φ ∈ C(G) that
are supported in small neighborhoods of the identity element and satisfy the normalization∫
G
φ = 1. Set Tφf(g) :=

∫
g∈G φ(g)f(g) dg, where dg denotes the probability Haar on G. (For

instance, if G is profinite and φ = vol(U, dg)−11U for some U ∈ U , then Tφf = fU as above.)
If φ is sufficiently concentrated, then Tφf will approximate f . Since G is compact, we may
assume that φ is a class function (corresponding to U being normal). We might as well as-
sume also that φ is real-valued and invariant by inversion (corresponding to U being closed
under inversion). We’ll see then that Tφ defines a compact self-adjoint equivariant operator
on L2(G). The spectral theory of such operators will then allow us to approximate Tφf by
its projection to the eigenspaces of Tφ of eigenvalue λ with |λ|> ε; since the eigenspaces of
such operators with nonzero eigenvalue are finite-dimensional and G-invariant, this gives the
required approximation of Tφf and hence also of f via finite functions. Details next time.7

Let’s note one final easy special case. Suppose that G is a compact matrix group, i.e., a
compact subgroup of some GLn(C). (By Theorem 1.5 applied to the identity representation
G→ GLn(C), we might assume further that G is contained in the unitary group U(n).) Let

O denote the space of functions f : G→ C given by the restriction f = f̃ |G of some function

f̃ : GLn(C)→ C for which f̃(g) is a polynomial function of the matrix entries of g. We may
write O = ∪d≥0Od, where Od denotes the subspace of polynomials of degree at most d. Each
space Od is finite-dimensional and G-invariant, hence Od ⊆ A(G), hence O ⊆ A(G). Since

7End of lecture #6, Thursday, 7 March
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O is a C-algebra that is closed under complex conjugation and separates points on G, we
deduce by Stone–Weierstrass that O is dense in C(G). It follows also that A(G) is dense in
C(G) (and that A(G) = O).

On a related note, we observe the following consequence of Peter–Weyl:

Corollary 3.9. Let G be a compact Lie group. Then G is isomorphic to a compact matrix
Lie group.

Thus Peter–Weyl for compact Lie groups G is essentially equivalent to the fact that any
such G is isomorphic to a matrix Lie group.

Proof. Enumerate Irr(G) as V1, V2, . . . , and let Gn ≤ G denote the kernel of the map G →
GL(V1 ⊕ · · · ⊕ Vn) given by the direct sum of the representations V1, . . . , Vn. Then Gn is a
closed subgroup of G, hence a Lie subgroup, so we may speak of its Lie algebra gn, which is
a subalgebra of the Lie algebra g of G. The subgroups Gn decrease with n, hence so do the
subspaces gn. By Peter–Weyl, that the matrix coefficients of the irreducible representations
separate points in G. It follows that ∩nGn = {1} and thus ∩ngn = {0}. Since the gn
decrease and are finite-dimensional, we may find n0 so that gn = {0} for n ≥ n0; for such
n, the Lie group Gn is thus compact and zero-dimensional, hence finite. Using again that
∩nGn = {1}, we may find n so that Gn = {1}. Then G → GL(V1 ⊕ · · · ⊕ Vn) is an
injective homomorphism with compact domain (and Hausdorff codomain), hence defines an
isomorphism (of topological groups) onto its image. �

The proof shows also that any compact group G is isomorphic to an inverse limit of
compact matrix Lie groups.

We’ll give the proof of Peter–Weyl below after developing some preliminaries concerning
integral operators, which are of independent interest.
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4. Integral operators

4.1. Integrating functions taking values in Hilbert spaces.

Lemma 4.1. Let (Ω, µ) be a locally compact space equipped with a Radon measure, let V
be a Hilbert space, and let f be an element of the space Cc(Ω → V ) of compactly-supported
continuous functions from Ω to V . Then there is a unique element v ∈ V so that for each
element ` of the continuous dual V ∗, we have

(4.1) `(v) =

∫
x∈Ω

`(f(x)) dµ(x).

We then use the notation
∫

Ω
f dµ := v ∈ V .

Proof. We may define v first as an algebraic functional V ∗ → C via (4.1). By Hilbert
space duality, our task reduces to showing that v belongs to the double dual of V , i.e., that
|`(v)|≤ C‖`‖ for some constant C ≥ 0 and all ` ∈ V ∗. We may take C = C1C2, where
C1 := µ(supp(f)) <∞ and C2 := maxx∈supp(f)‖f(x)‖<∞. �

This lemma and hence our subsequent development can be generalized further (to Banach
spaces, Frechet spaces, etc.), but the present generality should suffice for our aims.

4.2. Definition of integral operators attached to representations. From now on we
take for G a locally compact group and (π, V ) a Hilbert representation; by this we mean that
V is a Hilbert space, without requiring that π be unitary.

Lemma 4.2. For every compactly-supported signed Radon measure µ on G there is a unique
bounded linear operator π(µ) : V → V such that

(4.2) `(π(µ)v) =

∫
g∈G

`(π(g)v) dµ(g)

for all v ∈ V and ` ∈ V . We then use the notation π(µ) =:
∫
g∈G π(g) dµ(g).

Proof. Set Ω := supp(µ). For each v ∈ V , we may apply the previous lemma to the function
fv : Ω → V given by g 7→ π(g)v. We obtain elements π(µ)v ∈ V and a linear map
π(µ) : V → V . It remains to show that π(µ) is bounded. For this it suffices to show that
there exists C ≥ 0 (depending upon Ω) so that the operator norm ‖π(g)‖ is bounded by
C for all g ∈ Ω. The conclusion follows by Banach–Steinhaus (presumably covered in the
functional analysis course), which we record here for convenience:

A pointwise bounded family (Tα)α∈I of bounded linear maps Tα : X → Y from a Banach
space X to a normed space Y is uniformly bounded, i.e., if for each x ∈ X there exists

C(x) ≥ 0 so that ‖Tαx‖≤ C(x)‖x‖ for all α, then there exists C ≥ 0 so that ‖Tαx‖≤ C‖x‖
for all α, x.

We apply this to the family (π(g))g∈Ω of bounded linear maps π(g) : V → V ; the point-
wise boundedness property follows from the continuity of G × V → V , while the uniform
boundedness gives the conclusion that we seek.



REPRESENTATIONS OF LIE GROUPS ETH ZÜRICH, SPRING 2019 49

For convenience and as a reminder of what’s going on “under the hood,” we record a
proof of Banach–Steinhaus as quoted above. (This was not presented in lecture, and is not
otherwise relevant to the course.) If the conclusion fails, then we can find a sequence of
nonzero vectors xn ∈ X and elements Tn of the family (Tα) so that ‖Tnxn‖/‖xn‖→ ∞. After
normalizing the xn by a suitable scalar, we may arrange that

‖xn‖→ 0, ‖Tnxn‖→ ∞.

We now inductively choose a “sufficiently sparse” subsequence (xnk)k≥1, as follows. For
k ≥ 1, having chosen n1 < · · · < nk−1, choose nk sufficiently large that

• ‖xnk‖≤ 2−k,
•
∑

`=1..k−1‖Tn`xnk‖≤ 2−k (as we may, because each Tn` is bounded), and

• ‖Tnkxnk‖≥
∑

`=1..k−1‖Tnkxn`‖+2k (as we may, because the family (Tα) is assumed
pointwise bounded).

Since
∑

k‖xnk‖<∞ and X is complete, we have x :=
∑

k xnk ∈ X. But

‖Tnkx‖≥ ‖Tnkxnk‖−
∑

`=1..k−1

‖Tnkxn`‖−
∑
`≥k+1

‖Tnkxn`‖≥ 2k −
∑
`≥k+1

2−` →∞,

contrary to the assumed pointwise boundedness of the family (Tα). �

4.3. Basic properties. From now on we assume moreover (mainly for convenience) that
G is unimodular, so that we may fix a (left and right) Haar measure dg. For f ∈ Cc(G),
the above discussion then applies to µ = f dg, giving us operators on V that we denote by
π(f) := π(f dg), thus π(f) =

∫
g∈G f(g)π(g) dg.

Lemma 4.3. Let f, f1, f2 ∈ Cc(G) and g ∈ G.

(i) π(f1)π(f2) = π(f1 ∗ f2), where f1 ∗ f2 ∈ Cc(G) denotes the convolution

f1 ∗ f2(x) :=

∫
g∈G

f1(g)f2(g−1x) dg.

(ii) π(g)π(f) = π(f(g−1·)), π(f)π(g) = π(f(·g−1)).
(iii) If f ∈ Cc(G)class, then π(f) is equivariant.

(iv) If (π, V ) is unitary, then the adjoint π(f)∗ is given by π(f ∗), where f ∗(x) := f(x−1).

Proof. (i) By substituting g2 7→ g−1
1 g2,

π(f1)π(f2) =

∫ ∫
f1(g2)f2(g2) π(g1)π(g2)︸ ︷︷ ︸ π(g1g2) dg1 dg2

=

∫
(

∫
f1(g1)f2(g−1

1 g2) dg1︸ ︷︷ ︸
(f1∗f2)(g2)

)π(g2) dg2

= π(f1 ∗ f2).
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(ii) By substituting x 7→ g−1x, π(g)π(f) =
∫
f(x)π(g)π(x) dx =

∫
f(g−1x)π(x) dx =

π(f(g−1·)); similarly for the other assertion.
(iii) We’ve seen that π(g)π(f)π(g−1) = π([x 7→ f(g−1xg)]), which coincides with π(f) if f

is a class function.
(iv) Since π is unitary, we have π(g)∗ = π(g−1), hence π(f)∗ =

∫
f(g)π(g−1) dg; by the

change of variables g 7→ g−1, this coincides with π(f ∗).
�

4.4. Approximating vectors by their images under integral operators.

Lemma 4.4. For each v ∈ V and ε > 0 there exists f ∈ Cc(G) so that ‖π(f)v − v‖≤ ε

Proof. By the continuity of the action, we may find a neighborhood U of the identity element
in G so that ‖π(g)v − v‖≤ ε for all g ∈ U . By Urysohn, we may find f ∈ Cc(U) such that∫
G
f dg = 1 and f ≥ 0. Then

‖π(f)v − v‖= ‖
∫
g∈G

f(g)(π(g)v − v) dg‖≤ (

∫
f dg)ε = ε.

�

Lemma 4.5. In lemma (4.4), we may arrange moreover that f ≥ 0 and f(g) = f(g−1), and
for G compact also that f ∈ Cc(G)class.

Proof. Exercise. �

These results may be generalized and refined further. For instance, if G is a Lie group,
then we may assume that f is smooth.

4.4.1. Automatic continuity for finite-dimensional subrepresentations of L2(G). We now ful-
fill the promise made after the statement of Theorem 3.7 by explaining why for a compact
group G, the finiteness (right, left or bi) of f ∈ L2(G) implies that f is represented by a
continuous function. Suppose for instance that f is right-finite, so that it is contained in
some finite-dimensional subspace V ⊆ L2(G) invariant by the right regular representation ρ
of G. For each v ∈ V and ε > 0, we see by Lemma 4.4 that there exists φ ∈ C(G) so that
‖ρ(φ)v − v‖L2≤ ε. In particular, the subspace of V consisting of elements of the form ρ(φ)v
is dense. Since V is finite-dimensional, it follows that every element of V is of this form.
Note that each such element is pointwise defined.

We verify now that every element of V , say v′ = ρ(φ)v, is in fact continuous. For g ∈ G,
we have (by Lemma 4.3) ρ(g)v′ = ρ(φ(g−1·))v, hence

sup
x∈G
|v′(xg)− v′(x)|= ‖ρ(g)v′ − v′‖L∞= ‖ρ(φ(g−1·)− φ)v‖L∞≤ ‖ρ(φ(g−1·)− φ)‖L2‖v‖L2 ,

in the last step by Cauchy–Schwarz. Since the left regular representation of G on L2(G) is
continuous, the required continuity of v′ follows.
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4.5. Some functional-analytic considerations. Recall (from, e.g., §0.5) the definition of
a compact operator on a Hilbert space.

I don’t think the following definition is standard, but I like it.

Definition 4.6. We say that (π, V ) is of compact type if π(f) is compact for each f ∈ Cc(G).

We recall a bit more functional analysis background.

Lemma 4.7. Let (X,µ) be a locally compact space equipped with a positive Borel measure µ
such that V := L2(X) is a separable Hilbert space. Let k ∈ L2(X ×X). Then we may define
a bounded operator T : V → V by Tv(x) =

∫
y
k(x, y) dµ(y). Any such operator is compact.

Proof sketch; omitted in lecture. Choose an orthonormal basis e1, e2, . . . for L2(X) and set
aij := 〈Tei, ej〉. Then

∑
i,j|aij|2= ‖k‖2

L2(X×X)<∞. Let v =
∑

j vjej ∈ V . Then Tv =
∑

i biei
with bi :=

∑
j aijvj. By Cauchy–Schwartz, |bi|2≤ ‖v‖2Ci, where Ci :=

∑
j|aij|2. Thus the

image under T of the unit ball in V is contained in the set {
∑
biei : |bi|2≤ Ci}. Using that∑

iCi <∞ and a diagonalization argument, we verify readily that this set is precompact. �

Lemma 4.8. If G is a compact group, then its right regular representation (ρ, L2(G)) is of
compact type.

Proof. For f ∈ Cc(G) = C(G) and v ∈ L2(G), we may write ρ(f)v(x) =
∫
f(y)v(xy) dy =∫

v(y)k(x, y) dy, where k(x, y) := f(x−1y). Thus the previous lemma gives the required
conclusion. (Sketch of a slightly more direct proof, omitted in lecture: since G is compact
and k is continuous, it is uniformly continuous, and so the function (x, y) 7→ k(x−1y) may
be approximated uniformly by step functions; thus ρ(f) is approximated in norm by finite
rank operators, hence is compact.) �

4.6. Proof of the L2-density part of the Peter–Weyl theorem. We now prove part
(ii) of Theorem 3.8. Let G be a compact group, v ∈ L2(G) and ε > 0. Let ρ denote the right
regular representation. By lemma 4.5, we may find f ∈ Cc(G)class so that f ≥ 0, f(g−1) =
f(g) and

(4.3) ‖ρ(f)v − v‖≤ ε.

Then f ∗ = f , so T := ρ(f) is self-adjoint. By lemma 4.8, T is compact. Set V := L2(G).
By Theorem 0.4, we may write V as the orthogonal Hilbert direct sum of the eigenspaces Vλ
of T , taken over λ ∈ R; moreover, setting V ′ := ⊕|λ|≥εVλ and V ′′ := ⊕|λ|<εVλ, the space V ′

is finite-dimensional. Since f is a class function, we know (by lemma 4.3) that the operator
T is equivariant (i.e., ρ(g)T = Tρ(g) for all g ∈ G), thus its eigenspaces Vλ and thus their
sums V ′ and V ′′ are ρ(G)-invariant. Thus

(4.4) V ′ ⊆ A(G).

Let v′ ∈ V ′ and v′′ ∈ V ′′ denote the components of v, so that v = v′ + v′′. We have

(4.5) ‖Tv′′‖= ‖
∑
|λ|<ε

λvλ‖≤ ε‖v‖.
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By (4.3) and (4.5), we deduce that

(4.6) ‖v − Tv′‖≤ ε(1 + ‖v‖).

On the other hand, Tv′ =
∑
|λ|≥ε λvλ ∈ V ′ ⊆ A(G). Thus A(G) is dense in L2(G).8

4.7. Proof of the uniform density part of the Peter–Weyl theorem. We now deduce
part (i) of Theorem 3.8. We retain the above notation. Let v ∈ C(G) and ε > 0. Since G
is compact, v is uniformly continuous; by an easy variant of Lemma 4.4, we may thus find
f ∈ C(G) so that ‖ρ(f)v − v‖L∞≤ ε. By the L2-density part of the Peter–Weyl theorem
that we have already proved, we may find f ′ ∈ A(G) so that ‖f − f ′‖L2≤ ε. Since (G, dg)
is a probability space, it follows in particular that ‖f − f ′‖L1≤ ε. Since

ρ(f)v − ρ(f ′)v =

∫
f∈G

(f − f ′)(g)π(g)v dg

and ‖π(g)v‖L∞= ‖v‖L∞ , it follows that

‖ρ(f)v − ρ(f ′)v‖L∞≤ ‖f − f ′‖L1‖v‖L∞≤ ε‖v‖L∞ .

Thus

‖ρ(f ′)v − v‖≤ ε(1 + ‖v‖L∞).

Observe finally that for any g ∈ G, we have

ρ(g)ρ(f ′)v = ρ(f ′(g−1·))v.

Thus if W is any left-G-invariant subspace of A(G) that contains f ′, then ρ(f ′)v belongs to
the ρ(G)-invariant finite-dimensional space ρ(W )v, and so ρ(f ′)v ∈ A(G). We conclude as
required that A(G) is dense in C(G).

Part (iii) of the Peter–Weyl theorem can be proved analogously, or deduced from parts
(i) and (ii) by a simple averaging trick; we’ll take the latter approach. Given an element v
of L2(G)class or C(G)class and ε > 0, we first find v′ ∈ A(G) so that ‖v′ − v‖≤ ε, where ‖.‖
denotes either the L2-norm or L∞-norm. We then introduce the averaging operator

E : {functions f : G→ C} → {class functions Ef : G→ C}

Ef(x) :=

∫
g∈G

f(gxg−1) dg.

Since f and x 7→ f(gxg−1) have the same norms, the triangle inequality implies that ‖Ef‖≤
‖f‖. Set v′′ := Ev′. Then v′′ ∈ A(G)class. Since v is a class function, we have v = Ev, and
so (v′′ − v) = E(v′ − v), hence ‖v′′ − v‖≤ ‖v′ − v‖≤ ε, giving the required approximation of
v by an element of A(G)class.

8End of lecture #7, Tuesday, 12 March
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4.8. Finite-dimensionality of irreducibles. We prove part (iv) of Peter–Weyl in the
special case of an irreducible Hilbert representation (π, V ); the more general conclusion can
be deduced similarly after developing integration more generally. The proof is very similar to
that of the C(G)-density assertion (indeed, a unified statement and proof involving Banach
space representations could be given, but I feel like it doesn’t hurt to see the argument
essentially repeated, since the method is so widely applicable). Let v be a nonzero element
of V , and let ε > 0 be sufficiently small. We can find an open neighborhood U of the identity
element of G so that ‖π(g)v−v‖≤ ε for all g ∈ U . Take f ∈ Cc(U) with f ≥ 0,

∫
f = 1. Then

‖π(f)v−v‖≤ ε. Use the L2-density part of the Peter–Weyl theorem to produce f ′ ∈ C(G) so
that ‖f−f ′‖L2≤ ε. Then likewise ‖f−f ′‖L1≤ ε, and so, as before, ‖π(f ′)v−v‖≤ ε(1+‖v‖).
For small enough ε, this implies in particular that π(f ′)v 6= 0. Since f ′ belongs to A(G), it is
contained in some finite-dimensionalG×G-invariant subspaceW . Then π(f ′)v belongs to the
space π(W )v := {π(w)v : w ∈ W}. The latter space is finite-dimensional (with dimension
bounded by dim(W )) and nonzero (because it contains π(f ′)v). Most significantly, it is
invariant: for w ∈ W and g ∈ G, we have (by Lemma 4.3)

π(g)π(w)v = π(w(g−1·))v.
Since V is irreducible, this forces V = ρ(W )v, hence dim(V ) ≤ dim(W ) <∞, as required.

4.9. Fourier analysis on a compact group G. Given f ∈ C(G) (say), its Fourier trans-
form is defined to be the collection (π(f))π∈Irr(G) of integral operators that it induces on
the (equivalence classes of) finite-dimensional irreducible representations of G. We can re-
state some of our results concerning orthogonality and completeness of matrix coefficients
in terms of these collections of operators. In preparation for doing so, we define on any
finite-dimensional Hilbert space V the Hilbert–Schmidt inner product of T1, T2 ∈ End(V ) by
the formula

〈T1, T2〉 := trace(T1T
∗
2 ),

where as before T ∗2 denotes the hermitian adjoint, given with respect to an orthonormal basis
by the conjugate transpose. If T1 and T2 are respected by matrices (aij) and (bij) defined
with respect to an orthonormal basis, then we may verify readily that

〈T1, T2〉 =
∑
i,j

aijbij.

This is the dual of the inner product considered in §3.7.

Theorem 4.9. (i) For f1, f2 ∈ C(G),

〈f1, f2〉L2(G) =
∑

π∈Irr(G)

dim(π)〈π(f1), π(f2)〉.

(ii) Under “some assumptions” on f ,

(4.7) f(1) =
∑

π∈Irr(G)

dim(π)χπ(f),
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where

χπ(f) := trace(π(f)) =

∫
g∈G

f(g)χπ(g) dg.

For instance, a sufficient assumption is that f have the form f1 ∗ f2 for some f1, f2 ∈
L2(G).

(iii) For σ ∈ Irr(G), define ασ := dim(σ)χσ ∈ C(G). Then for each π ∈ Irr(G), we have

(4.8) π(ασ) =

{
0 if π 6∼= σ,

1 if π ∼= σ.

Moreover, for σ1, σ2 ∈ Irr(G),

(4.9) ασ1 ∗ ασ2 =

{
ασ if σ1 = σ2 =: σ,

0 otherwise.

Proof. (i) With respect to an orthonormal basis of π, we have

(4.10) π(f)ij =

∫
g∈G

f(g)πij(g) dg,

so 〈π(f1), π(f2)〉 = 〈f1, πij〉〈πij, f2〉. The conclusion follows from part (i) of the Peter–

Weyl theorem, which we have seen implies that the function
√

dim(π)πij (and hence

likewise the functions
√

dim(π)πij) form an orthonormal basis of L2(G).
(ii) Suppose for instance that f = f1∗f2 with f1, f2 ∈ L2(G). Then f(1) =

∫
g∈G f1(g)f2(g−1) dg =

〈f1, f
∗
2 〉, while 〈π(f1), π(f ∗2 )〉 = trace(π(f1)π(f2)) = trace(π(f1 ∗ f2)) = χπ(f); the re-

quired conclusion thus follows from part (i).
(iii) Using the expansion χσ =

∑
k σkk, we compute that

π(ασ)ij =

∫
g∈G

ασ(g)πij(g) dg

=
∑
k

dim(σ)〈πij, σkk〉

= δσ,π
∑
k

δikδjk

= δσ,πδij.

These matrix entries are of the required form.
To prove (4.9), it suffices by the injectivity of the association f 7→ (π(f))π∈Irr(G) to

check that π(ασ1 ∗ ασ2) is given by π(ασ) when σ1
∼= σ2 and vanishes otherwise, which

follows from (4.8).
�

The pointwise decomposition (4.7) fails in general for f ∈ C(G), as one can see already
when G = U(1); there are well-known constructions of continuous functions on the circle
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whose Fourier series do not converge pointwise. A sufficient condition for the validity of
(4.7) is that f be smooth. (A smooth function on a compact Lie group is what you’d expect.
A general compact group G can be written, as indicated in §3.9, as an inverse limit of
compact Lie groups Gn; a smooth function on G is then a function that factors through a
smooth function on one of the quotients Gn of G.) The proof isn’t so different from the case
G = U(1), but we won’t go into it. Lipschitz continuity should also suffice.

4.10. Isotypic decomposition.

Definition 4.10. Let (π, V ) be a representation of a compact group G, and let σ ∈ Irr(G).
We say that a nonzero vector v ∈ V is σ-isotypic if there are closed invariant subspaces
W1, . . . ,Wn of V , with each Wj isomorphic to σ, so that v ∈

∑
jWj. We write V (σ) :=

{0} ∪ {σ-isotypic v ∈ V }.

Theorem 4.11. Let (π, V ) be a Hilbert representation of the compact group G.

(i) π(ασ) defines a projection V → V (σ); if π is unitary, then it is the orthogonal projec-
tion.

(ii) V = ⊕̂σ∈Irr(G)V (σ).

Proof. (i) If v ∈ V , then π(ασ)v is contained in the space π(A(σ))v. By Lemma 4.3), the
map

A(σ) 3 f 7→ π(f)v ∈ V
is equivariant for the left regular representation on the domain. We have seen that
A(σ) ∼= A(σ∗) ∼= End(σ∗) ∼= σ ⊗ σ∗ as G × G-representations. Under the left regular

representation, A(σ) is thus isomorphic to σ⊕ dim(σ), so we may write v =
∑dim(σ)

j=1 π(fj)v

with each fj in a subspace W̃j of A(σ) isomorphic to σ. Setting vj := π(fj)v ∈ Wj :=

π(W̃j), we have v =
∑
vj. If Wj is nonzero, then the irreducibility of σ implies that

Wj
∼= σ. It follows that v is σ-isotypic.

If v ∈ V (σ), then π(ασ)v = v, because π(ασ) acts by the identity on each of the
subspaces Wj that arise in the definition of “σ-isotypic.”

We have shown that π(ασ) defines a projection V → V (σ). We have α∗σ(g) =

ασ(g−1) = dim(σ)χσ(g−1) = dim(σ)χσ(g) = ασ(g), so if π is unitary, then (by Lemma
4.3) π(ασ) is self-adjoint, and so defines the orthogonal projection.

(ii) We argue essentially as in §4.8: for each v ∈ V and ε > 0, we can find f ∈ C(G)class

so that ‖π(f)v − v‖≤ ε. We can then decompose f in L2(G)class as
∑

σ∈Irr(G) cσασ,

say; in particular, we can find a finite subset Σ of Irr(G) so that f ′ :=
∑

σ∈Σ cσασ
satisfies ‖f ′ − f‖L2≤ ε. Arguing as before, we get ‖π(f ′)v − v‖≤ ε(1 + ‖v‖). But
π(f ′)v =

∑
σ∈Σ cσπ(ασ)v ∈ ⊕σ∈ΣV (σ). Thus

∑
V (σ) is dense in V . The sum is direct

because if v ∈ V (σ1) ∩ V (σ2) with σ1 6∼= σ2, then v = π(ασ1)π(ασ2)v = π(ασ1 ∗ ασ2)v,
which vanishes thanks to (4.9).

�
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9

4.11. Decompositions of compact-type representations. The decompositions of rep-
resentations of a compact group noted above (e.g., in theorems 1.17, 3.8 and 4.11) do not
hold in general when G is non-compact and V is infinite-dimensional. The main issue is that
there may then exist nontrivial representations having no irreducible subrepresentations. For
instance, the (right) regular representation of R on L2(R) has the property. A basic result
of Gelfand–Graev–Piatetski-Shapiro shows that a sufficient condition on the representation
for it to decompose as a sum of irreducibles is that it be unitary and of compact type (Def-
inition 4.6). This is very handy in applications involving non-compact groups. Recall that
“subrepresentation” means “closed invariant subspace.”

Theorem 4.12. Let G be locally compact and unimodular, and let (π, V ) be a unitary Hilbert
representation of compact type. Then V decomposes as a Hilbert direct sum of irreducible
subrepresentations Vj, each occurring with finite multiplicity (i.e., for each j, the number of
k with Vj ∼= Vk is finite).

Proof. By Zorn’s lemma, we may find a maximal collection (Vj) of mutually orthogonal
irreducible subrepresentations Vj of V . We must show that ⊕Vj is dense in V . If not, then
its orthogonal complement V ′ is a nonzero representation, satisfying the same hypotheses
as V , which contains no irreducible subrepresentations. Replacing V by V ′ if necessary,
our task is thus to show that if V is nonzero, then it contains at least one irreducible
subrepresentation.

The results of §4.4 (applied to any nonzero vector v ∈ V , and with ε taken sufficiently
small in terms of v) imply that there exists f ∈ Cc(G), real-valued and with f(g) = f(g−1),
so that the integral operator π(f) is not identically zero. Since π is assumed of compact
type, the operator π(f) is compact. By construction, it is self-adjoint. By the spectral
theory of self-adjoint compact operators, we may find a nonzero real number λ so that the
λ-eigenspace Vλ of π(f) is nonzero and finite-dimensional.

Take any nonzero v ∈ Vλ, let Gv denote its orbit under G, and let 〈Gv〉 denote the closure
of the span of Gv. Then 〈Gv〉 is a subrepresentation of V ; it is the smallest subrepresentation
containing v.

The key observation is that any decomposition of the representation 〈Gv〉 descends to a
decomposition of the vector v inside the finite-dimensional eigenspace Vλ. Indeed, if 〈Gv〉
is not reducible, then it contains a nonzero proper subrepresentation W1, whose orthogonal
complement W ′

1 in 〈Gv〉 is likewise invariant, giving a decomposition 〈Gv〉 = W1⊕W ′
1. The

subspaces in this decomposition are invariant by G, hence also by T := π(f)− λ, so writing
v = v1 + v′1 with v1 ∈ W1 and v′1 ∈ W ′

1, we deduce from the identity Tv = 0 that in fact
Tv1 = Tv′1 = 0, hence that v1, v

′
1 ∈ Vλ.

We know that v1 and v′1 are both nonzero, because if (say) v′1 = 0, then v belongs to the
proper subrepresentation W1 of 〈Gv〉, contrary to the construction of the latter. Since v′1

9End of half-lecture #8, Thursday, 14 March
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belongs to Vλ and to 〈Gv〉 but not to W1, we have the strict containment

(4.11) Vλ ∩ 〈Gv1〉 ⊆ Vλ ∩W1 ( Vλ ∩ 〈Gv〉
between finite-dimensional spaces. We now repeat the same construction but with v replaced
by v1. If 〈Gv1〉 is reducible, then we may decompose it as W2⊕W ′

2 and likewise v1 as v2 +v′2,
with v2, v

′
2 ∈ Vλ. If 〈Gv2〉 is reducible, then we may decompose v2 = v3 + v′3. Thanks to

(4.11), this procedure gives us an irreducible subrepresentation after at most dim(Vλ∩〈Gv〉)
iterations.

The slicker way to write the proof is of course to assume from the outset that v was chosen
to minimize the dimension of Vλ ∩ 〈Gv〉; reducibility of 〈Gv〉 then gives a contradiction.

For the finiteness of multiplicity, we can find for each Vj a self-adjoint integral operator π(f)
having some nonzero eigenvalue λ in Vj. The same eigenvalue then shows up in every Vk that
is isomorphic to Vj. Since π(f) is assumed compact, its eigenspaces are finite-dimensional,
and so the number of such Vk is finite. �
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5. Algebraicity of compact Lie groups

Our goal is to explain the meaning and proof of the phrase “every compact Lie group is
algebraic.” This serves both as an application of the theory developed so far and as a tool
for further study also of non-compact groups.

5.1. Preliminaries on algebraic groups. First, we need to “review” some basics on al-
gebraic groups.

Definition 5.1. Let k be an infinite field and n ≥ 0. For a collection S ⊆ k[x1, . . . , xn] of
polynomials, the vanishing locus V (S) is the set

V (S) := {p ∈ kn : f(p) = 0 for all f ∈ S}
of common zeros. An algebraic subset of kn is a subset of the form V (S) for some S; that is
to say, it is a subset defined by polynomial equations.

The vanishing ideal of a subset X of kn is given by

I(X) := {f ∈ k[x1, . . . , xn] : f(p) = 0 for all p ∈ X}.
The coordinate ring of an algebraic subset X ⊆ kn is the ring

k[X] := k[x1, . . . , xn]/I(X),

which may be regarded as the space of “polynomial functions from X to k.” The Zariski
topology on kn (or any algebraic subset thereof) is that for which the closed subsets are the
algebraic sets.

We note that Hilbert’s basis theorem implies that for each S there exists a finite subset
S0 ⊂ S so that V (S) = V (S0), so that any algebraic set may be defined by finitely-many
polynomial equations.

It’s not hard to check that the “Zariski topology” as described above defines an actual
topology. By comparison, a basic theorem in topology says that in a nice enough topological
space X (e.g., a compact metric space), for any closed subset Z ⊆ X there exists a continuous
function f : X → R so that Z = {p ∈ X : f(p) = 0}, hence that the closed subsets of X are
precisely those that can be defined by continuous equations. The analogy with the Zariski
topology should be clear.

Morphisms between algebraic sets X ⊆ km and Y ⊆ kn are maps X → Y defined by
polynomials in the coordinates. They are obviously Zariski continuous. We obtain in this
way a category, with objects the algebraic sets and morphisms the morphisms. An affine
variety is basically the same thing as an algebraic set, but (by some conventions) without
emphasis on any particular embedding in some kn.

Given two sets X ⊆ km and Y ⊆ kn, we may define their product X × Y ⊆ km+n. If
X and Y are algebraic, then so is X × Y : if X = V (S1) and Y = V (S2), then X × Y =
V ({f1 ⊗ f2 : f1 ∈ S1, f2 ∈ S2}), where (f1 ⊗ f2)(p, q) := f1(p)f2(q) for p ∈ km, q ∈ kn. We
may thus speak of the Zariski topology on X × Y with respect to km+n. We caution that
this is not in general the same as the product of the Zariski topologies on X and Y .
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Given an algebraic set X, we’ll sometimes abuse notation slightly by defining V (S) for a
subset S of k[X] to be the set of common zeros inside X of elements of S, and, for a subset
Y of X, by I(Y ) the ideal in k[X] consisting of f that vanish on Y . Any such abuse should
be clear by context.

As a basic example of reasoning with these definitions, we verify the following:

Lemma 5.2. For any subset X ⊆ kn, the Zariski closure Zcl(X) is equal to V (I(X)).

Proof. Well, V (I(X)) contains X (“X vanishes under any polynomial that vanishes on X”),
and V (I(X)) is algebraic, hence Zariski closed. Conversely, let Y be any Zariski closed set
containing X, thus Y = V (T ) for some T ⊆ k[x1, . . . , xn]. Since X ⊆ V (T ) (“X vanishes
under every element of T”), we have T ⊆ I(X) (“every element of T vanishes on X”), and so
V (T ) ⊇ V (I(X)) (“the more equations, the fewer solutions”). Thus V (I(X)) is the smallest
Zariski closed set containing X, as required. �

The group GLn(k) of invertible matrices is not obviously algebraic, because it is defined

inside the ambient space of matrices Mn(k) ∼= kn
2

by the polynomial inequation det 6= 0
rather than by a system of polynomial equations. We “make it algebraic” by using the
embedding

GLn(k) ∼= {(x, y) ∈Mn(k)2 : xy = 1} ⊆Mn(k)2 ∼= k2n2

g 7→ (g, g−1),

to view GLn(k) as an algebraic subset of k2n2
. Then the coordinate ring k[GLn(k)] consists of

functions GLn → k given by polynomials in the entries of a matrix together with its inverse.

Definition 5.3. An algebraic group is an abstract subgroup of GLn(k) that is also an algebraic
set.

When k = C, we speak of a complex algebraic group. When k = R, we speak of a real
algebraic group. Note that we may think of GLn(C) as a real algebraic subgroup of GL2n(R).
Note also that algebraic groups over k = R or C are Lie groups (e.g., by the general theorem
that closed subgroups of matrix groups are Lie groups).

Definition 5.3 is a bit ad hoc. In much the same way that we defined compact Lie groups
first without reference to any matrix embedding and then showed as a consequence (Corol-
lary 3.9) of the Peter–Weyl theorem that such an embedding exists, one might more properly
define an algebraic group to be an algebraic set equipped with a group law for which multi-
plication and inversion are described in coordinates via polynomials. Arguments similar to
those in the proof of Corollary 3.9 then confirm that this apparently more general definition
is ultimately equivalent to what we’ve given here.

Lemma 5.4. If G is an algebraic group and H < G is an abstract subgroup, then the Zariski
closure Zcl(H) of H inside G is an algebraic subgroup of G.

Proof. We just need to check that Zcl(H) is closed under multiplication and inversion. We
check this for multiplication, leaving the case of inversion to the reader (alternatively, one
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could get fancy and consider maps like (p, q) 7→ pq−1). Let p, q ∈ Zcl(H), and let pq ∈ U ⊆ G
be a neighborhood. Since matrix multiplication is described by polynomials, it is Zariski
continuous, and so we can find a neighborhood p ∈ V1 ⊆ G so that p′q ∈ U for all p′ ∈ V1.
Since p belongs to the closure of H, we know that V1 intersects H, so choose some p′ ∈ V1∩H.
Then p′q ∈ U , so by the same argument, we can find a neighborhood q ∈ V2 ⊆ G so that
p′q′ ∈ U for all q′ ∈ V2. Since q is in the closure of H, we know that V2 intersects H, so
we may find some q′ ∈ V2 ∩ H. Since H is a subgroup, we then have p′q′ ∈ U ∩ H, so U
intersects H. Since U was arbitrary, we conclude that pq ∈ Zcl(H). �

5.2. Complexification of a compact Lie group. Now let K be a compact subgroup of
GLn(C), hence a Lie subgroup. Recall also, by Corollary 3.9, that every compact Lie group is
of this form. Since the standard representation K ↪→ GLn(C) is unitarizable, we know that
K is conjugate to a subgroup of U(n). Let’s assume for convenience that in fact K ≤ U(n).
Let G denote the complex Zariski closure of K in GLn(C), thus

G = {g ∈ GLn(C) : f(g) = 0 for all f ∈ C[GLn(C)] with f |K= 0},

where as before C[GLn(C)] denotes the space of functions f : GLn(C)→ C given by polyno-
mials in the entries of a matrix together with its inverse. (For example, if K = U(n), then
G = GLn(C).) We denote by

Θ : GLn(C)→ GLn(C)

the “inverse conjugate transpose” map

Θ(g) := tg−1 = (g∗)−1, g∗ := tg

and by

θ : gln(C)→ gln(C)

θ(x) := −tx = −x∗, x∗ := tx

its dfferential. Observe that U(n) = {g ∈ GLn(C) : Θ(g) = g} and u(n) = {x ∈ gln(C) :
θ(x) = x}.

Theorem 5.5. With notation and assumptions as above:

(i) G is a complex algebraic group that is closed under Θ.
(ii) The map C[G]→ {functions K → C} given by restriction f 7→ f |K induces an isomor-

phism C[G] ∼= A(K).
(iii) K = G ∩ U(n). In particular, K is a real algebraic group.10

(iv) K is a maximal compact subgroup of G.
(v) g is closed under θ. We have k = g ∩ u(n) = {x ∈ g : θ(x) = x}. Setting p := {x ∈ g :

θ(x) = −x}, we have p = ik and g = k⊕ p.

10End of half-lecture #9, Tuesday, 19 March
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Proof. (i) By lemma 5.4, G is a complex algebraic group. Since Θ fixes U(n) pointwise
and U(n) contains K, we have in particular Θ(K) = K. It follows that the space I(K)
of polynomials f ∈ C[GLn(C)] that vanish on K is closed under the map

f 7→ f ◦Θ : g 7→ f(Θ(g)) = f(tg−1),

hence that G = V (I(K)) is closed under Θ.
(ii) We observe first (as in the discussion of §3.9) that f |K belongs to A(K): indeed, C[G]

is the union over d ≥ 0 of the subspaces defined by polynomials of degree bounded by
d, each of which is finite-dimensional and K-invariant. We thus get a well-defined map
of C-algebras C[G] → A(K). The injectivity of this map is clear from the definitions
of G and of C[G] = C[GLn(C)]/I(K): if f |K= 0, then f ∈ I(K), i.e., f = 0 as an
element of C[G]. We henceforth identify C[G] with its image in A(K). It remains to
show that in fact C[G] = A(K). To that end, observe first that C[G] is invariant under
the action of K × K on A(K) by left and right translation (using here that matrix
multiplication is described by polynomials and that K is a subgroup of G). Recall next
that A(K) is an orthogonal direct sum of finite-dimensional subspaces A(π), taken over
π ∈ Irr(K). Note finally, thanks to the identity g = Θ(g) satisfied by every g ∈ K, that
C[G] contains all polynomials in the real and imaginary parts of the entries of a matrix
g ∈ K together with its inverse. It follows by Stone-Weierstrass (as in the discussion
of §3.9) that C[G] is dense in A(K) with respect to the topology of C(G).

To complete the proof, we just need to check that any K×K-invariant dense subspace
of A(K) is actually equal to A(K). Maybe there’s a simpler way to see this, but let’s
see. We claim that for any finite subset Π of Irr(K) and any K×K-invariant subspace
V of ⊕π∈ΠA(π), one has V = ⊕π∈Π0A(π) for some subset Π0 of Π. (To see that
the claim suffices, note that for each π ∈ Irr(K), we may find f ∈ C[G] so that the
component fπ ∈ A(π) of f is nonzero, because otherwise C[G] would be contained in
the proper closed subspace of A(K) given by the orthogonal complement of A(π); then
take for Π the set of all π′ for which fπ′ 6= 0 and for V the span of the K × K-orbit
of f . It follows from the claim that then C[G] contains A(π). Since π was arbitrary,
we conclude that C[G] = A(K).) The claim follows immediately from character theory
for K × K, which gives that χV =

∑
π∈Π n(π)χπ ⊗ χπ for some n(π) ∈ {0, 1}; here

(χπ ⊗ χπ)(g1, g2) := χπ(g1)χπ(g2).
(iii) Set M := G ∩ U(n), so that K ≤ M ≤ G. Then M is compact, and G is also the

Zariski closure of M , so by what we’ve already shown, the map C[G] → A(M) is an
isomorphism, hence in particular has dense image in C(M). It follows readily that
M = K. Indeed, suppose otherwise that M is strictly larger than K. We let M act
on C(M) and A(M) by the right regular representation, and use superscripts as in
C(M)K to denote the fixed subspace, as usual. We argue as follows:
• C(M)K contains non-constant functions. Indeed, take any nonzero nonnegative
f ∈ C(M) that vanishes on K, and consider the function M 3 x 7→

∫
k∈K f(xk),
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where here and henceforth
∫

denotes an integral with respect to the probability
Haar.
• C[G]K contains non-constant functions. We have seen that C[G] maps isomorphi-

cally to A(M), hence has dense image in C(M). Take f ∈ C(M)K non-constant,
thus f(x1) 6= f(x2) for some x1, x2 ∈M . Choose ε > 0 so that |f(x1)−f(x2)|≥ 3ε.
Choose f ′ ∈ C[G] so that ‖f − f ′‖∞≤ ε. Set f ′′(x) :=

∫
k∈K f

′(xk). Then f ′′ ∈
C[G]K . By the right K-invariance of f , we have (f − f ′′)(x) =

∫
k∈K(f − f ′)(xk),

hence by the triangle inequality we have ‖f − f ′′‖∞≤ ‖f − f ′‖∞≤ ε. By another
application of the triangle inequality, we deduce that |f ′′(x1) − f ′′(x2)|≥ ε. Thus
f ′′ is non-constant.
• We obtain a contradiction. We have seen that C[G] injects into A(K), hence

likewise C[G]K into A(K)K , but every element of A(K)K is manifestly constant.
(iv) If M is a larger compact subgroup, then we may assume (after conjugating) that it is

contained in U(n). Then both M and K are contained in U(n) and have G as their
Zariski closure, so by (iii), we have K = G ∩ U(n) = M .

(v) The identity k = g∩u(n) follows from part (iii). Since θ2 = 1, we can decompose g into
its ±1 eigenspaces for θ, i.e., g = k ⊕ p; explicitly, x = x+ + x−, where x+ ∈ k, x− ∈ p
are given by x± := (x ± θ(x))/2. Since θ is anti-linear, multiplication by i induces an
isomorphism x+ ∼= x−, i.e., p = ik.

�

Remark 5.6. It wasn’t essential to refer to the group U(n) here. The definition of G doesn’t
involve it. The involution f 7→ f ◦Θ on C[G] corresponds under the isomorphism C[G] ∼=
A(K) to the involution σ on A(K) given by σ(f)(k) = f(k) for all k ∈ K.

5.3. A glimpse of Tannakian duality. Here we address the question: how can we describe
a compact Lie group K in terms of its coefficient ring A(K)? We warm-up with some
motivating analogues.

• For an algebraic set X ⊆ kn (over an infinite field k) with coordinate ring k[X] =
k[x1, . . . , xn]/I(X), we have a bijection

X ↔ Homk(k[X], k)

p 7→ [f 7→ f(p)]

(`(x1), . . . , `(xn))←[ `
between points of X and functionals on the coordinate ring. Moreover, we can
reconstruct X from the abstract k-algebra k[X] by choosing a system of generators
x1, . . . , xn.
• For an algebraic groupG over k, we can recoverG as an algebraic set from Homk(k[G], k),

as above, but we’d also like to keep track of the group law G×G→ G. It corresponds
to the pullback map

∆ : k[G]→ k[G×G] ∼= k[G]⊗ k[G],
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called comultiplication, and characterized by the identity

∆(f)(g1, g2) = f(g1g2) for all f ∈ k[G] and g1, g2 ∈ G.

Now let K ≤ U(n) be a compact Lie group, with Zariski closure G ≤ GLn(C) as above.
Then

(5.1) G ∼= HomC(C[G],C) ∼= HomC(A(K),C).

The comultiplication ∆ on C[G] corresponds under the isomorphism with A(K) to the map

∆ : A(K)→ A(K)⊗A(K)

described explicitly in terms of matrix coefficients by the usual matrix multiplication rule

∆(πij) =
∑
k

πik ⊗ πkj

and in basis-free manner as the map induced by the maps End(V )∗ → End(V )∗ ⊗ End(V )∗

(V a finite-dimensional representation of G) coming from the multiplication maps End(V )⊗
End(V )→ End(V ).

These observations already show that G is determined as an algebraic group by the pair
(A(K),∆); in particular, G is independent of the choice of linear embedding used in its
construction. We will henceforth refer to G as the complexification of K.

We can say something similar about K:

Theorem 5.7. Let K be a compact Lie group. Then the map k 7→ [f 7→ f(k)] defines a
bijection

(5.2) K ↔ {` ∈ HomC(A(K),C) : `(σ(f)) = f for all f ∈ A(K)},

where σ : A(K)→ A(K) is given by complex conjugation. The group law on K is described
by ∆, i.e., for all f ∈ A(K) and k1, k2 ∈ K, we have f(k1k2) = ∆(f)(k1, k2).

Informally, “(A(K),∆) determines K.”

Proof. Let G be as constructed above, and let ` be an element of the RHS of (5.2). By (5.1),

we may write `(f) = f(g) for some g ∈ G. By Remark 5.6, we have f(Θ(g)) = f(g) for all
f ∈ C[G], hence Θ(g) = g. By Theorem 5.5, we conclude that g ∈ K. �

There’s much more to say about this topic than we will here. Some keywords: Tannaka–
Krein duality, Hopf algebras.

5.4. Cartan decomposition. Set

P (n) := {g ∈ GLn(C) : p∗ = p, positive-definite},

p(n) := {x ∈ gln(C) : x∗ = x}.
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Then the map exp : p(n)→ P (n) is a bijection; indeed, by the spectral theorem for hermitian
matrices, we have for each x ∈ p(n) and p ∈ P (n) that

x ∼

x1

· · ·
xn

 , p ∼

p1

· · ·
pn


for some xi ∈ R, pj ∈ R>0, where ∼ denotes conjugacy. We deduce readily that exp : p(n)→
P (n) and log : P (n) → p(n) (with the latter defined by the “functional calculus,” i.e., by
taking the logarithm of each diagonal entry) define mutually inverse bijections. Note that for
p ∈ P (n), we can define pt for any complex number t, either via the logarithm as exp(t log p)
or directly via the functional calculus.

The following might be known from linear algebra:

Lemma 5.8 (Polar decomposition). The map U(n)×P (n)→ GLn(C) given by (k, p) 7→ kp
is bijective.

Proof. Injectivity: if g = kp, then g∗g = p∗k∗kp = p2, so p =
√
p2 := exp(1

2
log p) and

thus also k = gp−1 are determined by g. Surjectivity: observe that g∗g ∈ P (n) and define
p :=

√
g∗g ∈ P (n), k := gp−1 ∈ U(n). �

Lemma 5.9. The map
U(n)× p(n)→ GLn(C)

(k, x) 7→ k exp(x)

is a diffeomorphism.

Proof. We have already checked the bijectivity. The forward map is smooth. We need to
know that the inverse is smooth. This boils down to the fact that exp : p(n) → P (n) is
submersive, which is a consequence of the following lemma and the fact that for x ∈ p(n),
the eigenvalues of adx are real. �

The following is part of the BCHD law, and describes the derivative of the exponential
map on any Lie group.

Lemma 5.10. Let G be any Lie group, Fix x ∈ g. Let z ∈ g be small enough. Let y ∈ g be
the small element for which

(5.3) exp(x+ z) = exp(x) exp(y).

Then

(5.4) y = F (adx)z + O(|z|2),

where

(5.5) F (t) :=
1− e−t

t
= 1− t

2!
+
t2

3!
− · · · .

In particular, exp is a local diffeomorphism at x iff F (adx) is invertible iff adx has no
eigenvalues of the form 2πik, with 0 6= k ∈ Z.
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Proof. (Omitted from lecture.) For t ∈ [0, 1], set f(t) := log(exp(−tx) exp(t(x+z))), so that
f(0) = 0 and f(1) = y. We compute that for small ε > 0,

(5.6) f(t+ ε) = Ad−tx(εz) + tz + O(ε|z|2+ε2),

where Adx := eadx = Ad(ex). (To see this, first write exp(−(t + ε)x) exp((t + ε)(x + z)) =
exp(−tx) exp(−εx) exp(ε(x+ z)) exp(t(x+ z)), then approximate exp(−εx) exp(ε(x+ z)) =
exp(εz + O(ε2)) and deduce that f(t + ε) = log(exp(Ad−tx(εz) + O(ε2)) exp(O(z))) =
Ad−tx(εz) + O(ε|z|2+ε2), as required.) Thus

f ′(t) = Ad−tx(z) + O(|z|2)

and so

y =

∫ 1

t=0

e−t adxz dt+ O(|z|2),

which leads to the required conclusion by the formula
∫ 1

t=0
e−tu dt = F (u). �

Theorem 5.11. Let K be a compact Lie group, with complexification G. Write g = k ⊕ p
as in Theorem 5.5. Then the map

K × p→ G

(k, x) 7→ k exp(x)

is a diffeomorphism. In particular,

• K is a deformation retract of G,
• K meets every connected component of G,
• K is connected if and only if G is connected,

and so on.

Proof. In view of Lemma 5.9, we just need to check that if g ∈ G is written g = kp with
k ∈ U(n) and p ∈ P (n), then in fact p ∈ P := exp(p); it follows then p ∈ G, hence that
k = gp−1 ∈ G ∩ U(n) = K. It will suffice to show that pt ∈ G for all t ∈ R, because then
∂t=0p

t belongs to g ∩ p(n) = p. Since G = V (I(G)), it will suffice to show for each f ∈ I(G)
that f(pt) = 0 for all t ∈ R. Since p2 = g∗g and G is a group, we know that f(pt) = 0 for all
t ∈ 2Z. Let ex1 , . . . , exn denote the diagonal entries of p with respect to some basis. Then
f(pt) is a polynomial in the quantities e±tx1 , . . . , e±txn . Collecting common exponents, we
may write

f(pt) =
∑
γ∈Γ

cγe
γt

for some finite subset Γ of R and some nonzero complex coefficients cγ. Suppose for the
sake of contradiction that f(pt) is nonzero. Then Γ is nonempty. Let γ ∈ Γ be the largest
element. Then limt→∞ e

−γtf(pt) = cγ 6= 0. But f(pt) = 0 for all t ∈ 2Z, giving the required
contradiction. �
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5.5. Algebraic representations.

Definition 5.12. A morphism of algebraic groups is a group homomorphism that is also a
morphism of the underlying algebraic sets, i.e., a map described in coordinates by polyno-
mials.

Let G be an algebraic group over an infinite field k. An algebraic representation of G is a
finite-dimensional k-vector space V equipped with a morphism of algebraic groups π : G→
GL(V ).

Theorem 5.13. Let K be a compact Lie group. Let G denote its complexification. Then
algebraic representations (σ,W ) of G are in natural bijection with finite-dimensional repre-
sentations (π, V ) of K. The bijection sends V to W and W to V . To get from σ to π,
one restricts. To get from π to σ, one writes π in matrix form as (πij), with πij ∈ A(K);
one then uses the isomorphism A(K) ∼= C[G] to identify each πij with a regular function on
G, and takes σ = (πij) the algebraic representation whose matrix entries are given by those
regular functions.

Proof. The reader is encouraged to check that this follows readily from Theorem 5.5. �
11

5.6. Reductive groups. Which groups G arise as in Theorem 5.5, i.e., as the Zariski closure
of a compact subgroup of GLn(C)? Recall that an element g ∈ GLn(C) is unipotent if
(g − 1)n = 0. We say that a subgroup of GLn(C) is unipotent if each of its elements is
unipotent.

Definition 5.14. A complex algebraic group G ≤ GLn(C) is called reductive if it contains no
nontrivial (i.e., other than {1}) normal unipotent subgroups.

For instance, the group

(
1 C

1

)
is not reductive, because the whole group is unipotent.

Theorem 5.15. Let G ≤ GLn(C) be a complex algebraic group. The following are equivalent:

(i) G is reductive.
(ii) G has a Zariski dense compact subgroup K.

(iii) G is conjugate to a group that is closed under Θ : g 7→ tg−1.
(iv) Every algebraic representation V of G is completely reducible, i.e., decomposes as a

direct sum ⊕Wi of invariant irreducible subspaces.

Proof. The proof that (i) implies (iii) implies (ii) is lengthy, and will not be discussed in
detail. The basic idea is to complete most of the classifications of reductive algebraic groups
and of compact Lie groups, and to observe that the same objects (root data) arise in both
classifications. We will soon discuss these ideas for compact Lie groups; a parallel discussion
applies in the algebraic setting.

11End of lecture #10, Tuesday, 26 March
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That (ii) implies (iii) follows from Theorem 5.5.
Let’s assume (ii) and deduce (iv). We have seen (Theorem 1.17) that V decomposes as

a direct sum ⊕Wi of K-invariant K-irreducible subspaces. We claim that if a subspace
W ⊆ V of V is K-invariant, then it is likewise G-invariant. It’s obvious that any K-
irreducible G-invariant subspace is likewise G-irreducible, so the claim suffices. To verify
the claim, the point is that leaving a subspace invariant is an algebraic condition, which
thus extends Zariski-continuously from K to G. In more detail, consider the set X := {g ∈
GL(V ) : gW ⊆ W}. Then X is algebraic; for instance, if we extend a basis e1, . . . , em for
W to a basis e1, . . . , en for V and denote by e∗1, . . . , e

∗
n the corresponding dual basis, then

X = {g : e∗j(gei) = 0 for i = 1..m, j = m + 1..n}. Let π : G → GL(V ) denote the action

map. Then π−1(X) is algebraic. Since W is K-invariant, we have K ⊆ π−1(X). Since K is
Zariski dense in G, it follows that G ⊆ π−1(X), hence that X is G-invariant, as required.

Let’s finally assume (iv) and deduce (i). Let N be a normal unipotent subgroup. We must
show that N = {1}. Let V = Cn denote the standard representation of G, thus G ⊆ GL(V ).
By assumption, V = ⊕Wi with eachWi an irreducible subrepresentation. By Engel’s theorem
(or perhaps a variant), the fixed space WN

i = {w ∈ Wi : nwi = wi for all n ∈ N} is
nontrivial. Since N is normal, WN

i is G-invariant. (Indeed, if v ∈ WN
i , g ∈ G and n ∈ N ,

then n′ := g−1ng ∈ N , so ngv = gn′v = gv, hence gv ∈ WN
i .) Since Wi is irreducible, it

follows that Wi = WN
i , hence that V = V N . This says that every element n of N fixes every

element of V , i.e., that n = 1, i.e., that N = {1}, as required. �

5.7. Unitary trick. We record a further variant of the above considerations. We focus
on an example; what’s relevant here is that SLn(C) and SU(n) are connected and simply-
connected. Note that by the Cartan decomposition (§5.4), knowing either of these properties
for one of these groups implies the same property for the other group.

Theorem 5.16. Let V be a finite-dimensional complex vector space. The following are all
in natural bijection:

(1) Algebraic representations SLn(C)→ GL(V )
(2) Holomorphic representations SLn(C) → GL(V ) (i.e., morphisms of complex Lie

groups)
(3) Holomorphic representations sln(C) → gl(V ) (i.e., morphisms of complex Lie alge-

bras)
(4) Representations SU(n)→ GL(V )
(5) Representations su(n)→ GL(V )
(6) Representations SLn(R)→ GL(V )
(7) Representations sln(R)→ GL(V )

These bijections are compatible with irreducibility and direct sum decompositions. Any such
representation is completely reducible, i.e., decomposes as a direct sum of irreducible repre-
sentations.

Proof. We go from (1) to (2) using that polynomials are holomorphic. We’ll leave it as
a homework problem to show that any holomorphic representation of a complex reductive
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group is automatically polynomial, giving the arrow from (2) to (1). (2) and (3) are equivalent
by Lie theory and the fact that SLn(C) is connected and simply-connected. (4) and (5) are
likewise equivalent thanks to the analogous properties for SU(n). (3), (5) and (7) are all
equivalent thanks to the identities

(5.7) su(n)⊕ i su(n) = sln(C) = sln(R)⊕ i sln(R)

and the fact that an R-linear map W → U from a real vector space W to a complex
vector space U extends uniquely to a C-linear map WC → U from the complexification
WC = W ⊗R C = W ⊕ iW . We go from (2) to (6) by restricting and from (6) to (7) by
differentiating. That these bijections are compatible with irreducibility and decompositions is
either clear or follows as in the proof of Theorem 5.15. We’ve seen that complete reducibility
holds for representations of SU(n), so the same follows for each of the other classes of
representations. �

We’ve already (§2.7) classified the (irreducible) finite-dimensional representations of SU(n),
so the stated equivalence tells us that we’ve implicitly classified each of the other six classes
of representations.

We note that Theorems 5.13 and 5.16 are mostly independent.
We record the homework problem promised above as a theorem:

Theorem 5.17. Let G be a reductive complex algebraic group and V a finite-dimensional
complex vector space. Then any holomorphic representation π : G→ GL(V ) is algebraic.

Note that by contrast, non-reductive groups can have holomorphic non-algebraic repre-
sentations, e.g., (

1 C
1

)
3
(

1 z
1

)
7→
(
ez

1

)
∈ GL2(C).

We’ve only scratched the tip of the iceberg here; for further reading I recommend the book
by Onishchik–Vinberg.



REPRESENTATIONS OF LIE GROUPS ETH ZÜRICH, SPRING 2019 69

6. Structure of compact Lie groups

We aim next to show that any compact Lie group K has structure similar to that ob-
served in §2 for the unitary groups. We’ll use this to classify such K together with their
representations.

6.1. Notation related to a torus. Let T be an n-dimensional torus. Recall from §2 that
this means that T is a connected compact abelian Lie group of dimension n and that any
such T is isomorphic to U(1)n. We may fix such an isomorphism and regard T as the diagonal
subgroup of U(n). In §2, we worked with the explicit coordinates defined by this embedding.
It’ll be useful now to work in a more basis-free manner. This requires setting up a bit of
notation.

The character group of T is

X(T ) := Hom(T,U(1)),

while the cocharacter group is

X∨(T ) := Hom(U(1), T ).

We view these as additive groups. They are free Z-modules of rank n. We can identify X(T )
and with Zn by associating to λ, γ ∈ Zn the character

T 3 t 7→ tλ := tλ11 · · · tλnn
and the cocharacter

U(1) 3 z 7→ zγ := diag(zγ1 , . . . , zγn).

There is a natural pairing

〈, 〉 : X(T )⊗Z X
∨(T )→ Z

given by observing that the composition U(1) → T → U(1) is a morphism U(1) → U(1),
and that any such morphism is of the form z 7→ zk for some integer k (e.g., by §1.6). For
λ, γ ∈ Zn, we have (zγ)λ = zγ1λ1+···+γnλn , so 〈λ, γ〉 = γ1λ1 + · · ·+ γnλn.

We denote by t the Lie algebra of T and by tC = t⊗R C = t⊕ it its complexification. We
may identify

tC =

C
. . .

C

 .

We (somewhat awkwardly) set tR := it, so that

(6.1) tR =

R
. . .

R

 .

We obtain a surjective covering map
tR → T
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x 7→ exp(ix).

We write t∗C := HomC(tC,C) ∼= Cn and t∗R := HomR(tR,R) ∼= Rn. We may identify t∗R
with the subspace of t∗C mapping tR to R. The identification of t∗R with Rn is given by
λ = (λ1, . . . , λn) if λ(x) = λ1x1 + · · ·+ λnxn for x = diag(x1, . . . , xn) ∈ tR.

Each λ ∈ X(T ) identifies with an element λ ∈ t∗R; this identification is determined by
requiring that for every x ∈ tR (so that exp(ix) ∈ T ), we have

(exp(ix))λ = eiλ(x).

We write t∗Z ⊆ t∗R for the image of X(T ) under this identification. The identification above
of t∗R with Rn then carries t∗Z to Zn.

Each γ ∈ X∨(T ) identifies with an element γ ∈ tR, characterized as follows: for θ ∈ R (so
that exp(iθ) ∈ U(1)),

(exp(iθ))γ = exp(iθγ).

We denote by tZ ⊆ tR the image of X∨(T ) under this identification. Then under (6.1), we
have

(6.2) tZ =

Z
. . .

Z

 .

We note that X(T ) and X∨(T ) identify respectively with tZ and t∗Z, and the pairing
X(T ) ⊗ X∨(T ) → Z (tensor product over Z) discussed above corresponds to the natural
pairing 〈, 〉 : tZ⊗t∗Z → Z induced by the canonical duality between tR with t∗R. In coordinates,
〈λ, γ〉 = λ1γ1 + · · ·+ λnγn, as before.

We should note that tZ and t∗Z depend upon T , not just upon t.
Recall (§1.6) that every finite-dimensional irreducible representation of T is one-dimensional

and of the form t 7→ tλ for some λ ∈ t∗Z. Given a finite-dimensional representation V of T ,
recall (§2.3) that we may decompose

V = ⊕λ∈t∗ZV
λ,

where V λ = {v ∈ V : tv = tΛv for all t ∈ T} is the weight space with weight λ.

6.2. Maximal tori: definition and existence. Let K be a compact Lie group. By a
torus T ≤ K we mean a closed subgroup that is a torus. Note that if T is an abstract torus
and j : T ↪→ K is a injective immersive Lie group morphism (i.e., a “virtual Lie subgroup”),
then j(T ) is the image under a continuous map of a compact set, hence j(T ) compact, hence
(since K is Hausdorff) j(T ) is closed, and so j(T ) is a torus in G.

Definition 6.1. A maximal torus T of K is a torus T ≤ K that is not contained in any
strictly larger torus in K.

Lemma 6.2. Let K be a compact Lie group.

(i) A torus T ≤ K is maximal if and only if t is a maximal abelian subalgebra of k.
(ii) Maximal tori exist in K.
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(iii) If dim(K) > 0, then nontrivial tori exist in K.

Proof. (i) We will verify the equivalence in contrapositive form.
If S is a torus in K that strictly contains T , then (by the Lie correspondence) s is

an abelian subalgebra of k that strictly contains t.
Conversely, suppose s is an abelian subalgebra of k that strictly contains t. Let

x ∈ s− t. Then exp(Rx) commutes with T , so exp(Rx)T is an abelian subgroup of G.

Its closure exp(Rx)T is a closed abelian subgroup of G, hence compact. The connected

component T ′ := (exp(Rx)T )0 of that closure is then connected, compact and abelian,
hence is a torus. Since x ∈ Lie(T ′)− t, we see that T ′ strictly contains T .

(ii) Use that the dimensions of the (abelian) subalgebras of k are bounded from above.

(iii) Consider (exp(Rx))0 for any 0 6= x ∈ k.
�

6.3. Roots and root space decomposition. Let K be a compact Lie group with maximal
torus T . Let G denote the complexification of K, so that g is the complexification of k. We
then have the (complexified) adjoint representation

Ad : K → GL(g),

which we may restrict to T and decompose:

(6.3) g = ⊕λ∈t∗Zg
λ.

Definition 6.3. A root for (K,T ) is a nonzero element α of t∗Z for which gα is nonzero. We
denote by Φ := Φ(K : T ) the set of roots, and refer to gα as the root space attached to the
root α.

For instance, suppose that K = U(n), with T = U(1)n ↪→ K the diagonal subgroup.
We’ve seen (§2.3) that Φ consists of the set of differences εi − εj, where i, j are distinct
elements of {1..n} and εi denote the standard basis elements of t∗Z. The root space gεi−εj

is spanned by the elementary matrix Eij, for which Ad(t)Eij = (ti/tj)Eij = tεi−εjEij. For
instance, if n = 3, then

Ad

t1 t2
t3

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 (t1/t2)a12 (t1/t3)a13

(t2/t1)a21 a22 (t2/t3)a23

(t3/t1)a31 (t3/t2)a32 a33

 .

We might observe in this case that g = gln(C) is the direct sum of the diagonal subspace
tC and the root spaces, each of which is one-dimensional. We’ll see eventually that these
features are general, i.e., hold for any compact Lie group. For starters:

Lemma 6.4. Let K be a compact Lie group with maximal torus T and g as usual. Then

(6.4) g = tC ⊕ (⊕α∈Φg
α).
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Proof. By (6.3), it suffices to show that g0 = {x ∈ g : Ad(t)x = x for all t ∈ T} is equal
to tC. We note that g0 is closed under complex conjugation, hence g0 = k0 ⊕ ik0 with
k0 := {x ∈ k : Ad(t)x = x for all t ∈ T}; indeed if x ∈ g, then we may write x = x1 + ix2

with x1, x2 ∈ k, while for t ∈ T we have Ad(t)x = Ad(t)x1 + iAd(t)x2, hence x ∈ g0 iff
x1, x2 ∈ k0, which leads to the required decomposition. It is thus enough to show that k0 = t.
Suppose otherwise that there exists x ∈ k0 − t. Then Rx ⊕ t is an abelian subalgebra of k
(note that [x, t] = {0} because Ad(t)x = x for all t ∈ T ) that strictly contains t. Since T is
a maximal torus, we obtain a contradiction via Lemma 6.2. �

The root spaces of g move the weight spaces of any other representation V predictably, as
we now explain. LetK be a compact Lie group with maximal torus T and complexificationG.
Let π : K → GL(V ) be a finite-dimensional representation of K. It induces a representation
dπ : k → End(V ) of the Lie algebra, which complexifies to a holomorphic representation
dπ : g → End(V ) of the complexified Lie algbera. The basic relationship between these is
that for g ∈ K, x ∈ g and v ∈ V , we have

π(g)dπ(x)v = dπ(Ad(g)x)π(g)v.

Abbreviating gv := π(g)v and xv := dπ(x)v and gxg−1 := Ad(g)x, this identity reads more
simply as

gxv = (gxg−1)gv.

Lemma 6.5. For α, λ ∈ t∗Z, we have

dπ(gα)V λ ⊆ V λ+α.

In particular, taking (π, V ) = (Ad, g), we have for any α, β ∈ t∗Z that

[gα, gβ] ⊆ gα+β.

Proof. Let x ∈ g∗, v ∈ V λ, t ∈ T . Then

(6.5) π(t)(dπ(x)v) = dπ(Ad(t)x)π(t)v = dπ(tαx)π(t)v = dπ(tαx)tλv = tλ+αdπ(x)v,

so dπ(x)v ∈ V λ+α, as required. We record the same argument but expressed using the above
abbreviations:

txv = (txt−1)tv = (tαx)(tλv) = tλ+αxv.

The conclusion regarding α, β is immediate, but it’s worth repeating the proof in that special
case for the sake of illustration: for x ∈ gα, y ∈ gβ and t ∈ T , we have

Ad(t)[x, y] = [Ad(t)x,Ad(t)y] = [tαx, tβy] = tα+β[x, y],

hence [x, y] ∈ gα+β. �
12

By choosing a unitary structure on a faithful representation of K and then taking an
orthonormal basis consisting of weight vectors for T , we obtain an embedding K ↪→ U(n)

12End of lecture #11, Thursday, 28 March
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that carries T to a subgroup of the diagonal subgroup of U(n). We have noted (Theorem
5.5) that then the complexified Lie algebra g is closed under θ : x 7→ −x∗, where x∗ := tx.
This fact has an important consequence:

Lemma 6.6. If α ∈ Φ, then −α ∈ Φ, and dim(gα) = dim(g−α).

For example, if K = U(n) and (with notation as before) α = εi − εj, then gα = CEij,
θ(Eij) = −Eji, −α = εj − εi.

Proof. Since g is closed under θ, it is enough to show that θ(gα) ⊆ g−α. (Equality then
follows from, for instance, the involutivity of θ and the same argument applied to −α.) Let
x ∈ gα, and let t ∈ T . With matrix realizations as above, we have t∗ = t−1 (indeed, we
may write t = diag(eiθ1 , . . . eiθn), which makes this obvious), while A∗B∗ = (BA)∗ for any
matrices A,B, thus

Ad(t)θ(x) = −tx∗t−1 = −(t−1)∗x∗t∗

= −(txt−1)∗ = −(Ad(t)x)∗ = −(tαx)∗ = tαθ(x) = t−αθ(x).

Since t was arbitrary, we deduce as required that θ(x) ∈ g−α. �

6.4. Generators. Tori are topologically cyclic, and this fact is very useful.

Definition 6.7. Let T be any torus. A generator t ∈ T is an element such that 〈t〉 = T ; here
〈t〉 := {tn : n ∈ Z} denotes the subgroup generated by t, and the closure of that subgroup

〈t〉.

Lemma 6.8. Let T be any torus. Then generators of T exist and are dense.

Proof. Write n = dim(T ), so that T ∼= (R/Z)n and t = (x1, . . . , xn). In the case n = 1,
Weyl’s equidistribution criterion implies that t is a generator iff x1 /∈ Q. For general n, the
same criterion says that t is a generator iff 1, x1, . . . , xn are linearly independent over Q.
These conditions are obviously satisfied by a dense collection of elements.

Alternatively, here’s an elementary pigeonhole argment (which I think I learned from
Adams’ book). For each t ∈ T and ε > 0, write Bt(ε) for the open ε-ball at t, defined with
respect to the Euclidean metric on (R/Z)n. Fix an enumeration (ti, εi), indexed by i ≥ 1, of
all pairs consisting of

• an element ti ∈ T whose entries with respect to the isomorphism T ∼= (R/Z)n are
rational, and
• a rational number ε ∈ (0, 1).

(Thus the Bti(εi) give a countable open basis for T .) Let U be a closed subset of T with
nonempty interior U0. If the natural number N1 is large enough, then N1U := {N1u :
u ∈ U} coincides with T . Thus U1 := {u ∈ U : |N1u − t1|≤ ε1/2} is a closed subset of
U , with nonempty interior, such that N1U1 ⊆ Bt1(ε1). We may similarly find a natural
number N2 and a closed subset U2 of U1, with nonempty interior, so that N2U2 ⊆ Bt2(ε2).
Continuing in this way, we obtain a descending chain of closed subsets with nonempty
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interiors U ⊃ U1 ⊇ U2 ⊇ · · · and natural numbers N1, N2, . . . so that for each i ≥ 1, we
have NiUi ⊆ Bti(εi). By compactness, the intersection ∩i≥1Ui is nonempty. Let t be any
element of that intersection. Then Nit ∈ Bti(εi). Hence the group 〈t〉 = Zt (here we use
additive notation for T ∼= (R/Z)n) intersects every constituent Bti(εi) of an open basis of T .

Hence its closure 〈t〉 is all of T . Since U was arbitrary, we deduce moreover that the set of
generators is dense. �

Generators are useful because they reduce properties involving an entire torus to individual
elements. We give an example. To state it, recall that the centralizer and normalizer of a
subgroup H of a group G are defined by ZG(H) := {g ∈ G : ghg−1 = h for all h ∈ H}
and NG(H) := {g ∈ G : ghg−1 ∈ H for all h ∈ H}; the definition of ZG(H) applies more
generally to any subset H of G, and we abbreviate ZG(h) := ZG({h}) when that subset
consists of a single element h ∈ G.

Lemma 6.9. Let K be a Lie group, let T ≤ K be any torus, and let t ∈ T be a generator.
Then ZK(T ) = ZK(t) = {g ∈ K : gtg−1 = t} and NK(T ) = {g ∈ K : gtg−1 ∈ T}

Proof. We just note that the subsets {s ∈ T : gsg−1 = s} and {s ∈ T : gsg−1 ∈ T} are
closed subgroups of T , hence they coincide with T iff they contain the generator t. �

6.5. Definition and finitude of the Weyl group of a maximal torus.

Definition 6.10. Let K be a compact Lie group, with maximal torus T . The Weyl group
W := W (K : T ) is defined to be N(T )/T , where N(T ) := NK(T ) denotes the normalizer of
the torus.

For instance, for K = U(n), we saw that the permutation representation S(n) → U(n)
defines an isomorphism §(n) ∼= W .

We note in general that W acts on T by conjugation (in a well-defined manner):

w · t := wtw−1.

The following basic lemma (which may be proved in a few ways) gives a decent illustration
of how to argue using the root space decomposition (6.4).

Lemma 6.11. Let K be a compact Lie group with maximal torus T . Then N(T )0 = T and
|W |<∞.

Proof. We show first that N(T )0 = T . The containment N(T )0 ⊇ T is clear, so we just
need to check that Lie(N(T )0) ⊆ t. We have Lie(N(T )0) = {x ∈ k : [x, t] ⊆ t}. Let
x ∈ Lie(N(T )0). Using (6.4), we may write

x = x0 +
∑
α∈Φ

xα

with x0 ∈ tC and xα ∈ gα. For y ∈ t, we then have

t 3 −[x, y] = [y, x] = [y, x0] +
∑
α∈Φ

[y, xα] =
∑
α∈Φ

α(y)xα,
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hence α(y)xα = 0 for all α and all y. Since each α is nonzero, we deduce that xα = 0 for all
α, hence that x = x0, and so x ∈ t, as required.

It follows that W = N(T )/N(T )0 is a compact 0-dimensional Lie group, and so is finite.
�

Remark 6.12. The definition of W given here is a bit ad hoc. We’ll later define W (K : S), for
any torus S, to be the quotient NK(S)/ZK(S) of the normalizer divided by the centralizer.
This will be seen to coincide with the definition given above in the case of a maximal torus
T only after we’ve seen that ZK(T ) = T for such tori, but this is a deep fact which will
require proof. The group W = W (K : T ) as defined above will be relevant for the proof of
that fact.

6.6. Weyl integral formula. We want a generalization of the formula that we proved
earlier for U(n) (see §2.4). That formula expressed the integral over K in terms of integrals
over conjugates of a maximal torus T . Since tori are connected, we’d better assume that K
is connected to have any hope for such a formula.

So let K be a connected compact Lie group, with maximal torus T . Write N := dim(K)
and n := dim(T ). The basic setup will be the same as in the case of U(n). Write N :=
dim(K) and n := dim(T ). The subspace t = Lie(T ) of k = Lie(K) admits a natural Ad(T )-
invariant complement k/t := k ∩ (

∑
α∈Φ gα). Fix a nonzero ω1 = α1 ∧ β1 in ΛN(k), with

α1 ∈ Λn(t) and β1 ∈ ΛN−n(k/t). The compactness of T implies that β1 is Ad(T )-invariant.
We obtain left-invariant differential forms ω ∈ ΩN(K), α ∈ Ωn(T ), β ∈ ΩN−n(K/T ). (We’ll
denote here and henceforth by Ωk(M) for the space of smooth k-forms on a manifold M , and
Ωk
c (M) for the subspace of compactly-supported k-forms.) The compactness of K implies

that ω is also right-invariant. We obtain Haar measures |ω|, |α|, |β| on K,T,K/T . We may
assume ω and α normalized so that |ω| and |α| are probability Haar measures; the same is
then true for |β| by the analogue of Fubini’s theorem. We define

q : K/T × T → K

q(g, t) := gtg−1,

and write

q∗ω = det(q)(β ∧ α).

Lemma 6.13. (i) For all (g, t) ∈ K/T × T , we have

det(q)(g, t) = D(t),

where

D(t) := det(1− Ad(t)|k/t) =
∏
α∈Φ

(1− tα)dim(gα).

(ii) We have D(t) ≥ 0 for all t ∈ T . We have D(t) > 0 precisely when tα 6= 1 for all α ∈ Φ.

We’ll see a bit later that each root space gα is exactly one-dimensional, so that the dimen-
sions appearing in the exponents may be omitted, but we include them for now.
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Proof. The computation of det(q) is exactly as in the case of U(n).
By lemma 6.6, we have α ∈ Φ iff −α ∈ Φ, and moreover dim gα = dim g−α. Thus D(t) is

a product taken over all distinct pairs {α,−α} ⊆ Φ of the dim(gα)th power of the quantities
(1 − tα)(1 − t−α). Each such quantity is nonnegative. (Writing tα = eiθ, the quantity in
question is 2− 2 cos θ.) �

Lemma 6.14. The formula

D(g) := coefficient of λdim(T ) in det(λ+ 1− Ad(g))

defines a class function D : K → R that extends the function D : T → R≥0 defined above.

We’ll see eventually that in fact D ≥ 0 on all of K.

Proof. For t ∈ T , Ad(t) acts on both t and k/t, so we may factor the determinant of λ +
1−Ad(t) for the action on on k as the product of the determinants for the actions on t and
k/t; we have Ad(t)|t= 1, so the first of the latter two determinants is just λdim(T ), while the
second is D(t) + O(λ). �

Definition 6.15. An element g ∈ K is called regular if D(g) 6= 0. We denote by Kreg the set
of all regular elements g ∈ K, and set T reg := T ∩Kreg.

We observe that Kreg is a conjugacy-invariant subset of K and that T reg = {t ∈ T : tα 6=
1 for all α ∈ Φ}. For example, if K = U(n) and T ∼= U(1)n is the diagonal torus, then t ∈ T
is regular iff ti 6= tj for all i 6= j. It’s clear that any generator is regular, while the converse
is not true in general. Note also that “being a generator” is intrinsic to T , while “being
regular” depends also upon the ambient group K.

We note that for any w ∈ W and (gT, t) ∈ K/T × T and w ∈ W , the action

w · (gT, t) := (gw−1T,w · t) = (gw−1T,wtw−1)

is well-defined. It induces defines an action of W on each fiber of q; indeed,

q(w · (gT, t)) = (gw−1)(wtw−1)(gw−1)−1 = gtg−1 = q(gT, t).

We denote this relationship by the diagram

W � K/T × T q−→ K.

In the U(n) case, the fibers of q correspond to choices of orthonormal basis for a given
unitary matrix; the action of W corresponds to permuting the basis elements and is thus free,
and transitive on the fiber above a regular element because such elements admit a unique
(up-to-reordering) basis of eigenvectors.

The action of W (on each fiber of q) is free in general, since if (gwT,w · t) = (gT, t) then
gwT = gT , hence wT = T , i.e., w ≡ 1 in W . We’ll see below that the action on regular
fibers is transitive, as in the U(n) case. The action can be far from transitive on irregular
fibers; for instance, q−1(1) = K/T × {1}, and the action of W on K/T fails to be transitive
whenever dim(K/T ) > 0.
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We’re now prepared to state the Weyl integral formula for K, together with some related
consequences:

Theorem 6.16. Let notation and assumptions be as above: K is an N-dimensional con-
nected compact Lie group with n-dimensional maximal torus T and Weyl group W .

(i) q is surjective, i.e., K = ∪g∈KgTg−1.
(ii) The restriction

q : K/T × T reg → Kreg

is a |W |-to-one covering map, with the group W acting simply-transitively on the fibers.
This restriction is orientation-preserving at every point.

(iii) For all ν ∈ ΩN(K), we have

(6.6)

∫
K/T×T

q∗ν = |W |
∫
K

ν.

(iv) For all f ∈ C(K) (i.e., continuous f : K → C) we have∫
(g,t)∈K/T×T

D(t)f(gtg−1) = |W |
∫
K

f,

with all integrals taken with respect to probability Haar measures.

Proof that iii implies iv. Take ν = fω, with ω ∈ ΩN(K) as used above to describe the
probability Haar on K. Then q∗ν = fq∗ω = fD(β ∧ α). �

Proof that iii implies i. Let E denote the image of q. Suppose otherwise that we may find
some x ∈ K−E. Since K/T ×T is compact and q is continuous, the set E is compact, hence
closed, so we may find an open neighborhood U of x disjoint from E. Choose ν ∈ ΩN

c (U)
with

∫
ν 6= 0. Then q∗ν = 0. Using (ii), we deduce that

0 =

∫
q∗ν = |W |

∫
ν 6= 0,

giving the required contradiction. �

Proof of ii and iii. First, let x ∈ T reg. Lemma 6.13 implies then that det(q) > 0 on q−1(x).
Thus for each y ∈ q−1(x), the map q is an orientation-preserving local diffeomorphism at y.
In particular, q−1(x) is a closed 0-dimensional subset of the compact set K/T × T , and so
q−1(x) is finite. We may thus find a small neighborhood U of x and, for each y ∈ q−1(x),
a small neighborhood Uy of y so that q induces diffeomorphisms Uy ∼= U . By shrinking
U and hence each Uy if necessary, we may assume that the Uy are all disjoint. Using the
compactness of the domain of q, we see that the image under q of the complement of ∪zUz
is compact, hence closed, so by shrinking U if necessary, we may assume that the image in
question is disjoint from U . Then

(6.7) q−1(U) = ty∈q−1(x)Uy,

with the map q−1(U)→ U a trivial cover.
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We’ve noted already that W acts freely on every fiber of q. We claim now moreover that
W acts transitively on every fiber of q in U , i.e., that W permutes the “pancakes” Uy lying
above U . It suffices to verify that W acts transitively on the fibers above any individual
element t ∈ U . By Lemma 6.8, we may take for t a generator of T . As a “basepoint” for
q−1(t), we may take the pair (eT, t), with e ∈ G the identity element. If (gT, s) is any other
element of q−1(t), then gsg−1 = t, and so g−1tg = s ∈ T , which (by Lemma 6.9) forces g to
lie in N(T ), i.e., w := gT to lie in W . Thus (gT, s) = w · (eT, t), and so W acts transitively
on q−1(t), as required. It follows in particular that #q−1(x) = #q−1(t) = |W |, so that for
any ν ∈ ΩN

c (U),

(6.8)

∫
q∗ν = |W |

∫
ν.

We have nearly established ii; what remains to show is just that q : K/T × T reg → Kreg is
surjective. The required surjectivity will follow from i and hence from iii, so it remains only
to establish iii.

To that end, let us call an open subset U of K good if (6.6) holds for all ν ∈ ΩN
c (U). By

a partition of unity argument and the compactness of K, it will suffice to show that every
element of K admits a good neighborhood. We’ve seen already in (6.8) that every element
of T reg admits a good neighborhood. The set T reg is nonempty. The idea now will be to use
Stokes’ theorem to “propagate” goodness from any one open set to the rest. The following
elementary fact from differential geometry, known as the Poincaré lemma, will be of use:

Let ν1, ν2 ∈ ΩN
c ((0, 1)N) be compactly-supported top-degree differential forms on the open

unit cube such that
∫
ν1 =

∫
ν2. Then there exists λ ∈ ΩN−1

c ((0, 1)N) so that ν2 = ν1 + dλ.

For example, if N = 1, then ν1 − ν2 = f(x)dx for some f ∈ C∞c ((0, 1)) with
∫ 1

0
f(x) dx = 0,

so λ(x) :=
∫ x

0
f(y) dy defines an element λ ∈ C∞c ((0, 1)) for which dλ = ν1 − ν2. The proof

in the general case is similar and recorded below for completeness. Assuming the Poincaré
lemma for the moment, we may complete the proof of iii as follows:

(1) Say that an open subset U of K is small if it admits a chart U ∼= (0, 1)N . We claim
that if U1, U2 are small, U1 ∩ U2 is nonempty, and U1 is good, then U2 is good. To
see this, let ν2 ∈ ΩN

c (U2) be given. Choose any ν1 ∈ ΩN
c (U1 ∩ U2) with

∫
ν1 =

∫
ν2.

By the Poincaré lemma applied in the chart for U2, we may find λ ∈ ΩN−1
c (U2) so

that ν2 = ν1 + dλ. We have q∗dλ = dq∗λ, whose integral vanishes thanks to Stokes’
theorem. By the assumed goodness of U1 and the construction of ν1, we deduce that∫
q∗ν2 =

∫
q∗ν1 = |W |

∫
ν1 = |W |

∫
ν2. Since ν2 was arbitrary, we deduce as required

that U2 is good.
(2) We have seen that there exists some small good subset U of K (namely, any small

enough open neighborhood of a regular element of T ). It will suffice to show that
any other small open subset U ′ of K is likewise good. To that end, let us choose a
curve γ : [0, 1] → K with γ(0) ∈ U and γ(1) ∈ U ′. We can find for each s ∈ [0, 1]
a good neighborhood of γ(s). By a compactness argument applied to the preimages
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of those neighborhoods, we may find a sequence U = U0, U1, . . . , Um−1, Um = U ′ of
small open subsets of K with Uj ∩ Uj−1 6= ∅ for all j = 1..m. By what was shown
above, the goodness of U0 = U inductively implies the goodness of every Uj, hence
in particular of U ′.

The proof is now complete. �

Proof of the Poincaré lemma. (Omitted from lecture, recorded here for completeness; prob-
ably a good exercise.) Let’s work with n instead of N . Write

ν1 − ν2 = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn.

By hypothesis, f is supported in (0, 1)n and has mean zero. Our aim is to show that
f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn is of the form dλ for some (n− 1)-form λ supported in (0, 1)n.
Equivalently, we must show that

(6.9) f =
n∑
j=1

∂jgj

for some g1, . . . , gn supported in (0, 1)n, where ∂j denotes the partial derivative taken with
respect to xj.

We induct on n. The case n = 0 is tautological, while the case n = 1 was treated above.
For the case n ≥ 2, we apply our inductive hypothesis to write∫ 1

y=0

f(y, x2, . . . , xn) dy =
∑
j=2..n

∂jhj(x2, . . . , xn).

Fixing χ ∈ C∞c ((0, 1)) with
∫
χ = 1, the function

(6.10) gj(x1, . . . , xn) := χ(x1)hj(x2, . . . , xn)

is supported in (0, 1)n. Set f ′ := f −
∑

j≥2 ∂jgj. Then∫ 1

y=0

f ′(y, x2, . . . , xn) dy = 0 for all x2, . . . , xn,

so that

g1(x1, . . . , xn) :=

∫ x1

y=0

f ′(y, x2, . . . , xn) dy

is supported in (0, 1)n and satisfies ∂1g1 = f ′. The required identity (6.9) then holds by
construction. �

Remark 6.17. I wanted to present the proof as elementarily as possible, but I would be remiss
not to mention that what the above arguments “really” show is that for any connected N -
manifold M , the compactly-supported top-degree de Rham cohomology group

(6.11) HN
c (M) := ΩN

c (M)/dΩN−1
c (M),



80 PAUL D. NELSON

with coefficients taken in either k = R or C, is isomorphic to k, with the isomorphism

(6.12) HN
c (M)

∼=−→ k

defined by integrating an N -form over M . (Convince yourself that our arguments actually
establish this.) Since K/T × T and K are both connected compact N -manifolds, we can
replace HN

c with HN , and the formula (6.6) says that the dual map q∗ on de Rham cohomlogy
fits into a commutative diagram

HN(K)
q∗−−−→ HN(K/T × T )

∼=
y y∼=
k −−−→

|W |
k,

where we write |W | for the “multiplication by |W |” map. We know that every continuous
k-linear map k → k is given by multiplication by something, so the issue is just to compute
the proportionality constant for at least one N -form ν. We managed to do this for all ν
supported in a small enough neighborhood of a regular element of the torus.

It’s also worth noting that one can see a priori that proportionality constant (in this case
|W |) must an integer by applying the comparison isomorphism relating de Rham cohomology
to singular cohomology and working instead with Z-coefficients for the latter, using Poincaré
duality to obtain the analogue over Z of the integration isomorphism (6.12). For details see
the BTD course reference.

Remark 6.18. The intuitive idea behind the proof of the surjectivity assertion i of Theorem
6.16 may be illustrated as follows. Let C be a smooth periodic oriented curve in the “cylin-
der” X := R/Z× R, thus C is the image of some smooth map γ : R/Z→ X. Consider the
map φ : C → R/Z given by the projection (x, y) 7→ x onto the first coordinate. Suppose
that φ fails to be surjective; say x0 /∈ φ(C). Take a “generic” nonempty fiber φ−1(x). It’s
then intuitively plausible that the signed sum of the orientations of the elements y ∈ φ−1(x)
must be zero, because the trajectories along C departing from such elements and moving in
the direction of x0 must pair off with one another in a complementary fashion to be com-
patible with φ−1(x0) being empty. This intuitive plausibility is in fact the case, and may be
formulated and proved rigorously by the above arguments. This explains why q failing to
be surjective is incompatible with the fact that det(q) is everywhere positive, the latter of
which implies that the orientations sum to |W | rather than to 0.

13

6.7. Consequences of the conjugacy theorem. Let K be a compact connected Lie
group. We saw above that for any maximal torus T , we have K = ∪g∈KgTg−1. We now
explore some consequences of this fact.

13End of lecture #12, Tuesday, 2 Apr
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Theorem 6.19. Every element of K is contained in some maximal torus, the exponential
map exp : k→ K is onto, and every x ∈ K is contained in the connected component ZK(x)0

of its centralizer.

Proof. If T is a maximal torus, then its conjugates gTg−1 are also maximal tori, and we’ve
seen that every element of K belongs to one of these. Since for any torus T the exponential
map exp : t→ T is surjective, we deduce the corresponding result for K. The final assertion
is clear when x is contained in the maximal torus T , because then g ∈ T ≤ ZK(x)0, and
follow in general from what we have just shown. �

It’s worth illustrating the subtlety here with a “near proof.” Given an element x ∈ K,
let H := 〈x〉 denote the closure of the subgroup that it generates. Then H is closed in K,
hence compact, and abelian. If we knew that H were connected, then H would be a torus,
and so we’d be done. If we even knew merely that x belonged to the connected component
H0 of H, then we could conclude similarly. But in general x /∈ H0. For instance, take
x = (−1, ei) ∈ U(1)2. Then H = {±1} × U(1) and H0 = {1} × U(1), so x /∈ H0. This
illustrates some of the subtlety involved in Theorem 6.19.

Anyway, continuing with the consequences:

Theorem 6.20. Any two maximal tori T, T ′ of K are conjugate.

Proof. Let t′ ∈ T ′ be a generator. We’ve seen that t′ ∈ gTg−1 for some g ∈ K. Since gTg−1

is a closed subgroup and t′ is a generator, it follows that T ′ ⊆ gTg−1. Since T is a maximal
torus, so is gTg−1, which forces the equality T ′ = gTg−1. �

Theorem 6.21. The center Z(K) of K is given by

Z(K) = ∩maximal tori TT.

Proof. • “⊇”: Let z ∈ ∩T and x ∈ K. By Theorem 6.19, we may find a maximal torus
T with x ∈ T . Then z ∈ T , so x and z commute. Since x was arbitrary, we conclude
that z ∈ Z(K).
• “⊆”: Let z ∈ Z(K), and let T be a maximal torus. Choose g ∈ K so that z ∈ gTg−1.

Then T 3 g−1zg = z, because z is central. Since T was arbitrary, we conclude that
z ∈ ∩T .

�

Theorem 6.22. Let T be a maximal torus, with Weyl group W = N(T )/T . If t, t′ ∈ T are
K-conjugate, then they have the same W -orbits. Thus the map

T/W → {conjugacy classes in K}
is bijective.

Proof. Let H := ZK(t′)0 denote the connected component of the centralizer of t′ ∈ T . Choose
g ∈ K so that t′ = gtg−1; in paricular, t′ ∈ gTg−1. Then the tori gTg−1 and T are both
contained in H and maximal in K, hence maximal in H, so by Theorem 6.20 applied to the
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compact connected Lie group H, we see that there is some h ∈ H so that T = hgTg−1h−1,
i.e., so that hg ∈ NK(T ). Let w := hgT denote the class of hg in the Weyl group W . Then
w · t = hgtg−1h−1 = ht′h−1 = t′, since h centralizes t′. �

Theorem 6.23. Let S ⊆ K be any torus. Then its centralizer is described by the formula

ZK(S) = ∪maximal tori T⊇ST.

Proof. We start by noting that if g ∈ ZK(S), then S ⊆ ZK(g)0. The remainder of the proof
is left as an exercise in applying the ideas introduced above. �

Corollary 6.24. For all tori S, the centralizer ZK(S) is connected.

This might sound at first like a very dry and boring result, but knowing that a subgroup
is connected is quite powerful, because it reduces the determination of that subgroup to that
of its Lie algebra.

Corollary 6.25. Let T be a maximal torus. Then ZK(T ) = T . Thus the Weyl group
W = NK(T )/T = NK(T )/ZK(T ) acts faithfully on T , i.e., W injects into Aut(T ).

Corollary 6.26. Let x ∈ k. Then ZK(x) := {g ∈ K : Ad(g)x = x} is connected.

Proof. Set S := exp(Rx). Then S is a torus, and ZK(x) = ZK(S). �

6.8. Basics on Weyl chambers. We continue to assume that K is a compact connected
Lie group. We fix a maximal torus T . We now define the “Lie algebra variants” of the sets
of regular elements defined at the group level in §6.6. To that end, let us denote by

D0 : g→ R

D0(x) := coefficient of λdim(T ) in det(λ− ad(x))

the Lie algebra analogue of the map D : G → R defined earlier. We may compute D0 on a
toral element x ∈ t as follows. The root space decomposition (6.4) for the action of T on g
differentiates to a decomposition for the action of t on g, namely if we decompose x ∈ g as

(6.13) x = x0 +
∑

xα ∈ tC ⊕ (⊕α∈Φg
α),

then

(6.14) [z, x] = 0 +
∑

α(z)xα for all z ∈ t.

Thus det(λ−ad(z)) = λdim(T )
∏

α∈Φ(λ−α(z))dim(gα). Since the roots α come in pairs {α,−α}
with dim(gα) = dim(g−α), we have

∏
α∈Φ(−1)dim(gα) = 1, which gives the simple formula

D0(z) =
∏
α∈Φ

α(z)dim(gα) for z ∈ t.

We note again that we’ll show in a bit that each root space is one-dimensional, so that the
exponents dim(gα) may be omitted.
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Definition 6.27. We say that x ∈ k is regular if D0(x) 6= 0. We write kreg ⊆ k for the subset
of regular elements. We more generally use a superscripted reg, as in treg, treg

R , etc., to denote
the subset of regular elements.

A Weyl chamber C is a connected component of treg
R .

We note that kreg is closed under Ad(K), since the characteristic polynomial is invariant
by conjugation. We leave it to the reader to check the instructive identity

kreg = {x ∈ k : exp(iεx) ∈ Kreg for all small ε > 0.}
Thus kreg may be regarded as a sort of “tangent cone” at the identity to the open subset
Kreg of K. Note however that there are elements of kreg whose exponentials do not lie in
Kreg; for example, x = diag(πi,−πi) ∈ su(2) is regular, but exp(x) = diag(−1,−1) ∈ SU(2)
is not regular.

Let C be a Weyl chamber. Its image α(C) under any root α is then a connected subset
of R 6=0 = R>0 ∪ R<0, and is thus contaiend in either the positive or negative reals. In other
words, we may find signs εα ∈ {±1} (α ∈ Φ) so that C ⊆ Cε := {x ∈ tR : εαα(x) >
0 for all α ∈ Φ}. On the other hand, it’s clear from the definition that Cε is a convex cone,
i.e., if x1, . . . , xn ∈ Cε and t1, . . . , tn > 0, then t1x1 + · · · + tnxn. In particular, Cε is a
connected subset of treg

R . Since C is by definition a connected component of the latter set,
we deduce that C = Cε; that is to say, every Weyl chamber is described by requiring that
each root α have some prescribed sign εα on all of C. In particular, C is a convex cone.

For instance, if K = U(n), then tR identifies with the set Rn of n-tuples x = (x1, . . . , xn)
of real numbers, and the subset treg

R with the subset consisting of those x whose entries
are distinct: xi 6= xj for i 6= j. Since the roots are of the form εi − εj with i 6= j, any
Weyl chamber C is described by inequalities of the form xi > xj or xi < xj for all indices
i < j. There is thus a permutation σ of {1..n} so that C = {x : xσ(1) > · · · > xσ(n)}. In
particular, the symmetric group S(n) acts simply-transitively on the set of Weyl chambers.
This observation and the fact that W ∼= S(n) are no accident; we’ll soon see that they are
features of general compact connected Lie groups.

Let’s briefly review the various actions at our disposal. We have actions of K on K
by conjugation, on k, g by the adjoint representation Ad, and on k∗, g∗ by the coadjoint
representation Ad∗; we also have the differentiated actions ad of k on k, g (or of g on g) and
ad∗ of k on k∗, g∗ (or of g on g∗). These are related as follows: if g ∈ K and x ∈ g and ξ ∈ g∗,
then

〈x, ξ〉 = 〈g · x, g · ξ〉;
here 〈, 〉 denotes the canonical pairing g ⊗ g∗ → C and we abbreviate g · x := Ad(g)x and
g · ξ := Ad∗(g)ξ. In terms of the differentiated actions, this reads: for z ∈ g, we have

〈z · x, ξ〉+ 〈x, z · ξ〉 = 0,

where · denotes the evident action, e.g., z · x = ad(z)x = [z, x].
The Weyl group W = N(T )/T acts on T by conjugation, hence on t, tR, tC, etc., by the

adjoint action inherited from G, and likewise on t∗, t∗R, etc., by the coadjoint action. The
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action of W on T induces an action of w ∈ W on the cocharacter group X∨(T ) and on the
character group X(T ), denoted γ 7→ w(γ) and λ 7→ w(λ), characterized in the first case by
requiring that

zw(γ) = w · zγ

(for z ∈ U(1) and γ ∈ X∨(T )) and in the second case by requiring that

(w · t)w(λ) = tλ

(for t ∈ T and λ ∈ X(T )). The actions of W on X(T ) and X∨(T ) and on t∗R and tR are
compatible with the identifications X(T ) ∼= t∗Z ⊆ t∗R and X∨(T ) ∼= tZ ⊆ tR, thus the actions
of W on tR and on t∗R stabilize the lattices tZ and t∗Z. Moreover:

Lemma 6.28. (i) W acts on the set Φ of roots, i.e., w(α) ∈ Φ for all α ∈ Φ; more
precisely,

(6.15) w · gα = gw(α).

(ii) W acts on treg
R .

(iii) W acts on the set of Weyl chambers, i.e., if C is a Weyl chamber, then so is w(C) for
each w ∈ W .

We might pause to convince ourselves that all of these properties are obvious in the familiar
case of U(n).

Proof. (i) We check (6.15). It suffices to show that w · gα. (The same argument then gives
w−1 · gw(α) ⊆ gα, whence equality.) Let x ∈ gα Then for t ∈ T ,

t · w · x = Ad(t) Ad(w)x = Ad(w) Ad(w−1 · t)x = (w−1 · t)α Ad(w)x = tw(α) Ad(w)x.

Thus Ad(w)x ∈ gw(α), as required.
(ii) Recall that treg

R consists of x ∈ tR for which 〈x, α〉 = α(x) is nonzero for all roots α. We
have 〈w · x, α〉 = 〈x,w−1(α)〉, and we’ve seen that w−1 preserves the set of roots, so we
conclude that w stabilizes treg

R .
(iii) We use the previous assertion and the continuity of the action of W .

�

The following result illustrates well the power of knowing that tori have connected cen-
tralizers:

Lemma 6.29. The action of W on the set of Weyl chambers is free, i.e., if C is a Weyl
chamber and w ∈ W satisfies w(C) = C, then w = 1.

Proof. Let WC := {w ∈ W : w(C) = C}. We must show that WC = {1}. We’ve seen that
C is a convex cone, and also that W and hence WC is finite. Let y0 ∈ C. Then the element
y :=

∑
w∈WC

w · y0 is a positive linear combination of elements of C, hence belongs to C.
Let w ∈ WC . Then w permutes the summands in the definition of y, so w · y = y, i.e.,
wT ⊆ ZK(y). By Corollary 6.26, ZK(y) is connected. By general Lie theory, the Lie algebra
of ZK(y) is given by Zk(y) = {x ∈ k : [y, x] = 0}. Let x ∈ Zk(y). Writing x = x0 +

∑
xα
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as in (6.13), we have 0 = [y, x] = 0 +
∑
α(y)xα. Since α(y) is nonzero and the root space

decomposition (6.4) is a direct sum decomposition, it follows that xα = 0 for all α, whence
that x = x0 ∈ tC ∩ k = t. Therefore Zk(y) = t. By the noted connectivity, it follows that
ZK(y) = T . Thus wT ⊆ T , i.e., w = 1 in W . We conclude as required that WC = {1}. �

We’ll see later that the action of W on the set of Weyl chambers is moreover transitive;
the above lemma will then tell us that it is simply-transitive, hence that the order |W | of the
Weyl group is equal to the number of Weyl chambers. So far, we haven’t given any way to
produce nontrivial elements of the Weyl group. (For instance, why should W be nontrivial
when K 6= T?) That’s our next main objective. The construction will involve the roots. For
each root α , we’ll cook up a map Fα : SU(2) → K. We’ll then use these maps to produce
Weyl group elements, called root reflections, which we’ll eventually show generate the Weyl
group.

6.9. Notation and preliminaries concerning SU(2). Take K = SU(2), so that k = su(2),
G = SL2(C), g = sl2(C). Let T ≤ K denote the standard maximal torus {diag(t, t−1) : t ∈
U(1)}, so that t ≤ k and tC ≤ g are the diagonal subalgebras. The map θ : g → g given
as usual by θ(x) = −x∗ = −xt has the property that k is the θ-fixed subspace of g. Define
X, Y,H ∈ g by

(6.16) H :=

(
1
−1

)
, X :=

(
0 1
0 0

)
, Y :=

(
0 0
1 0

)
.

Then

(6.17) [X, Y ] = H, [H,X] = 2X, [H, Y ] = −2Y

and

(6.18) θ(H) = −H, θ(X) = −Y, θ(Y ) = −X.
These properties give a “presentation” for su(2) in that for any pair (g′, θ′) consisting of
a three-dimensional Lie algebra g′ equipped with an antilinear involution θ′ that admits a
basis H ′, X ′, Y ′ satisfying the analogue of (6.17) and (6.18), the map sl2(C) → g′ given by
H 7→ H ′, X 7→ X ′, Y 7→ Y ′ is an isomorphism of complex Lie algebras that intertwines θ
with θ′, hence induces an isomorphism of real Lie algebras su(2)→ k′ := {x ∈ g′ : θ′(x) = x}.

We have
tC = CH, tR = RH, tZ = ZH.

(For the last of these, we note that every one-parameter subgroup U(1) → T is given by
z 7→ diag(zm, z−m) for some m ∈ Z; we may rewrite this as exp(iθ) 7→ exp(imH), whence
the claim.) In view of (6.17), the root space decomposition of g is given by

(6.19) g = CH︸︷︷︸
tC

⊕ CX︸︷︷︸
gα

⊕ CY︸︷︷︸
g−α

,

where α ∈ t∗R is characterized by

(6.20) α(H) = 2.
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The set of roots is thus

(6.21) Φ = {α,−α}.
We note that

(6.22) t∗C = Cα, t∗R = Rα, t∗Z = 1
2
Zα.

(For the last of these, note that the characters of T are given by diag(t, t−1) 7→ tl for some
l ∈ Z, and that if we write diag(t, t−1) = exp(iθH), then tl = exp(iθl) = exp(iθlα(H)/2) =
exp(iθH)lα/2, whence the characters of T are uniquely of the form lα/2 with l ∈ Z.)

Recall (§2.8 and earlier) that any finite-dimensional representation π : SU(2) → GL(V )
decomposes as a sum

V = ⊕k∈ZV k

of weight spaces

V k := {v ∈ V : diag(t, t−1)v = tkv for all t ∈ U(1)}.
For example, if (π, V ) = (Ad, g), then V 0 = CH = tC, V

2 = CX = gα, V −2 = CY = g−α.
In terms of the differentiated representation dπ : su(2) → End(V ) and its complexification
dπ : sl2(C)→ End(V ), we may write

V k = {v ∈ V : dπ(H)v = kv},
that is to say, the weight space decomposition of (π, V ) is simply its decomposition into
eigenspaces for the operator dπ(H). Note in particular that every eigenvalue of dπ(H) is an
integer.

For simplicity of notation we will often use abbreviations like xv := dπ(x)v for x ∈ g and
v ∈ V when π is clear from context.

In view of the general identity “gα ·V λ ⊆ V λ+α” (Lemma 6.5) and the fact that α(H) = 2,
we see that X and Y act on the H-eigenspaces by “raising and lowering operators,” i.e.,

(6.23) dπ(X) : V k → V k+2, dπ(Y ) : V k → V k−2.

For instance, this follows in the case (π, V ) = (Ad, g) from the identities (6.17).
We have also seen that the irreducible finite-dimensional representation of SU(2) are

indexed by nonnegative integers n and given explicitly by the (n + 1)-dimensional space
Vn = C[x, y](n) of homogeneous polynomials of degree n in two variables, with SU(2) acting
by right translation. Moreover, any finite-dimensional representation (π, V ) of SU(2) decom-

poses uniquely as a finite direct sum V = ⊕n≥0V
⊕µ(n)
n for some multiplicities µ(n) ≥ 0,

The weight spaces of the irreducible representations (πn, Vn) are all one-dimensional, and
the weight space decompositions read

Vn = V n
n ⊕ V n−2

n ⊕ V n−2
n ⊕ · · · ⊕ V −nn(6.24)

= Cxn ⊕ Cxn−1y ⊕ Cxn−2y2 ⊕ · · · ⊕ Cyn.(6.25)

Using the definition (6.16), we compute that the action of g is given by

(6.26) dπn(H) = x∂x − y∂y, dπn(X) = x∂y, dπn(Y ) = y∂x.
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It follows readily from this explicit description that the lowering maps

(6.27) V n
n

Y−→ V n−2
n

Y−→ V n−2
n

Y−→ · · · Y−→ V −nn

and the raising maps

(6.28) V −nn
X−→ V −n+2

n
X−→ V −n+4

n
X−→ · · · X−→ V n

n

are all isomorphisms of one-dimensional vector spaces. Indeed, they send each monomial to
an explicit nonzero multiple of another monomial. Of course dπ(X)V n

n and dπ(Y )V −nn are
trivial, because the weight spaces V n+2

n and V −n−2
n are trivial.

Here’s a typical application of the above explication of the representation theory of SU(2);
this application will turn out to be the key for showing that the root spaces of a general
compact Lie group are one-dimensional.

Lemma 6.30. Let V be a finite-dimensional representation of SU(2) such that

(i) all weights (i.e., eigenvalues of H) are even, and
(ii) the weight space V 0 is one-dimensional.

Then V is irreducible, say V ∼= Vn. If moreover there exists a nonzero vector v ∈ V 2 such
that Xv = 0, then n = 2.

Proof. Since the weights are even, when we decompose V = ⊕V ⊕µ(n)
n as a sum of irreducibles

Vn, only those with n even occur with positive multiplicity µ(n). For n even, we have
dimV 0

n = 1, thus 1 = dimV 0 =
∑

n µ(n). Thus µ(n) = 1 for some n and vanishes for all
other values, and so V ∼= Vn.

Suppose there exists v with the stated property. Since v is nonzero and X annihilates v,
we see (from the assertion following (6.28)) that n = 2. �

14

Similarly:

Lemma 6.31. Let V be a finite-dimensional representation of SU(2) that has some odd
weight, i.e., the weight space V n is nonzero for some odd integer n. Then the weight space
V 1 is nonzero.

Proof. We decompose V = ⊕n≥0V
⊕µ(n)
n into irreducibles. Since the weights of Vn all have

the same parity as n, we see that µ(n) is positive for some odd n. But for such n, the
weights of Vn are n, n− 2, n− 4, . . . , 3, 1,−1,−3, . . . ,−n. Thus dimV 1

n > 0 and so dimV 1 ≥
µ(n) dimV 1

n > 0, as required. �

6.10. From roots to distinguished SU(2)’s. We’re now ready to state and prove one of
the most important theorems concerning the structure of compact Lie groups.

Recall the notation (6.16) for the standard basis elements H,X, Y of sl2(C).

14End of lecture #13, Thursday, 4 Apr
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Theorem 6.32. Let K be a compact connected Lie group, T ≤ K a maximal torus, Φ =
Φ(K : T ) the associated set of roots, and g = kC the complexified Lie algebra with the usual
root space decomposition. Let α ∈ Φ ⊆ t∗Z be a root.

(1) There is a morphism of Lie groups

Fα : SU(2)→ K

whose differential dFα : su(2)→ k has complexification dFα : sl2(C)→ g satisfying

dFα(X) ∈ gα.

(2) There is a cocharacter α∨ ∈ X∨(T ) = Hom(U(1), T ) so that for each such Fα, we
have a commutative diagram

(6.29)

U(1)
α∨−−−→ T

t7→diag(t,1/t)

y y
SU(2) −−−→

Fα
K.

The cocharacter α∨ is independent of the choice of Fα. More precisely, let

Hα ∈ tZ ∼= X∨(T )

correspond to α∨ in the sense of §6.1, thus

α∨(eiθ) = exp(iθHα)

for all θ ∈ R. Then Hα is the unique element of [gα, g−α] such that α(Hα) = 2.
(3) dim(gα) = 1.
(4) Cα ∩ Φ = Qα ∩ Φ = {α,−α}.
(5) Fα is unique up to conjugation by the image of α∨.
(6) Let Tα ≤ T denote the codimension one subtorus defined as the connected component

of the kernel of α, thus

Tα := ker(α)0 = {t ∈ T : tα = 1}0, tα := Lie(Tα) = {x ∈ t : α(x) = 0}.

Then the image of Fα is contained in the centralizer ZK(Tα), and the composition

(6.30) SU(2)
Fα−→ ZK(Tα)→ ZK(Tα)/Tα

is surjective, and induces an isomorphism su(2) ∼= Zk(tα)/tα of Lie algebras.

The point is that a root α on its own is fairly useless – there’s not much you can do – but
once you know that it comes from some copy of SU(2), everything becomes possible. If we
learn anything from this part of the course, it’s that we should always think of a root of a
compact connected Lie group as coming with an associated copy of SU(2) in the above sense.
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Let’s illustrate with the example of K = U(3), with T = U(1)3 the standard diagonal
maximal torus and α = ε1 − ε2, so that gα = CE12. We may then take

Fα(

(
a b
c d

)
) =

a b 0
c d 0
0 0 1

 ,

so that dFα(X) = E12 ∈ gα. The composition of the standard cocharacter U(1)
t7→diag(t,1/t)−−−−−−−→

SU(2) with Fα is the cocharacter

α∨ : U(1)→ T

t 7→

t 1/t
1


of K, and we have α∨(eiθ) = exp(iθHα) with

Hα =

1
−1

0

 = dFα(H).

We have Φ = {εi − εj : i 6= j}, so it is clear that Qα ∩ Φ = {α,−α}. We compute using the
Lie algebra that

Tα =


z z

t

 : z, t ∈ U(1)

 ,

ZK(Tα) =


a b
c d

t

 :

(
a b
c d

)
∈ U(2), t ∈ U(1)

 .

We may verify that Fα : SU(2) → ZK(Tα)/Tα is surjective with kernel {±1}, and in any
event that dFα defines an isomorphism of Lie algebras (which is simplest to check first for
the complexified Lie algebras).

If we were instead given α = ε1 − ε3, then we’d take

Fα(

(
a b
c d

)
) =

a 0 b
0 1 0
c 0 d

 .

6.11. Classification of rank one groups. Before proving Theorem 6.32, let’s illustrate
its power with a typical application.

Definition 6.33. The rank of a compact connected Lie group K is defined to be the dimension
of any maximal torus T (which is well-defined by Theorem 6.20, for instance):

rank(K) := dim(T ).
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For instance, rank(U(n)) = n, while rank(SU(n)) = n− 1.
It’s clear from Lemma 6.2 that every connected compact Lie group of rank 0 is trivial.

The case of rank 1 is more interesting:

Corollary 6.34. Every connected compact Lie groups K of rank 1 is isomorphic to exactly
one of the following:

• U(1)
• SU(2)
• SU(2)/{±1} ∼= SO(3)

Proof. Let T ≤ K be a maximal torus and g = kC, with Φ the set of roots. If Φ is empty, then
the root space decomposition implies that g = tC, hence that k = t; since K is connected,
this forces K = T ∼= U(1). Suppose otherwise that there exists some α ∈ Φ. Then the
codimension 1 subtorus Tα ≤ T defined in Theorem 6.32 has dimension dim(Tα) = dim(T )−
1 = 0, and so Tα = {1}. Thus ZK(Tα) = K and ZK(Tα)/Tα ∼= K. Thus any map Fα :
SU(2) → K as in Theorem 6.32 defines a Lie algebra isomorphism su(2) → K. Since K is
connected, Fα is surjective. Since dFα is injective, the kernel of Fα is a (discrete) subgroup of
the center {±1} of SU(2) (see e.g. §20 and especially Lemma 154 of my notes on Lie groups,
on the course homepage; the general fact being used here is that if f : G→ H is a morphism
of Lie groups with df injective and G connected, then ker(f) is a discrete subgroup of the
center of G). Thus either K ∼= SU(2) or K ∼= SU(2)/{±1}; the two cases are distinguished
by (for instance) their centers. �

In fact, this application is representative of the power of Theorem 6.32 in the sense that
one could go backwards and derive much of Theorem 6.34 assuming Corollary 6.34. We will
not do this here, but it’s done that way in some references, e.g., the BTD course reference.

6.12. Some invariant inner products. Before turning to the proof of Theorem 6.32,
we pause to choose some inner products concerning the objects in its statement. (The
formulation of Theorem 6.32 is independent of this choice, but the proof will not be.) Choose
an embedding K ↪→ U(n) with respect to which T is contained in the diagonal subgroup
(see §6.1 for details on this and what follows). This choice defines an embedding g ↪→ gln(C)
with respect to which tR is contained in the subspace of diagonal matricse with real entries.
We have the usual involution θ : gln(C) → gln(C), preserving g, and given by θ(x) := −x∗,
where x∗ := xt. Then:

• The map
gln(C)× gln(C)→ R

(x, y) 7→ − trace(xθ(y))

defines an inner product. Indeed,

− trace(xθ(y)) = trace(xy∗) =
∑
i,j

xijyij.

In particular, this map restricts to an inner product on g.
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• The map
tR × tR → R

(x, y) 7→ trace(xy)

is an inner product. Indeed, for y ∈ tR, we have y = −θ(y), so this is just
the restriction of the inner product defined above on gln(C); explicitly, it is just
the obvious inner product given in terms of the diagonal entries by the formula
trace(xy) =

∑
i xiiyii.

• The inner product just defined on tR defines an isomorphism

t∗R → tR

λ 7→ uλ
characterized by the identity

(6.31) λ(z) = trace(uλz)

for all z ∈ tR. The same identity extends C-linearly to all z ∈ tC.
• Using the above isomorphism, we may transport the given inner product on tR to an

inner product on t∗R that we denote by (, ): for λ1, λ2 ∈ t∗R,

(6.32) (λ1, λ2) := trace(uλ1uλ2).

For example, if K = U(n), then under the identification t∗R
∼= Rn as in §6.1, this inner

product is the standard one.

We verify readily that the inner product that we defined on gln(C) is Ad(U(n))-invariant,
hence that on g is Ad(K)-invariant and that on tR is W -invariant.

6.13. Proofs concerning the passage from roots to SU(2)’s. With these preliminaries
out of the way, we’re now prepared to give the:

Proof of Theorem 6.32. (i) We’ll construct Fα in terms of generators and relations (see
(6.17) and (6.18)). We start by constructing elements Xα, Yα, Hα ∈ g that we eventually
intend to be the images of X, Y,H ∈ sl2(C) under dFα.

First, let c > 0 denote a suitable constant to be specified later (in (6.42)), and choose
any Xα ∈ gα whose norm ‖Xα‖2:= − trace(Xαθ(Xα)) is equal to c. Set Yα := −θ(Xα) ∈
g−α and Hα := [Xα, Yα] ∈ tC. We get a linear map

“dF ′′α : sl2(C)→ g

X 7→ Xα, Y 7→ Yα, H 7→ Hα.

We want the above map to define a θ-equivariant Lie algebra morphism. For this to
be the case, the non-obvious relations to be verified are that

(6.33) [Hα, Xα] = 2Xα,

(6.34) [Hα, Yα] = −2Yα,

(6.35) θ(Hα) = −Hα.
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Since [Hα, Xα] = α(Hα)Xα and [Hα, Yα] = −α(Hα)Yα, the two relations (6.34) are
equivalent to the single relation

(6.36) α(Hα) = 2,

while the third relation (6.35) is equivalent to requiring that

(6.37) Hα ∈ tR.

Before checking the above relations, we note that for all x ∈ gα, y ∈ g−α and z ∈ tC,
we have

(6.38) trace([x, y]z) = α(z) trace(xy).

Indeed, since the trace of a product of two matrices doesn’t change if we swap the
two matrices, we have trace([x, y]z) = trace(z[x, y]) = trace(zxy − zyx) = trace(zxy −
xzy) = trace([z, x]y), and since [z, x] = α(z) the required identity follows. By the
characterizing property (6.31) of uα, we may rewrite (6.38) as the identity

(6.39) [x, y] = trace(xy)uα

of elements of tC.
Applying (6.39) to Xα and Yα gives

(6.40) Hα = [Xα, Yα] = trace(XαYα)uα = ‖Xα‖2uα = cuα.

using in the last two steps the definitions of ‖Xα‖2 and of Yα. On the other hand, the
definition of uα gives

(6.41) α(uα) = trace(uαuα) = (α, α).

Combining the above two identites, we obtain α(Hα) = c(α, α). With the choice

(6.42) c :=
2

(α, α)
,

we obtain the required relation (6.36). Moreover, we have Hα = cuα ∈ Ruα ⊆ tR, so
(6.37) holds.

This completes the proof that the linear map “dFα” defines a θ-equivariant C-linear
Lie algebra morphism sl2(C) → g. By passage to θ-fixed subspaces, we obtain a Lie
algebra morphism su(2) → k. Since SU(2) is simply-connected, this lifts to a Lie
group morphism Fα : K → SU(2), whose differential dFα is the map “dFα” that we
constructed.

(ii) The composition

(6.43) α∨ : U(1)→ SU(2)
Fα−→ K

is given by

(6.44) eiθ 7→ exp(iθdFα(H)) = exp(iθHα) ∈ T,
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so the diagram (6.29) is defined and commutes. Finally, we see from (6.39) that

(6.45) [gα, g−α] ⊆ Cuα = CHα,

so that Hα = [Xα, Yα] admits the required characterization as the unique element of
[gα, g−α] for which α(Hα) = 2.

(iii) Define

(6.46) V := CHα ⊕ (⊕06=n∈Zg
nα),

and set sl2(C)α := dFα(sl2(C)). We may verify then sl2(C)α that acts C-linearly on V
by the restriction of the adjoint representation ad:
• adHα preserves each summand in (6.46), acting on CHα by the eigenvalue 0 and

on each gnα by the eigenvalue nα(Hα) = 2n.
• adXα(gnα) ⊆ g(n+1)α for all integers n. Moreover, adXα(g−α) ⊆ CHα thanks to

(6.45). Thus adXα maps V to V .
• Similarly, adYα(gnα) ⊆ g(n−1)α for all integers n, and adYα(gα) ⊆ CHα.

Thus V defines a finite-dimensional C-linear representation of sl2(C), hence by The-
orem (5.16) a finite-dimensional representation of SU(2). This representation has the
property that all weights (i.e., Hα-eigenvalues) are even, the weight zero subspace CHα

is one-dimensional, and the weight two subspace gα contains the vector Xα for which
adXα Xα = 0. By Lemma 6.30, we deduce that V is isomorphic to the irreducible
three-dimensional representation V2 of SU(2), whose weights are {0, 2,−2} each occur-
ring with multiplicity one. Thus

(6.47) dim gα = dim g−α = 1

and

(6.48) dim gnα = 0 for n ∈ Z− {0, 1,−1}.
(iv) We now take instead

(6.49) V = CHα ⊕ (⊕06=n∈Cαg
nα).

(We might note in passing that, since the set Φ of roots is contained in the finite free Z-
module t∗Z, the sum over n could be restricted from the start to Qα.) We note as before
that sl2(C)α acts on V by the restriction of ad. Then V defines a finite-dimensional
representation of sl2(C), and so, as we have seen, all of the weights of adHα must be
integers. But the eigenvalue of adHα on gnα is nα(Hα) = 2n, which is an integer only
if n ∈ (1/2)Z. We’ve seen already in (6.48) that for n ∈ Z, we have nα /∈ Φ unless
n = ±1, so it remains only to consider the case that nα ∈ Φ for some n ∈ (1/2)Z− Z.
But then 2n is odd, so gnα is a nonzero weight space for V with odd weight, so by
Lemma 6.31, we see that the weight one subspace V 1 = gα/2 is nonzero, i.e., that α/2 is
a root. But then α/2 and α = 2(α/2) are both roots, which contradicts (6.48) (applied
to α/2 in place of α). The proof that Cα ∩ Φ = Qα ∩ Φ = {α,−α} is now complete.15

15End of lecture #14, Tuesday, 9 Apr
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(v) The uniqueness of Fα up to conjugation by α∨ follows from the recently established one-
dimensionality of gα and the construction of Fα. Since we required ‖Xα‖2= 2/(α, α)
and the choices of Yα and Hα were then forced by the requirement that dFα be a θ-
equivariant Lie algebra morphism, any other map F ′α satisfying the same conditions as
Fα is obtained by replacing Xα as in the construction of Fα with its multiple by some
element eiθ ∈ U(1). Since [Hα, Xα] = 2Xα, we have

(6.50) Ad(α∨(eiθ/2))Xα = Ad(exp(iθHα/2))Xα = eiθXα,

which implies that F ′α is the conjugate of Fα by α∨(eiθ/2), as required.
(vi) We have tα = {x ∈ t : α(x) = 0} and and Lie(ZK(Tα)) = Zk(tα) and (Zk(tα))C =

Zg(tα) = {x ∈ g : [x, z] = 0 for all z ∈ t with α(z) = 0}. Since [z,Xα] = α(z)Xα and
[z, Yα] = −α(z)Yα for all z ∈ t, and since tC is commutative, we see that Xα, Yα, Hα all
belong to Zg(tα). Since SU(2) is connected, it follows likewise that the image of Fα is
contained in ZK(Tα). It remains only to check that the map

dFα : su(2)→ Zk(tα)/tα

is an isomorphism, or equivalently, that

(6.51) dFα : sl2(C)→ Zg(tα)/(tα)C

is an isomorphism. We note that Zg(tα) is a Lie subalgebra of g that contains tC, hence
admits a root space decomposition

(6.52) Zg(tα) = tC ⊕ (⊕β∈Bgβ),

where B denotes the set of all roots β ∈ Φ for which gβ ⊆ Zg(tα), i.e., for which
β(z) = 0 for all z ∈ t with α(z) = 0. Since α and β are both nonzero functionals, it
follows that β ∈ B iff β ∈ Cα, which we’ve seen is equivalent to asking that β = ±α.
Since α(Hα) 6= 0, we have a decomposition

(6.53) tC = (tα)C ⊕ CHα.

Thus

(6.54) Zg(tα) = (tα)C ⊕ CHα ⊕ gα ⊕ g−α

and so

(6.55) Zg(tα)/(tα)C ∼= CHα ⊕ gα ⊕ g−α.

The composition

(6.56) sl2(C)
dFα−−→ Zg(tα)� Zg(tα)/(tα)C ∼= CHα ⊕ gα ⊕ g−α ∼= sl2(C)

is the identity, so we deduce as required that (6.51) is an isomorphism.
�
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6.14. Construction of root reflections. We finally develop a way to produce nontrivial
elements of the Weyl group. Start with K = SU(2), with T ∼= U(1) the standard diagonal
maximal torus. It follows from our earlier analysis of U(n) that the Weyl group W of T is
isomorphic to Z/2. One can see this by noting that T consists of those elements of K that are
diagonalized by the decomposition C2 = Ce1 ⊕ Ce2 of the standard representation into the
lines spanned by its standard basis elements. Hence N(T ) acts faithfully on such lines, with
T acting trivially. Thus W embeds as a subgroup of the permutation group of {Ce1,Ce2}.

The element w :=

(
1

−1

)
∈ K swaps the two lines, so in fact W = {eT, wT} is the full

permutation group. The same proof shows that the Weyl group of each of U(n), SU(n),PU(n)

is the symmetric group S(n). Anyway, we compute that with H =

(
1
−1

)
∈ sl2(C),

(6.57) w ·H = −H.
More generally, w acts on each of the spaces t, tZ, tR, tC, t

∗, t∗Z, t
∗
R, t
∗
C by negation. Moreover,

for any finite-dimensional representation V of SU(2) with weight space decomposition V =
⊕λ∈ZV λ (here V λ = {v ∈ V : Hv = λv}, as usual), the action of w defines an isomorphism

(6.58) w : V λ
∼=−→ V −λ,

as follows from a routine computation as in the proof of Lemma 6.28.
Returning now to the general setting:

Theorem 6.35. Let K be a compact connected Lie group, with maximal torus T . Let
Φ = Φ(K : T ) denote the set of roots, and W = N(T )/T the Weyl group.

Let α ∈ Φ. Let Fα : SU(2)→ K, as in Theorem 6.32, be such that Fα(

(
1
)

) is a nonzero

element of gα. Define

(6.59) wα := Fα(

(
0 1
−1 0

)
).

Then:

(i) wα belongs to the normalizer N(T ) of T , hence defines a Weyl group element that we
denote by

(6.60) sα := wαT ∈ W.
The element sα is independent of the choice of Fα.

(ii) s2
α = 1.

(iii) For x ∈ tC,

(6.61) sα · x = x− α(x)Hα

and for t ∈ T ,

(6.62) sα · t = t/α∨(tα).
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(iv) For λ ∈ t∗C,

(6.63) sα · λ = λ− λ(Hα)α.

Proof. We check readily that assertions (iii) and (iv) are equivalent, that either implies (ii),
and that the claimed uniqueness of sα follows from the established uniqueness of Fα. On the
other hand, each of the assertions (i) and (iii) will follow if we can show that

(6.64) Ad(wα)x = x− α(x)Hα

for all x ∈ tC. To that end, we apply the decomposition (6.53) to write x = y + zHα, where
y ∈ tC with α(y) = 0 and z ∈ C, namely z = (1/2)α(x). By part (vi) of Theorem 6.32, the

image of Fα commutes with y, hence Ad(wα)y = y. Set w :=

(
1

−1

)
∈ SU(2). Then

(6.65) Ad(wα)Hα = Ad(Fα(w))Fα(H) = Fα(Ad(w)H) = Fα(−H) = −Hα,

so

(6.66) Ad(wα)x = y − zHα = x− 2zHα = x− α(x)Hα,

as required. �

16

The theorem and its proof imply that the action of sα on tR may be characterized as the
unique linear map that restricts to the identity on ker(α) and sends Hα to −Hα; similarly,
the action on t∗R is the unique linear map that is given by the identity on ker(Hα) (here
Hα ∈ tR = (t∗R)∗) and sends α to −α. Suppose now that we choose an embedding K ↪→
U(n). Then, as discussed in §6.12, we get an Ad(K)-invariant inner product on g given by
(x, y) 7→ − trace(xθ(y)) and hence a W -invariant inner product 〈, 〉 on tR given by 〈x, y〉 :=
trace(xy). We may use this inner product to define a duality isomorphism t∗R

∼= tR, λ 7→ uλ,
where as before 〈uλ, v〉 = λ(v) for v ∈ tR, and also an inner product 〈, 〉 on t∗R given by
〈λ1, λ2〉 := 〈uλ1 , uλ2〉. Using such inner products, we may interpret the sα geometrically as
follows.

Definition 6.36. Let (V, 〈, 〉) be a finite-dimensional real inner product space, and let 0 6=
v ∈ V . The reflection in v is the linear map rv : V → V that restricts to the identity on the
orthogonal complement v⊥ of v and that sends v to −v, thus

rv(u) = u− 2
〈u, v〉
〈v, v〉

v.

Lemma 6.37. Define inner products on tR and t∗R as above. Let α ∈ Φ. The action of sα
on tR is the reflection in Hα, while that of sα on t∗R is the reflection in α.

16End of half-lecture #15, Thursday, 11 Apr
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Proof. We recall from §6.13 that Hα = 2
〈α,α〉uα, so that Hα and α correspond to positive

multiples of one another under the isomorphism tR ∼= t∗R defined above. Thus ker(Hα : t∗R →
R) is the orthogonal complement of α, while ker(α : tR → R) is the orthogonal complement
of Hα. The required conclusion then follows from the formulas for sα noted previously. �

We’ve defined the regular subset treg
R in tR to be the complement of ∪α∈Φ ker(α), and we’ve

defined a Weyl chamber C in tR to be a connected component of treg
R . We may similarly define

the regular subset t∗ reg
R in t∗R to be the complement of ∪α∈Φ ker(Hα), where now Hα ∈ tR is

viewed as an element of (t∗R)∗, and a Weyl chamber C∨ ⊆ t∗R to be a connected component
of t∗ reg

R . Since the isometry tR ∼= t∗R defined above identifies Hα with a positive multiple of
α, we see that it identifies the kernel of α with the kernel of Hα, and hence identifies each
Weyl chamber C of tR with a corresponding Weyl chamber C∨ of t∗R. This identification is
independent of the embedding K ↪→ U(n), since if C is described as

(6.67) C = {t ∈ tR : εαα(t) > 0 for all α ∈ Φ}

for some signs εα ∈ {±1} (see §6.8), then C∨ is described analogously as

(6.68) C∨ = {λ ∈ t∗R : εαλ(Hα) > 0 for all α ∈ Φ}.

In this way all of the facts that we prove below involving the Weyl group action on tR and
Weyl chambers thereof have immediate counterparts for t∗R.

Example 6.38. TakeK = SU(3). Then (with the usual notation) Φ = {εi−εj : 1 ≤ i < j ≤ 3}
and t∗R

∼= tR ∼= (R3)0, the space of triples x = (x1, x2, x3) ∈ R3 with
∑
xj = 0. Using the

standard representation, the inner product on t∗R is given by the restriction of the standard
inner product on R3. The elements

ε1 − ε2 = (1,−1, 0), ε2 − ε3 = (0, 1,−1), ε3 − ε1 = (−1, 0, 1)

of t∗R sum to zero, have the same lengths, and have the same inner products with one
another (up to sign). An isometric embedding of tR∗ into R2 is thus obtained by sending
these elements to the vertices of an equilateral triangle with center the origin. The following
elements are then sent to the vertices of a regular hexagon with center the origin, traversed
in the order they appear around the boundary:

ε1 − ε2, ε1 − ε3, ε2 − ε3, ε1 − ε2, ε3 − ε1, ε3 − ε2.

In lecture we drew a picture and described the root reflections, noting that they preserve the
set of roots. For each root α, we drew the hyperplane perpendicular to α, which we denoted
by Hα. (The notation is not so terrible, because the hyperplane Hα ⊆ t∗R is also the kernel
of the functional on t∗R defined by the element Hα ∈ tR.) There are six such hyperplanes.
The connected components of their complements are the six Weyl chambers. Each Weyl
chamber is a 60 degree open “pizza slice” in R2. Each Weyl chamber contains exactly one
root, which is positioned along the central ray of that Weyl chamber, 30 degrees from each
of its walls. (TODO: replace this text with a picture.)
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6.15. Using root reflections to elucidate the Weyl group.

Lemma 6.39. Let C,C ′ be Weyl chambers in tR. Then there exist Weyl chambers C =
C0, C1, C2, . . . , Cn−1, Cn = C ′ and roots α1, . . . , αn ∈ Φ with the following properties:

(i) For j = 1..n, we have αj > 0 on C0, . . . , Cj−1 and αj < 0 on Cj, . . . , Cn.
(ii) Each β ∈ Φ− {±α1, . . . ,±αn} takes the same sign on C0, . . . , Cn.

(iii) For j = 1..n, we have sαjCj−1 = Cj. In particular,

(6.69) C ′ = sαn · · · sα1C.

Analogous conclusions hold for any pair of Weyl chambers in t∗R.

The idea of the proof was illustrated in class on the picture of the Weyl chambers for
SU(3). Consider the straight line path from some t ∈ C to some t′ ∈ C ′. If t, t′ are chosen
generically, then this path will hit each root hyperplane α⊥ := {x ∈ tR : α(x) = 0} one at a
time. We take α1, . . . , αn to correspond to the root hyperplanes encountered along the way
from t to t′ and C0, . . . , Cn the Weyl chambers, so that the path starts in the Weyl chamber
C0, then passes through the root hyperplane α⊥1 , then spends some time in the Weyl chamber
C1, then passes through the root hyperplane α⊥2 , and so on. We’ll give the actual proof next
time. For now, let’s illustrate with some motivating applications.

Corollary 6.40. The Weyl group W = N(T )/T of a maximal torus T in a compact con-
nected Lie group K is generated by the root reflections sα (α ∈ Φ = Φ(K : T )).

Proof. Recall from Lemma 6.29 that W acts freely on the set of Weyl chambers. Let C be
any Weyl chamber, and let w ∈ W . Then C ′ := w(C) is a Weyl chamber. By Lemma 6.39,
we may write C ′ = sαn · · · sα1C for some α1, . . . , αn ∈ Φ. Since the action of W on the set
of Weyl chambers is free, we obtain w = αn · · ·α1. �

Corollary 6.41. With notation as assumptions as above, W acts simply-transitively on the
set of Weyl chambers.

Proof. We’ve seen (Lemma 6.29) that the action is defined and free; the final assertion in
Lemma 6.39 implies that it is transitive. �

17

Proof of Lemma 6.39. We implement the proof sketch given above. Fix t′ ∈ C ′. Set Σ :=
{α ∈ Φ : α(C) > 0, α(C ′) < 0}. Note that for each t ∈ C and α ∈ Φ, we have α(t) > 0 >
α(t′), so the line segment {(1 − τ)t + τt′ : τ ∈ [0, 1]} connecting t to t′ intersects α⊥ in a
unique point that we denote by pα(t). This defines a map

pα : C → α⊥.

This map is continuous and open. Moreover, for each α ∈ Φ, the hyperplane α⊥ is distinct
from β⊥ for all β ∈ Φ− {±α} = Φ− Cα, so the set

α⊥ − ∪β∈Φ−{±α}α
⊥ ∪ β⊥

17End of half-lecture #16, Tuesday, 16 Apr
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is dense and open in α⊥. By an exercise in topology, it follows that for each α ∈ Σ, the set

Aα := {t ∈ C : pα(t) ∈ β⊥ for all β ∈ Φ− Cα}

is dense and open in C. Hence likewise A := ∩α∈ΣAα is dense and open in C. Choose any
t ∈ A. Let γ : [0, 1]→ tR denote the linear path connecting t to t′, thus γ(τ) := (1−τ)t+τt′.
For each α ∈ Σ, abbreviate pα := pα(t), and let τα ∈ (0, 1) be such that γ(τα) = pα. By the
construction of t, we have τα 6= τα′ whenever α 6= α′. We may thus order Σ = {α1, . . . , αn}
in such a way that τα1 < · · · < ταn . Abbreviate τj := ταj and set τ0 := 0, τn+1 := 1. Note
if β ∈ Φ − (Σ ∪ (−Σ)), then β takes the same sign on t and t′, hence also on the path
γ connecting them. It follows that for j = 0..n, the set {γ(τ) : τj < τ < τj+1} belongs
to some Weyl chamber Cj of tR, with C0 = C and Cn = C ′. Moreover, for j = 1..n,
there is a neighborhood Uj of pαj that doesn’t intersect β⊥ for any β ∈ Φ − Cαj, thus

Uj = (Uj ∩ Cj−1) t (Uj ∩ α⊥j ) t (Uj ∩ Cj). The root reflection sαj satisfies sαj |α⊥j = id, thus

sαjUj ∩ Uj 6= ∅, thus sαj(Uj ∩ Cj−1) ∩ (Uj ∩ Cj−1) 6= ∅, hence sαjCj−1 = Cj. The remaining
assertions follow from what we have already shown. �

Corollary 6.42. Let C be a Weyl chamber. Any x ∈ treg
R is W -conjugate to a unique element

of C. The W -stabilizer of x is trivial.

Proof. We use that x belongs to some Weyl chamber and that W acts transitively on the set
of Weyl chambers. �

Corollary 6.43. Let C be a Weyl chamber. Then any x ∈ tR is W -conjugate to a unique
element of the closure C of C.

The W -stabilizer of x is generated by {sα : α(x) = 0}.

Proof. We observe first that treg
R is dense in tR. Indeed, if x ∈ tR and y is any element of treg

R ,
then x+ εy ∈ treg

R for all small enough ε > 0, and x = limε→0(x+ εy). Since treg
R is the union

of the W -conjugates of C, it follows that treg
R is the union of the W -conjugates of C. This

gives the existence of a W -conjugate of x in C. For verifying the uniqueness, we may assume
that x belongs to C, and must show that if w ∈ W satisfies w(x) ∈ C, then w(x) = x. To see
this, we apply Lemma 6.39 to C and C ′ := w−1(C), giving us some chambers C0, . . . , Cn and
roots α1, . . . , αn. Our hypothesis implies that x ∈ C ∩C ′. For j = 1..n, we have αj > 0 on C
and αj < 0 on C ′, thus αj(x) = 0, and so sαj(x) = x. On the other hand, w−1 = sαn · · · sα1 ,
so w = sα1 · · · sαn . Thus w(x) = x.

The final assertion follows from the argument just given; we note that it doesn’t depend
upon the choice of C. �

6.16. Basics on dominance, positivity and simple roots.

Definition 6.44. Choose a Weyl chamber C ⊆ treg
R , hence a corresponding dual Weyl chamber

C∨ ⊆ treg
R . We say that x ∈ tR (resp. λ ∈ t∗R) is dominant if x ∈ C (resp. if λ ∈ C∨), and

strictly dominant if x ∈ C (resp. if λ ∈ C∨).
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We say that α ∈ Φ is positive if α(C) > 0; we abbreviate this condition simply to α > 0
when C is clear by context. We denote by Φ+ := Φ+(C) ⊆ Φ the subset of positive roots.
We say that a positive root α ∈ Φ+ is simple if it cannot be written in the form α1 + α2 for
some α1, α2 ∈ Φ+. We denote by ∆ := ∆(C) ⊆ Φ+ the set of simple roots.

For x, y ∈ tR we say that x is higher than y, and write x ≥ y, if λ(x−y) ≥ 0 for all λ ∈ C∨.
Similarly, for λ, µt∗R, we say that λ is higher than µ, and write λ ≥ µ, if (λ − µ)(x) ≥ 0 for
all x ∈ C. We use “strictly higher than” to mean “higher than and not equal to.”

We note that, for reasons explained earlier, all of these notions are compatible with the
isometry tR ∼= t∗R defined by the inner product given by the trace pairing with respect to any
embedding K ↪→ U(n).

Lemma 6.45. (Not proved in lecture, but useful facts to mention at this point.)

(i) Φ = Φ+ t (−Φ+).
(ii) C = {x ∈ tR : α(x) > 0 for all α > 0} and C∨ = {λ ∈ t∗R : λ(Hα) > 0 for all α > 0}.

(iii) {x ∈ tR : x ≥ 0} =
∑

α>0 R≥0Hα and {λ ∈ t∗R : λ ≥ 0} =
∑

α>0 R≥0α.

Proof. We’ve seen that we may write C = {x : εαα(x) > 0 for all α ∈ Φ} for some signs
εα ∈ {±1}. Then C∨ = {λ : εαλ(Hα) > 0 for all α ∈ Φ}. Since ε−α = −εα and Φ+ =
{α : εα = 1}, we deduce assertions (i) and (ii). The final assertion (iii) boils down, as
follows, to a general duality principle for convex cones. Let M1 and M2 denote the LHS
and RHS of the claimed identity. Then M1 and M2 are closed convex cones containing the
origin. Clearly M2 ⊆ M1. To prove the reverse containment M1 ⊆ M2, it suffices (by the
separating hyperplane theorem, the finite-dimensional case of Hahn–Banach) to show that
for each x ∈ tR with M2(x) ≥ 0, we have M1(x) ≥ 0. Indeed, if M2(x) ≥ 0, then α(x) ≥ 0
for all α > 0; since λ ≥ 0 for all λ ∈M1, the required implication follows. �

For instance, take K = U(n), with T as usual and coordinates as before. We might take

(6.70) C = {x ∈ tR ∼= Rn : x1 > · · · > xn}.

Then

(6.71) C∨ = {λ ∈ t∗R
∼= Rn : λ1 > · · · > λn}

and

(6.72) Φ+ = {εi − εj : i < j} = {ε1 − ε2, ε1 − ε3, . . . }

and

(6.73) ∆ = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn}.

Corollary 6.46. If λ ∈ t∗R is dominant, then λ ≥ w(λ) for all w ∈ W .

Proof. We apply Lemma 6.39 in its dual form to C∨ and wC∨. This gives us a sequence of
dual Weyl chambers C∨0 = C∨, C∨1 , . . . , C

∨
n = wC∨ and roots α1, . . . , αn satisfying (among
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other properties)Hαj > 0 on C∨0 , . . . , C
∨
j−1 andHαj < 0 on C∨j , . . . , C

∨
n . Set λj := sαj · · · sα1λ.

Then λ = λ0 and w(λ) = λn, so

λ− w(λ) = (λ0 − λ1) + (λ1 − λ2) + · · ·+ (λn−1 − λn).

For j = 1..n, the formulas defining λj and sαj give

λj−1 − λj = λj−1 − sαjλj−1 = λj−1(Hαj)αj.

We have αj > 0 (because Hαj > 0 on C∨) and λj−1(Hαj) ≥ 0 (because Hαj ≥ 0 on Cj−1),
hence λj−1 − λj ≥ 0. It follows that λ− w(λ) ≥ 0. �

Theorem 6.47. ∆ is linearly independent over R, and the Z-module ZΦ spanned by Φ
admits the Z-module basis ∆.

We’ll give the proof after a few lemmas.

Lemma 6.48. Every β ∈ Φ+ may be written in the form β =
∑

α∈∆ nαα with nα ∈ Z≥0.

Proof. Fix t ∈ C. As β varies over Φ+, the quantities β(t) vary over a finite subset of R>0.
We argue by induction on β(t). If β ∈ ∆, then we are done. Otherwise β = β1 + β2 with
β1, β2 ∈ ∆. Then β1(t), β2(t) < β(t), so we may conclude by our inductive hypothesis. �

Let α, β ∈ Φ be roots. Recall that, if we choose an embedding K ↪→ U(n) and hence
an inner product 〈x, y〉 = trace(xy) on tR and hence an isometry t∗R 3 λ 7→ uλ ∈ tR, then
Hα = 2

(α,α)
uα. Thus

(6.74) 〈α, β〉 = β(uα) = α(uβ) =
〈α, α〉

2
β(Hα) =

〈β, β〉
2

α(Hβ).

In particular, the quantities

(6.75) (α, β), α(Hβ), β(Hα)

all have the same sign. We say that the roots α, β

• are orthogonal if these quantities are zero,
• form an acute angle if these quantities are positive, and
• form an obtuse angle if they are negative.

These notions are evidently independent of the choice of embedding K ↪→ U(n).

Lemma 6.49. Let α, β ∈ Φ be roots that are non-proportional (thus α 6= ±β).

• If α, β are orthogonal, then α(Hβ) = β(Hα) = 0.
• Suppose α, β form an acute angle. Then the pair (α(Hβ), β(Hα)) is one of the fol-

lowing:

(1, 1), (1, 2), (2, 1), (1, 3), (3, 1).

Moreover, α− β is a root.
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• Suppose α, β form an obtuse angle. Then the pair (α(Hβ), β(Hα)) is one of the
following:

(−1,−1), (−1,−2), (−2,−1), (−1,−3), (−3,−1).

Moreover, α + β is a root.

Proof. Suppose for instance that α, β form an acute angle. Since α, β ∈ t∗Z and Hα, Hβ ∈ tZ,
we then have α(Hβ), β(Hα) ∈ Z≥1. Since α,β are non-proportional, we may apply the
Cauchy–Schwartz inequality in its strict form and the identity (6.74) to see that

α(Hβ)β(Hα) = 4
|〈α, β〉|2

〈α, α〉〈β, β〉
< 4.

Thus α(Hβ)β(Hα) ∈ {1, 2, 3}, which leads to the possibilities indicated. In particular, either
α(Hβ) or β(Hα) is equal to 1. Suppose for instance that β(Hα) = 1. Then

sα(β) = β − β(Hα)α = β − α,

so β − α is a root, thus α − β = −(β − α) is a root, as required. The case that α(Hβ) = 1
is treated similarly. The obtuse case is treated similarly. �

Corollary 6.50. If α, β are distinct elements of ∆, then 〈α, β〉 ≤ 0.

Proof. We’ve seen that otherwise γ := α−β is a root. If γ ∈ Φ+, then the identity α = β+γ
implies that α /∈ ∆, while if −γ ∈ Φ+, then the identity β = α + (−γ) implies that β /∈ ∆.
In either case we obtain the required contradiction. �

Proof of Theorem 6.47. Suppose there are distinct elements α1, . . . , αm, β1, . . . , βn ∈ ∆ and
positive reals a1, . . . , am, b1, . . . , bn so that

x :=
∑

aiαi =
∑

bjβj =: y.

Corollary 6.50 then implies that 〈αi, βj〉 ≤ 0, so

0 ≤ 〈x, x〉 = 〈x, y〉 =
∑
i,j

aibj︸︷︷︸
>0

〈αi, βj〉︸ ︷︷ ︸
≤0

≤ 0,

so equality holds, and thus x = y = 0. Choose any t ∈ C. Then ai(t) > 0, so 0 = x(t) =∑
i aiαi(t) and 0 = y(t) =

∑
j bjβj(t) with each summand positive. Thus m = n = 0. �

Theorem 6.51. The Weyl group is generated by the simpel reflections, i.e., W = 〈sα : α ∈
∆〉.

Proof. We’ll leave this to the homework. It can be proved using Lemma 6.39; the main point
is that α1 ∈ ∆(C) for any α1 in the conclusion of that lemma. �
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6.17. Cartan matrices. Let K be a compact connected Lie group, with maximal torus T ,
Weyl chamber C and accompanying notation as above.

Definition 6.52. The Cartan matrix is (Nαβ)α,β∈∆ where Nαβ := α(Hβ).

We’ll note that the Cartan matrix, as we’ve defined it here, depends only upon the isomor-
phism class of the compact Lie group K. (Use that any two maximal tori are G-conjugate
and that any two Weyl chambers are W -conjugate.)

Lemma 6.53. We have Nαα = 2. For α 6= β, the pair (Nαβ, Nβα) is one of

(0, 0), (−1,−1), (−1,−2), (−2,−1), (−1,−3), (−3,−1).

Proof. By Lemma 6.49 and Corollary 6.50. �

We’ll prove the following (and some variants) after the break:

Theorem 6.54. The tuple (T,∆,∆∨) determines K up to isomorphism, in the following
sense:

Suppose given two compact connected Lie groups K ′, K ′′ equipped with maximal tori T ′, T ′′,
Weyl chambers C ′, C ′′. Let ∆′ = {γ′1, . . . , γ′n} and ∆′′ = {γ′′1 , . . . , γ′′n} denote the associated
sets of simple roots, and H ′i := Hγ′i

, H ′′i := Hγ′′i
the simple coroots. Suppose given an

isomorphism κ : T ′ → T ′′ such that κ∗γ′′i = γ′i and κ∗H
′
i = H ′′i . Then κ extends to an

isomorphism K ′ → K ′′.
More precisely, suppose given maps F ′i : SU(2) → K ′ and F ′′i : SU(2) → K ′′ attached to

the roots γ′i and γ′′i . Let X ′i, Y
′
i , H

′
i and X ′′i , Y

′′
i , H

′′
i be defined accordingly. Then there exists

a unique extension of κ whose differential maps X ′i to X ′′i for each i.

This has the following consequence:

Corollary 6.55. Suppose that K has finite center, or equivalently, that k has trivial center.
Then the pair (T, (Nαβ)α,β∈∆) determines K up to isomorphism in the following sense:

Let K ′, K ′′ be two compact connected Lie groups having finite center, with maximal tori
T ′, T ′′ and Weyl chambers C ′, C ′′ and sets of simple roots ∆′,∆′′ so that there is an iso-

morphism T ′
'−→ T ′′ for which the induced isomorphism X(T ′′)

'−→ X(T ′) defines a bijection

∆′′
'−→ ∆′ with respect to which the Cartan matrices coincide, i.e., α′′(Hβ′′) = α′(Hβ′) when-

ever α′, β′ ∈ ∆′ correspond to α′′, β′′ ∈ ∆′′. Then the isomorphism T ′
'−→ T ′′ extends to an

isomorphism K ′
'−→ K ′′. The set of possible isomorphisms may be described as in theorem

6.54.

18 The proof will be given in §??? after some preliminaries.

18End of lecture #17, Thursday, 18 Apr
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6.18. Strings of roots. Let K,T,Φ be as usual: a compact connected Lie group, a maximal
torus, and the set of roots. Let α, β ∈ Φ.

Lemma 6.56. (i) If α + β ∈ Φ, then [gα, gβ] = gα+β.
(ii) Suppose that α, β are non-proportional, i.e., Qα 6= Qβ. The set

E := {k ∈ Z : β + kα ∈ Φ}
contains 0 and is finite, hence has a minimal element of the form −p ∈ Z≤0 and a
maximal element of the form q ∈ Z≥0. We have

(6.76) E = Z ∩ [−p, q].
Moreover, for any nonzero elements Xα ∈ gα, Yα ∈ g−α, each of the maps

gβ−pα
adXα−−−→ gβ−(p−1)α adXα−−−→ · · · adXα−−−→ gβ+(q−1)α adXα−−−→ gβ+qα,

gβ−pα
adYα←−− gβ−(p−1)α adYα←−− · · · adYα←−− gβ+(q−1)α adYα←−− gβ+qα,

is an isomorphism. Moreover,

(6.77) β(Hα) = p− q.

Proof. Note first that (ii) implies (i): if α+β ∈ Φ, then (since Qα∩Φ = {±α}) α, β are non-
proportional, the set E as defined in (ii) contains the elements 0, 1, and ad(Xα) : gβ → gβ+α

is an isomorphism of one-dimensional vector spaces, which implies that [gα, gβ] = gα+β.
We turn to the proof of (ii). Since β, α are non-proportional, we have β + kα 6= 0 for all

k ∈ Z. Thus

(6.78) V := ⊕k∈Zgβ+kα = ⊕k∈Egβ+kα.

We check easily that V is an sl2(C)α-module whose weight spaces, i.e., ad(Hα)-eigenspaces,
are the summands gβ+kα, with correspond eigenvalues (β + kα)(Hα) = β(Hα) + 2k. The
weight spaces are thus one-dimensional and the weights all have the same parity, so by the
structure theory for sl2(C)-modules, we deduce that V is irreducible, that the weights of V
are of the form {−n,−n+ 2, . . . , n− 2, n} for some nonnegative integer n, that (6.76) holds,
and that the connecting maps between adjacent weight spaces defined by ad(Xα) and ad(Yα)
are isomorphisms. Moreover, n = β(Hα) + 2q and −n = β(Hα)− 2p, which gives (6.77). �

6.19. Generating the Lie algebra using simple root vectors. For the next few results,
let K,T,C,Φ,Φ+,∆ be as usual. Write

∆ = {γ1, . . . , γn}.
Fix Fγj : SU(2)→ K as in §6.10 and associated elements Xj := Xγj , Yj := Yγj , Hj := Hγj .

Lemma 6.57. Let β ∈ Φ+. Then there exist α1, . . . , αr ∈ ∆ so that

• β = α1 + · · ·+ αr, and
• α1 + · · ·+ αs ∈ Φ for s = 1..r.
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Proof. The proof is an adaptation of that of Lemma 6.48. Fix t ∈ C. Induct on β(t) ∈ R>0.
If β ∈ ∆, then the required conclusion holds with r = 1 and α1 = β, so suppose β /∈ ∆.

We claim that there exists j ∈ {1..n} so that β and γj form an acute angle. Otherwise,
arguing as in the proof of Theorem 6.47, we see that the set {β, γ1, . . . , γn} is linearly
independent over R. Since β ∈ ⊕j=1..nZ≥0γj, we obtain the required contradiction.

Fix one such j. Since β ∈ Φ+−∆, the roots β and γj are non-proportional, so by Lemma
6.49, the difference β − γj is a root. We claim that β − γj is positive. If not, then γj − β
is positive. Writing β =

∑
i ciγi with ci ∈ Z≥0, the decomposition γj − β =

∑
i(δij − ci)γi

then has nonnegative coefficients, so cj ≤ 1 and ci ≤ 0 for i 6= j. These conditions force
either β = 0 (which is impossible because β is a root) or β = γj (which is impossible because
β /∈ ∆).

We now apply our inductive hypothesis to β − γj, writing it as α1 + · · · + αr for some
simple roots satisfying the required conclusion of the lemma, and take αr+1 := γj. Then
β = α1 + · · ·+ αr+1 gives the required decomposition. �

Corollary 6.58. g is generated (as a complex Lie algebra) by tC ∪ {Xi} ∪ {Yj}. More
precisely,

(6.79) g = tC ⊕ (
∑
r≥1

i=(i1,...,ir)∈Zr≥1

Cei)⊕ (
∑
r≥1

i=(i1,...,ir)∈Zr≥1

Cfi),

where

(6.80) ei := [Xi1 , . . . , [Xir−1 , Xir ] · · ·] ∈ gγi1+···+γir ,

(6.81) fi := [Yi1 , . . . , [Yir−1 , Yir ] · · ·] ∈ g−γi1−···−γir .

The action of the indicated generators for g on the above decomposition is described as
follows: For H ∈ tC, we have

(6.82) adXj H = −γj(H)Xj,

(6.83) adYj H = −γj(H)Xj,

(6.84) adXj ei = [Xj, [Xi1 , . . . , [Xir−1 , Xir ] · · ·]]

(6.85) adH ei = 〈H, γi1 + · · ·+ γir〉ei

(6.86) adYj fi = [Yj, [Yi1 , . . . , [Yir−1 , Yir ] · · ·]]

(6.87) adH fi = −〈H, γi1 + · · ·+ γir〉fi

(6.88) adYj Xi =

{
−Hi if i = j

0 if i 6= j,

(6.89) adYj ei = [adYj Xi1 , . . . , [Xir−1 , Xir ] · · ·] + · · ·+ [Xi1 , . . . , [Xir−1 , adYj Xir ] · · ·],
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(6.90) adXj Yi =

{
Hi if i = j

0 if i 6= j,

(6.91) adXj fi = [adXj Yi1 , . . . , [Yir−1 , Yir ] · · ·] + · · ·+ [Yi1 , . . . , [Yir−1 , adXj Yir ] · · ·].

Proof. Let h denote the subalgebra of g generated by the indicated set. In particular, h is a
tC-module containing g±γj for j = 1..n, so we may write

h = tC ⊕ (⊕α∈Egα)

for some subset E ⊆ Φ containing {±γ1, . . . ,±γn}. We must show that in fact E = Φ. So
let β ∈ Φ; we must show that β ∈ E. We assume that β ∈ Φ+; a similar proof applies if
−β ∈ Φ+. By Lemma 6.57, we may write β = α1+· · ·+αr with each partial sum α1+· · ·+αs
also a root. We show by induction on r that β ∈ E. If r = 1, then β ∈ ∆ ⊆ E, so suppose
r ≥ 2. By our inductive hypothesis, δ := α1 + · · ·+αr−1 ∈ E. We have β = δ+αr, with each
term a root, so by Lemma 6.56, gβ = [gδ, gαr ]. Our inductive hypothesis gives gδ, gαr ⊆ h.
Since h is a subalgebra, it follows that gβ ⊆ h, whence as required that β ∈ E.

This establishes that the indicated set is indeed a generating set for g. The remaining
assertions follow from the argument just given together and some routine calculation. �

Corollary 6.59. Any nonzero ideal a of g contains a nonzero element of tC.

Proof. The proof is similar to that of the previous corollary (and could even be deduced from
its conclusion by considering orthogonal complements). Since a is in particular a tC-module,
we may write a = b ⊕ (⊕α∈Egα) for some subspace b ⊆ tC and some subset E ⊆ Φ. We
want to show that b is nonzero. Suppose otherwise that b is zero. Then E is nonempty. Let
β ∈ E. Write β = α1 + · · · + αr as in Lemma 6.57. Set Z := [Yα1 , · · · , [Yαr−1 , [Yαr , Xβ]] · · ·].
Then Z ∈ tC ∩ b = b = {0}, but several applications of Lemma 6.56 (and (6.45)) implies
that Z 6= 0, giving the required contradiction. �

6.20. Proof of Theorem 6.54. We need one final miscellaneous lemma:

Lemma 6.60. Let K be a compact connected Lie group with maximal torus T . Then the
map π1(T )→ π1(K) induced by the inclusion T → K is surjective.

Proof. (Omitted in lecture; see for instance Section 36.4 of my Fall 2016 notes on Lie groups,
linked on the course homepage.) �

We now give the proof of Theorem 6.54. Let notation be as in its statement. We may
write ∆′ = {γ′1, . . . , γ′n} and ∆′′ = {γ′′1 , . . . , γ′′n} so that γ′i corresponds to γ′′i . We define g′, g′′

in the obvious way and define X ′i, Y
′
j ∈ g′ and X ′′i , Y

′′
j ∈ g′′ as in §6.19. We will show more

precisely that there exists a unique isomorphism K ′
∼=−→ K ′′ extending the given isomorphism

κ : T ′
∼=−→ T ′′ with the additional property that the induced isomorphism g′

∼=−→ g′′ maps X ′i
to X ′′i for i = 1..n.
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To that end, we fix linear embeddings of K ′ and K ′′, hence involutions θ of g′ and g′′

with fixed subspaces k′ and k′′. It suffices to show that there exists a unique θ-equivariant

isomorphism g′
∼=−→ g′′ given on t′C by dκ and which maps X ′i to X ′′i . Indeed, such an

isomorphism of complexified Lie algebras induces an isomorphism τ : k′
∼=−→ k′′ of their θ-fixed

subspaces. What remains to be checked is just that any such isomorphism arises from a Lie
group morphism K ′ → K ′′, and similarly for the inverse isomorphism. From basic Lie theory
(see e.g. Theorem 155 of the Fall 2016 notes linked on the course webpage), the Lie group

K ′ admits a universal connected covering group K̃ ′, which fits into a short exact sequence

1→ π1(K)→ K̃ ′ → K ′ → 1, where π1(K) identifies with a discrete central subgroup of K̃ ′.

The given Lie algebra map k′ → k′′ extends to a Lie group map K̃ ′ → K ′′ (see e.g. Theorem
146 of the aforementioned notes); we just need to check that π1(K ′) lies in the kernel of the
latter. But by Lemma 6.60, it suffices to show that π1(T ′) lies in the indicated kernel, which
follows from the fact that the given map T ′ → T ′′ is a well-defined Lie group map. The
completes the proof of the required reduction.

It remains to produce the required θ-equivariant map g′ → g′′. We will do so by con-
structing its graph. Let g denote the subalgebra of g′ ⊕ g′′ generated by tC ∪ {Xi} ∪ {Yi},
where

tC := {(x′, x′′) ∈ t′C ⊕ t′′C : dκ(x′) = x′′}
and Xi := (X ′i, X

′′
i ) and Yi := (Y ′i , Y

′′
i ) with Y ′i := −θ(X ′i), Y ′′i := −θ(X ′′i ). 19 It is enough to

check that g is the graph of a θ-equivariant isomorphism of Lie algebras; note that if such
a morphism exists, then it is uniquely defined and restricts on t′C to dκ. The θ-equivariance
will follow from the construction of g. By applying the same argument with the roles of g′

and g′′ reversed, we reduce to showing that g is the graph of a morphism of Lie algebras.
Let π′ : g → g′ and π′′ : g → g′′ denote the projections. By Corollary 6.58, we see that π′

and π′′ are surjective. We might thus hope to define a morphism f : g′ → g′′ by requiring
that f(x) := y whenever (x, y) ∈ g. Since g is a subalgebra, we know that f is a morphism
provided that it is well-defined as a set-theoretic map. We thus need only check that if
(x, y1) and (x, y2) both belong to g, then y1 = y2. Equivalently, we need to check that if
(0, y) belongs to g, then y = 0; in other words, we must show that ker(π′′) is trivial.

We claim that

(6.92) g ∩ (t′C ⊕ t′′C) = tC.

Before proving the claim, we explain why it suffices. Suppose for the sake of contradiction
that ker(π′′) is nonzero. Then a′ := π′(ker(π′′)) is a nonzero ideal of g′. By Corollary 6.59,
we have a′ ∩ t′C 6= {0}. We may thus find 0 6= x′ ∈ t′C so that (x′, 0) ∈ ker(π′′). Clearly

(6.93) (x′, 0) ∈ g ∩ (t′C ⊕ t′′C).

From the claim (6.92), it follows that (x′, 0) ∈ tC, whence that 0 = dκ(x′). Since dκ is an
isomorphism, this forces x′ = 0, giving the required contradiction.

19End of lecture #18, Tuesday, 30 Apr 2019



108 PAUL D. NELSON

We turn finally to the proof of the claim (6.92). Let h ⊆ g′ ⊕ g′′ denote the set defined
as on the RHS of (6.79), with ei, fi defined in terms of Xi, Yi ∈ g as in (6.80), (6.81). Then
tC ⊆ h; moreover, tC is self-centralizing in h, since the tC-weights of ⊕Cei (resp. of ⊕Cfi)
are positive (resp. negative). In particular, (t′C ⊕ t′′C) ∩ h = tC, so to establish (6.92), we
reduce to showing that g = h. To that end, observe first that h is contained in g and contains
the generating set S := tC ∪ {Xi} ∪ {Yi} for g. We thereby reduce to verifying that h is a
subalgebra. Since h ⊆ g, we may reduce further to showing that h is closed under adZ for
each Z ∈ S. For this we appeal to the relations noted in Corollary 6.58, applied to each
component g′, g′′ of g′ ⊕ g′′, together with the assumed compatibility between γ′i and γ′′i .

This completes the proof.

6.21. Dynkin diagrams. They provide a convenient pictorial representation of the Cartan
matrix. Here we just summarize what was discussed in class; look at Wikipedia or any of
the course references for a detailed discussion.

The vertices of the Dynkin diagram correspond to the simple roots. For any pair (α, β)
of distinct simple roots, we have seen that there are at most seven possibilities for the pair
(Nαβ, Nβα) of integers appearing in the Cartan matrix:

• (0, 0): we draw no edge between α and β
• (−1,−1): we draw a simple undirected edge between α and β
• (−1,−2): we draw a double oriented edge from α to β
• (−2,−1): we draw a double oriented edge from β to α
• (−1,−3): we draw a triple oriented edge from α to β
• (−3,−1): we draw a triple oriented edge from β to α

We illustrated with K = U(n) or SU(n) or PU(n), where the Cartan matrix looks like (for
n = 5) 

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2

 ,

so the Dynkin diagram looks like a series of vertices connected by simple edges.
We’ve focused in this class on Lie groups rather than Lie algebras. A variant of Theorem

6.54 (with similar proof) is that if K ′, K ′′ are connected compact Lie groups with maximal
tori T ′, T ′′ of the same dimension, then k′ ∼= k′′ iff the Cartan matrices are the same (up to
relabeling indices) iff the Dynkin diagrams are the same.

6.22. Root data.

Definition 6.61. A root datum is a quadruple Ψ = (X,Φ, X∨,Φ∨) consisting of

(i) finitely-generated free abelian groupsX,X∨ of the same rank n, thusX ∼= Zn, X∨ ∼= Zn,

(ii) a perfect Z-linear pairing X ⊗Z X
∨ (,)−→ Z,

(iii) finite subsets Φ ⊆ X,Φ∨ ⊆ X, and
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(iv) a bijection Φ↔ Φ∨ denoted α↔ α∨ such that
(v) (α, α∨) = 2 for all α ∈ Φ,
(vi) sα(λ) := λ− (λ, α∨)α defines a linear automorphism sα : X → X such that sα(Φ) = Φ,

and
(vii) sα∨(λ∨) := λ∨ − (α, λ∨)α∨ defines a linear automorphism sα∨ : X∨ → X∨ such that

sα∨(Φ∨) = Φ∨.

We say that Ψ is reduced if Qα ∩ Φ = {α,−α} for all α ∈ Φ.
There is an obvious notion of an isomorphism of root data.

For example, if K is a compact connected Lie group with maximal torus T , then

Ψ(K : T ) := (X(T ),Φ(K : T ), X∨(T ),Φ∨(K : T ))

is a root datum; here Φ∨(K : T ) := {α∨ : α ∈ Φ(K : T )}. Using the conjugacy of maximal
tori, we see that the isomorphism class of Ψ(K : T ) is independent of T .

Theorem 6.62. The map

{compact connected Lie groups K}/∼−→ {reduced root data Ψ}/∼,
given by sending K to Ψ(K : T ) for some maximal torus T , is a bijection.

Sketch of proof. Injectivity follows readily from Theorem 6.54 (exercise). We omit the proof
of surjectivity; one way to proceed would be to argue as in the proof of Theorem 6.54, but

incorporating the Serre relations ad
−Nij+1
Xi

Xj = ad
−Nij+1
Yi

Yj = 0. �

20

7. Representations of compact Lie groups

Let K be a compact connected Lie group. Our aim in this section is to generalize the
results established in §2 when K = U(n).

7.1. Setup and preliminaries. Choose a maximal torus T and then a Weyl chamber
C ⊆ treg

R . These choices define a Weyl group W and sets Φ ⊇ Φ+ ⊇ ∆ of roots, positive roots
and simple roots, respectively. Recall that C defines a notion of λ ∈ t∗R being dominant,
which means that it belongs to the closure C∨ = {λ : λ(Hα) ≥ 0 for all α ∈ Φ+} of the Weyl
chamber C∨ = {λ : λ(Hα) > 0 for all α ∈ Φ+}, and strictly dominant if in fact λ ∈ C∨.
Recall that C defines a partial on tR∗ , where we say that λ1 ≥ λ2 if (λ1 − λ2)(C) ≥ 0, or
equivalently, if λ1 − λ2 ∈

∑
α∈Φ+ R≥0α; we say also that λ is positive if λ ≥ 0.

We remark that one can characterize the subsets Φ+ ⊆ Φ arising in the above way as
those for which

• α, β ∈ Φ+, α + β ∈ Φ =⇒ α + β ∈ Φ+ and
• Φ is the disjoint union of Φ+ and −Φ+.

20End of lecture #???
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(See any of the main course references.) The choice of Φ+ determines C = {x : α(x) >
0 for all α ∈ Φ+} and C∨. A convenient way to choose Φ+ is via a lexicographical ordering :
choose a faithful embedding K ↪→ U(n), hence an embedding tR ↪→ Rn, identify t∗R with tR in
the usual way via the pairing (x, y) 7→ trace(xy) (the restriction of the standard Euclidean
norm on Rn), and equip t∗R with the lexicographical order coming from Rn. This is what we
did earlier (implicitly) in the case K = U(n).

We recall some additional facts established in the preceeding section:

(i) W acts simply-transitively on the set of Weyl chambers.
(ii) (dual form of Corollary 6.43) Any λ ∈ t∗R is W -conjugate to a unique dominant element.

(iii) Any dominant λ ∈ t∗R satisfies λ ≥ w(λ) for all w ∈ W .

Recall finally the Weyl integral formula (§6.6)

(7.1)

∫
K

f =
1

|W |

∫
g∈K/T

∫
t∈T

D(t)f(gtg−1),

where we integrate with respect to probability Haar measures and where the Jacobian factor
D is given explicitly by

(7.2) D(t) = |det(t− 1|g/tC)|=
∏
α∈Φ

|tα − 1|.

Our first aim is to factor D = ∆∆ = |∆|2 as in the case K = U(n). Such a factorization
holds formally with

(7.3) ∆(t) :=
∏
α>0

(tα/2 − t−α/2).

Unfortunately, ∆ is not in general well-defined as a function on T ; the source of this issue
is that the expressions tα/2 themselves are not well-defined, since it may happen that α ∈ t∗Z
but (1/2)α /∈ t∗Z. To circumvent this issue, we pass to a covering torus T̃ of T . Recall that the

normalized exponential map e(x) := exp(2πix) induces an isomorphism e : tR/tZ
∼−→ T . We

denote by T̃ the covering torus of T corresponding to the sublattice 2tZ of tZ; it comes with an
isomorphism e : tR/2tZ

∼−→ T̃ and a canonical surjection T̃ → T . In other words, choosing a
basis for tZ, we may identify T with Rn/Zn and T̃ with Rn/2Zn. In any event, for λ ∈ (1/2)t∗Z,

we have λ(2tZ) ⊆ Z, and so the character eλ : T̃ → U(1) given by exp(x) 7→ exp(λ(x)) is
well-defined. In particular, the above formula defines ∆ : T̃ → C. We identify D : T → C
with a function D : T̃ → C via pullback. The identity |∆|2= D then holds. For a class
function f on K, the Weyl integral formula (7.1) implies that

(7.4) 〈f, f〉K =
1

W
〈∆f,∆f〉T̃ ,

where we identify f with a function on T̃ by restricting to T and then pulling back to T̃ ,
and where we integrate with respect to the probability Haar on T̃ .
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Set

(7.5) ρ :=
1

2

∑
α∈Φ+

α.

It defines an element of (1/2)t∗Z, hence a character of T̃ . We may rewrite

(7.6) ∆(t) = tρ
∏
α>0

(1− t−α)

We pause to record some basic properties of ρ.

Lemma 7.1. (i) ρ is strictly dominant. Its W -stabilizer is trivial.
(ii) For all w ∈ W , we have

(7.7) ρ− w(ρ) =
∑
α∈Φ:
α>0,

w−1(α)<0

α.

In particular, ρ− w(ρ) defines a positive element of t∗Z.

Proof. We first establish the formula (7.7). We have

w(ρ) =
1

2

∑
α>0

w(α) =
∑

α:w−1(α)>0

α =
∑
α>0

εαα,

where

εα =

{
1 if w−1(α) > 0,

−1 if w−1(α) < 0.

Thus

ρ− w(ρ) =
∑
α>0

1− εα
2

α.

We have
1− εα

2
=

{
1 if w−1(α) < 0,

0 otherwise,

which leads to the required formula. It follows immediately that ρ−w(ρ) defines a positive
element of t∗Z.

Suppose now that w ∈ W fixes ρ. Then w stabilizes Φ+, hence w stabilizes C. Since we
have seen (in Lemma 6.29) that W acts freely on the set of Weyl chambers, it follows that
w = 1. Thus ρ has trivial W -stabilizer.

It remains only to verify that ρ is strictly dominant, i.e., that for each α ∈ Φ+, we have
ρ(Hα) > 0 . To that end, note first that since ρ has trivial W -stabilizer, it is not fixed by the
root reflection sα, and so ρ(Hα) 6= 0. Suppose for the sake of contradiction that ρ(Hα) < 0.
Then sα(ρ) − ρ = −ρ(Hα)α > 0. But we have seen already using the formula (7.7) that
sα(ρ)− ρ < 0, giving the required contradiction. �



112 PAUL D. NELSON

Let L denote the ring of Laurent polynomials on T̃ , thus

L = ⊕λ∈(1/2)t∗Z
Ceλ,

where as usual eλ = [t 7→ tλ]. The Weyl group W acts on L. We set

Lsym := {f ∈ L : w(f) = f for all w ∈ W}.
For w ∈ W , we denote by (−1)w the determinant of the action of w on tR. For instance,
for the root reflections sα, we have (−1)sα = −1, because reflections have determinant −1.
More generally, if w ∈ W may be written as a product of exactly k ≥ 0 root reflections, then
(−1)w = (−1)k. This observation justifies the notation. We set

Lalt := {f ∈ L : w(f) = (−1)wf for all w ∈ W}.
Since the (simple) root reflections generate W , we may also write

Lalt = {f ∈ L : sα(f) = −f for all α ∈ ∆}.
For λ ∈ (1/2)t∗Z, define

(7.8) A(λ) :=
∑
w∈W

(−1)wew(λ).

Lemma 7.2. (i) A(λ) ∈ Lalt for all λ ∈ (1/2)t∗Z.
(ii) Lalt = ⊕λ∈(1/2)t∗Z∩C∨CA(λ).

Proof. (i) Direct calculation.
(ii) Let f ∈ Lalt. Then f =

∑
λ∈(1/2)t∗Z

c(λ)eλ, where c(w(λ)) = (−1)wc(λ) for all w ∈ W .

If λ is irregular, i.e., if λ(Hα) = 0 for some root α, then sα(λ) = λ, while (−1)sα = −1,
and so c(λ) = 0. If λ is regular, then its unique dominant W -conjugate w(λ) belongs
to C∨, and we have c(λ) = (−1)wc(w(λ)). It follows that f =

∑
λ∈(1/2)t∗Z∩C∨

c(λ)A(λ).

The uniqueness of this decomposition follows from the fact that if λ ∈ (1/2)t∗Z ∩ C∨,
then w(λ) /∈ C∨ for all nontrivial w ∈ W .

�

Let π be a finite-dimensional representation of G. Recall that the weights of π are those
µ ∈ X(T ) for which the weight space π[µ] := {v ∈ π : tv = tµv for all t ∈ T} is nonzero.
The character χπ of π is a class function on G, which we may identify with a W -invariant
function on T , and in fact an element χπ ∈ Lsym, given by χπ =

∑
µ∈X(T ) mπ(µ)eµ. For any

element f ∈ L, we may speak more generally of the weights of f (i.e., those µ ∈ X(T̃ ) for
which the coefficient of eµ in f is nonzero), and we say that λ is

• a maximal weight of f if there does not exist a weight µ of f with µ > λ, and
• the highest weight of f if every weight µ of f satisfies µ ≤ λ.

Note that f has (in general, many) maximal weights, and that f has a highest weight iff it has
a unique maximal weight. This terminology applies also to π in place of f by considering the
character χπ. For instance, ∆ =

∏
α>0(eα/2 − e−α/2) ∈ Lalt and A(ρ) =

∑
w∈W (−1)wew(ρ) =
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A(ρ) are each of the form eρ+ · · · where · · · denotes the contributions of weights w(ρ) strictly
less than ρ, and so ∆ and A(ρ) both have highest weight ρ.

Lemma 7.3. (i) ∆ ∈ Lalt.
(ii) For all f ∈ Lalt, we have f/∆ ∈ Lsym.

(iii) ∆ = A(ρ).
(iv) Let λ be a dominant element of (1/2)t∗Z. Then λ + ρ is a strictly dominant element

(1/2)t∗Z, and

(7.9)
A(λ+ ρ)

A(ρ)
(1) =

∏
α>0

〈λ+ ρ,Hα〉
〈ρ,Hα〉

.

Proof. (i) It is enough to check for each simple root β that

(7.10) ∆(sβ(t)) = −∆(t).

Using that s2
β = 1, we compute that

(7.11) ∆(sβ(t)) =
∏
α>0

(tsβ(α)/2 − t−sβ(α)/2).

Since sβ(β) = −β, we have

(7.12) (tsβ(β)/2 − t−sβ(β)/2) = −(tβ/2 − t−β/2).

Let α ∈ Φ+ − {β}. Then (see the homework for details concerning the following
terminology and facts) the Weyl chambers C and sβ(C) are adjacent, separated by the
wall β⊥ and no other wall. In particular, α takes the same sign on C and sβ(C), hence
α is positive on sβ(C); equivalently, sβ(α) is positive on C, i.e., sβ(α) > 0. Thus sβ
acts on Φ+ − {β}, and so

(7.13)
∏

α>0,α 6=β

(tsβ(α)/2 − t−sβ(α)/2) =
∏

α>0,α 6=β

(tα/2 − t−α/2).

The required identity follows.
(ii) It is enough to show that f is divisible by ∆ in L. We record two proofs (the second

of which was given in lecture, the first of which I find a bit more natural). Both proofs
use the fact that for distinct positive roots α and β,

(7.14) Cα ∩ Cβ = {0}.
(To see this, it suffices to check that β /∈ Cα, which follows from the identity Cα∩Φ =
{α,−α} and our assumptions.)
(a) (First proof) Set Z := {z ∈ (C×)n : ∆(z) = 0}. Then z ∈ Z iff zα = 1 for some

positive root α. The identity zα = 1 is equivalent to sα(z) = z. Let f ∈ Lalt and
z ∈ Z. Then, choosing α so that sα(z) = z, we have f(z) = f(sα(z)) = −f(z),
hence f(z) = 0. Thus f vanishes on Z. By the Nullstellensatz, it follows that f
belongs to the radical of the ideal in ∆ generated by ∆. Note that L is a UFD
(being a localization of the UFD C[t1, . . . , tn]). To conclude, it suffices to show
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that ∆ defines a squarefree element of L, i.e., that no prime factor of ∆ occurs
with multiplicity > 1.
We first compute the prime factorization of tα − 1 for each nontrivial character α
of T̃ . The character group X(T̃ ) is isomorphic to Zn, where n = dim(T̃ ). Suppose
that α is of the form dβ for some natural number d and some character β of T̃ ,
with d chosen maximally. Then

(7.15) tα − 1 =
∏

(tβ − ζ),

with the product taken over all dth roots of unity ζ. We claim that each factor
tβ − ζ is irreducible. For this it suffices to show more generally that if α is a
primitive nontrivial character of T̃ (thus α corresponds to a nonzero element of
Zn whose coordinates are relatively prime) and ζ ∈ C×, then tα − ζ is irreducible.
Indeed, since α is primitive, we may apply a linear change of variables on Zn to
reduce to the case that α = (1, 0, . . . , 0), so that tα − ζ = t1 − ζ, which is clearly
irreducible. (The existence of such a change of variables is a simple exercise in linear
algebra, closely related to the fact that finitely-generated torsion-free modules over
Z are free; indeed, the latter fact implies that the quotient X(T̃ )/Zα is free, hence
that the surjection to that quotient from X(T̃ ) splits, leading to a direct sum
decomposition X(T̃ ) = Zα⊕ (· · ·) and hence the required change of variables.)
Since no prime factor in (7.15) occurs twice, we see in particular that tα − 1 is
squarefree. To establish the same for ∆, we need to check that no prime factor of
tα − 1 divides tβ − 1 whenever α and β are distinct positive roots. This follows
from (7.15) and (7.14).

(b) (Second proof) We show first that if f ∈ L vanishes on {z : zα = 1}, then
f/(tα − 1) ∈ L. Choosing coordinates t1, . . . , tn on T̃ , we may represent α as
(α1, . . . , αn) for some integers αj. We may assume for convenience, by inverting
the coordinate tn if necessary, that αn ≥ 0. Setting R := Z[t±1

1 , . . . , t±1
n−1], we then

have tα − 1 ∈ R[tn]. We may assume, after multiplying f by a sufficiently large
power of tn, then f ∈ R[tn]. By division with remainder in the polynomial tn, we

then have f = (tαnn −
∏

j<n t
−αj
j )q + r for some q, r ∈ R[tn] for which the degree in

tn of r is strictly less than αn. This identity implies that r vanishes on the solution
set to the equation tα = 1. For any given values t1, . . . , tn−1 ∈ C× of the first n− 1
coordinates, that equation has exactly αn solutions in the variable tn. The noted
degree bound on r thus implies that r = 0. It follows as required that f is divisible
by tα − 1.
From (7.14) we see that for distinct positive roots α and β, the tangent planes to
the hypersurfaces {t : tα = 1} and {t : tβ = 1} are traverse at any point of the
intersection {t : tα = tβ = 1}. Thus if f vanishes on {z : zβ = 1} and is divisible by
tα − 1, then f/(tα − 1) likewise vanishes on {z : zβ = 1}. We may thus iteratively
apply the argument of the preceeding paragraph to obtain the required conclusion.
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(iii) By the previous item, we have A(ρ)/∆ ∈ Lsym. We’ve noted already that ∆ and A(ρ)
each have ρ as highest weight. If λ is any maximal weight of A(ρ)/∆, then λ+ ρ = ρ,
whence λ = 0. Thus A(ρ)/∆ is a complex scalar; since A(ρ) and ∆ are each of the
form eρ + (· · ·), we conclude that A(ρ)/∆ = 1.

(iv) We have seen that ρ is strictly dominant. Since λ is dominant, it follows that λ+ ρ is
strictly dominant. It remains to check the formula (7.9). This requires taking a limit
as in the proof of the analogous result for U(n) (Lemma 2.13). Let us first rewrite the
identity ∆ = A(ρ) established above in the form: for x ∈ tC,

(7.16)
∑
W

(−1)we〈w(x),ρ〉 =
∏
α>0

(eα(x)/2 − e−α(x)/2).

A similar argument (applied with the roles of tC and t∗C reversed) gives for λ ∈ t∗C that

(7.17)
∑
W

(−1)we〈w(λ),Hρ〉 =
∏
α>0

(eλ(Hα)/2 − e−λ(Hα)/2).

It follows that for t = exp(εHρ) with ε > 0 small, we have∑
W

(−1)wtw(λ) =
∏
α>0

(eελ(Hα)/2 − e−ελ(Hα)/2) ∼ ε|Φ+|
∏
α>0

〈λ,Hα〉.

Thus ∑
W (−1)wtw(λ+ρ)∑
W (−1)wtw(ρ)

|t=1=
∏
α>0

〈λ+ ρ,Hα〉
〈ρ,Hα〉

,

as required.
�

7.2. Classification of irreducibles.

Theorem 7.4. Let K be a compact connected Lie group with maximal torus T , hence root
set Φ and Weyl group W . Choose a Weyl chamber C, hence sets Φ+ and ∆ of positive and
simple roots, respectively, as well as a partial order ≥ on t∗R.

Each π ∈ Irr(K) has a highest weight λ ∈ X(T ) = t∗Z; this is a dominant element for
which the Weyl character formula

χπ =
Aλ+ρ

Aρ

holds, with

Aµ :=
∑
w∈W

(−1)wew(µ) ∈ X(T̃ ) =
1

2
t∗Z, ρ :=

1

2

∑
α>0

α.

The map π 7→ λ defines a bijection

(7.18) Irr(K)↔ {dominant λ ∈ X(T )} ↔ X(T )/W.
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Proof. Let π ∈ Irr(K). Let λ ∈ X(T ) be any maximal weight of π. Since χπ is W -invariant,
and since every element µ of X(T ) is W -conjugate to a unique dominant element which is
then ≥ µ, we know that λ is dominant. Since ∆ has highest weight ρ with ∆ = eρ + · · ·,
we know that ∆χπ ∈ Lalt has λ + ρ as a maximal weight, with ∆χπ = mπ(λ)eλ+ρ + · · ·.
Regrouping terms into monomial alternating functions gives

(7.19) ∆χπ = mπ(λ)Aλ+ρ + · · · ,

where · · · denotes a linear combination of Aµ+ρ taken over µ with µ + ρ strictly dominant
and µ not greater than λ. By the Weyl integral formula and Schur orthogonality, we have
(as in the case of U(n))

(7.20) 1 = 〈χπ, χπ〉G =
〈Dχπ, χπ〉T
|W |

=
〈∆χπ,∆χπ〉T̃
|W |

=
‖mπ(λ)Aλ+ρ + · · · ‖2

|W |
≥ |mπ(λ)|2.

Here we used that λ+ ρ is strictly dominant and that for strictly dominant λ1, λ2,

〈Aλ1 , Aλ2〉 =

{
|W | if λ1 = λ2,

0 otherwise
.

Since mπ(λ) ∈ Z≥1, we deduce from (7.20) that mπ(λ) = 1 and hence that equality holds
in each step, i.e., that the · · · in (7.19) vanishes. This gives the required formula for χπ
in terms of λ. The proof shows also that λ is uniquely determined, hence is the unique
maximal weight, i.e., the highest weight of π. We thus obtain an injective map Irr(K) →
{dominant λ ∈ X(T )} as in the statement of the theorem; to complete the proof, it remains
only to show that this map is surjective. We imitate the first proof given earlier for U(n).
Suppose λ is a dominant element of X(T ) not arising as the highest weight of any element
of Irr(K). By Lemma 7.3, the ratio Aλ+ρ/Aρ defines an element of Lsym, hence in particular

a function T̃ → C. We claim that this function factors through T . To see this, we write

Aλ+ρ

Aρ
=

∑
w∈W (−1)wew(λ+ρ)−ρ

eρ
∏

α>0(1− e−α)
,

and observe that having rewritten the ratio in this way, both the numerator and denominator
factor through T : for the denominator, this is clear, while for the numerator, we use that
w(λ+ρ)−ρ = w(λ)− (ρ−w(ρ)), which belongs to t∗Z thanks to Lemma 7.1. This completes
the verification of the claim. Thus Aλ+ρ/Aρ defines a W -invariant function T → C, hence
a class function K → C. For each π ∈ Irr(K), say with highest weight µ, then the Weyl
integral formula gives

〈Aλ+ρ/Aρ, χπ〉K = 〈Aλ+ρ,∆χπ〉T̃ = 〈Aλ+ρ, Aµ+ρ〉T̃ = 0,

using in the last step that λ, µ are dominant and distinct. The Peter–Weyl theorem then
implies that Aλ+ρ/Aρ = 0, which is absurd. This completes the proof of the required
contradiction. �
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Remark 7.5. We indicate a way to formulate the conclusion of Theorem 7.4 without explicit
reference to a maximal torus. Recall from §6.22 that there is a bijection

{compact connected K}/∼ ↔ {reduced root data Ψ = (X,Φ, X∨,Φ∨)}

K 7→ Ψ(K) := (X(T ),Φ(K : T ), X∨(T ),Φ∨).

There is a “duality” Ψ 7→ Ψ∨ on the set of (reduced) root data given by

Ψ∨ := (X∨,Φ∨, X,Φ).

We may define the dual group K∨ of K to be the connected compact Lie group (up to
isomorphism) having the dual root datum, i.e., Ψ(K∨) = Ψ(K)∨; it comes with a maximal
torus T∨ ⊆ K∨ having natural identifications X(T∨) = X∨(T ) and X∨(T∨) = X(T ), and
we may furthermore identify the Weyl group W of T with the Weyl group of T∨. We then
have natural bijections

Irr(K) ∼= {dominant λ ∈ X∨(T )}
∼= X(T )/W

∼= X∨(T∨)/W

∼= Hom(U(1), K∨)/∼,
where the equivalence relation ∼ in the last expression is given by conjugation.

7.3. Borel–Weil. Recall the usual notation: K is a compact connected Lie group with
Lie algebra k, complexification G, and complexified Lie algebra g. Recall that Irr(K) is in
natural bijection with the set of isomorphism classes of holomorphic (equivalently, algebraic)
finite-dimensional irreducible representation of G. We fix a maximal torus T ≤ K, with Lie
algebra denoted t, and set tR := it ⊆ tC, as usual. We denote by A ≤ G the connected
(complex) Lie subgroup with Lie algebra Lie(A) = tC. For example, if K = U(n), so that
G = GLn(C), then with the choice

T =

U(1)
. . .

U(1)


we have

A =

C×
. . .

C×

 .

Fix a Weyl chamber C ⊆ tR and hence choices of positive roots Φ+ and simple roots ∆, as
usual. Set

n := ⊕α∈Φ+

and

b := n⊕ tC ≤ g.
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(The directness of the sum follows immediately from the root space decomposition of g.)
For example, if we take K = U(n), T as above, and for C the “standard” Weyl chamber
{(x1, . . . , xn) : xi > xj for i < j}, then Φ+ = {εi − εj : i < j}, and (for n = 3, say)

n = ⊕i<jCEij =

0 ∗ ∗
0 ∗

0

 ,

b =

∗ ∗ ∗∗ ∗
∗

 ,

N =

1 ∗ ∗
1 ∗

1

 ,

B =

∗ ∗ ∗∗ ∗
∗

 .

Using that the sum of two positive roots, if it is a root, is positive, we see that n and b
are Lie subalgebras of g, with n an ideal of b. Hence they correspond to some connected
(complex) Lie subgroups N and B of G, with N a normal Lie subgroup of B.

Lemma 7.6. (i) The Lie subgroups N,A and B of G are closed.
(ii) N ∩ A = {1}.

(iii) B = NA; more precisely, B is the semidirect product of N and A.

Proof. In the special case K = U(n), these conclusions are clear by inspection of the explicit
descriptions given above (which depended upon the choice of C, but the choice doesn’t mat-
ter, because any two choices are W -conjugate). In general, choose a faithful representation
(π, V ) of K and a basis e1, . . . , en of V consisting of weight vectors for T , thus tej = tλjej
for some λj ∈ X(T ). We may assume that this basis has been ordered in such a way that if
λi < λj (with respect to the partial order defined by C), then i < j. Since for x ∈ gα with

α > 0 we have dπ(x) : V λ → V λ+α and λ+ α > λ, we see that dπ(x) ∈

0 ∗ ∗
0 ∗

0

. On the

other hand, dπ(tC) ⊆

∗ ∗ ∗∗ ∗
∗

. Exponentiating, it follows that π(N) ⊆

1 ∗ ∗
1 ∗

1

 and

π(A) ⊆

∗ ∗
∗

. In particular, A ∩N = {1}.

We claim now that A and N are closed. (The remaining assertions then follow readily.)
We identify G with its image under π. (Apologies in advance if these proofs are sloppy. The
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customary way to develop this material is in the language of algebraic groups. I don’t know
offhand of a reference for the approach taken here.)

Start with N . Recall that, by definition, N is generated by the image under exp of small

elements of n. Let n1 :=

0 ∗ ∗
0 ∗

0

 ≥ n denote the Lie algebra consisting of strictly upper-

triangular matrices, and N1 :=

1 ∗ ∗
1 ∗

1

 ≥ N the corresponding Lie gruop. Then we have

mutually inverse diffeomorphisms exp : n1 → N1 and log : N1 → n1 given by finite Taylor
series. In particular, the exponential map is defined on all of n. Using the BCH formula, we
see that in fact N = exp(n). Since n is closed in n1, it follows that N is closed in N1. Since
N1 ∩G is closed in G, we conclude that N is closed in G.

We turn to A. Let A1 :=

C×
C×

C×

 ≥ A denote the diagonal subgroup of GLn(C),

and T1 :=

U(1)
U(1)

U(1)

 its standard maximal torus, so that A1 ≥ T1 ≥ T . We

get t1,R ≥ tR and t1,Z ≥ tZ. Since T1 ↪→ T , we have tZ = t1,Z ∩ tR. Thus we can find a
lattice L ⊆ t1,Z complementary to tZ, i.e., so that t1,Z = tZ ⊕ L. Choosing bases for these
lattices, we can identify t1,Z with Zn and tZ with Zm for some 0 ≤ m ≤ n in such a way that
the inclusion tZ ↪→ t1,Z is the standard one. In the coordinates defined by these bases, the
inclusions T = U(1)m ↪→ T1 = U(1)n and A = (C×)m ↪→ (C×)n = A1 are then likewise the
standard ones; in particular, the latter has closed image. �

In particular, B/N ∼= A. We may and shall thus extend each homomorphism χ : A→ C×
to a homomorphism χ : B → C× that is trivial on N , thus χ(na) = χ(a). We’ll often write
bχ := χ(b).

Theorem 7.7. Let π be an irreducible holomorphic finite-dimensional representation of G.
There is a unique holomorphic character λ : A → C× and a unique-up-to-scalars nonzero
vector v ∈ π so that

(7.21) π(b)v = bλv for all b ∈ B.
Moreover, λ is the highest weight of π and v is a highest weight vector.

Proof. Existence: Let λ ∈ X(T ) be the highest weight of π (via Theorem 7.4, and using
Theorem 5.13 to regard π as an irreducible representation of K), and v ∈ π[λ] a highest
weight vector. We extend λ to a holomorphic character A → C×. The vector v is an
eigenvector of T with eigenvalue λ, hence also of A with eigenvalue λ. A short calculation
as in the proof of Lemma 6.5 shows that dπ(Xα) : π[λ] → π[λ + α]. Since λ is the highest
weight of π, we have π[λ+ α] = {0}. Thus Xαv = 0. Since α was arbitrary, v is annihilated
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by n. Since N is connected (by construction), it follows that v is fixed by N . Thus v is a
B-eigenvector, as required.

Uniqueness: Suppose given a pair (v, λ) as in the conclusion of the theorem. Our task is
to show that λ is in fact the highest weight π. For each finite ordered tuple (α1, . . . , αn) of
positive roots, the vector

(7.22) X−α1 · · ·X−αnv := dπ(X−α1) · · · dπ(X−αn)v

is a T -eigenvector of weight λ − α1 − · · · − αn, which is strictly lower than λ when n ≥ 1.
Call the span of the indicated vectors V . It suffices to show that V = π. Since v ∈ V and π
is irreducible, it suffices to show that V is K-invariant. Since K is connected, it is enough to
show that V is g-invariant. To that end, recall that g = tC⊕(⊕α>0CXα)⊕(⊕α>0CX−α). It’s
clear that V is invariant by tC and by X−α for α > 0, so it remains only to show for α > 0 that
V is Xα-invariant. Differentiating the condition (7.21), we see that v is annihilated by Xα.
It remains to check for n ≥ 1 that XαX−α1 · · ·X−αnv belongs to V . Set u := X−α2 · · ·X−αnv.
Then XαX−α1u = X−α1Xαu+ [Xα, X−α1 ]u. By induction on n, both X−αu and [Xα, X−α1 ]u
belong to V . Since X−α1 stabilizes V , the required conclusion follows.

�

Now let λ ∈ X(T ) be a dominant weight, and consider the vector space

(7.23) Fλ := {f : G→ C : holomorphic, f(bg) = b−λf(g) for b ∈ B, g ∈ G}.

The group G (and hence also its subgroup K) acts on Fλ by right translation. We will show
the following:

Theorem 7.8. Let πλ denote the irreducible representation of K of highest weight λ. Then
πλ ∼= F ∗λ . Here F ∗λ denotes the dual representation of Fλ, regarded as a representation of K;
alternatively, we may use Theorem 5.13 to extend πλ to an algebraic representation of G,
and the isomorphism is then of algebraic representations of G.

We compute in passing the dual of πλ. Note that if C is a Weyl chamber, then so is
−C; since the Weyl group acts simply-transitively on the chambers, there is thus a unique
w0 ∈ W for which w0(C) = −C. (It is often called the longest Weyl element, with the notion
of “longest” corresponding to C). For instance, if K = U(n) and C is chosen in the usual

way, then w0 =

 1
· · ·

1

.

Lemma 7.9. π∗λ
∼= π−w0(λ).

Proof. It’s clear that π∗λ is an irreducible, hence is isomorphic to πµ for some dominant weight
µ. We must verify that µ = −w0(λ), or equivalently, that λ = −w0(µ). We check first that
−µ is the lowest weight of πλ. From this it follows that −w0(µ) is the highest weight of πλ,
and so λ = −w0(µ), as required. �
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Thus Theorem 7.8 tells us that

(7.24) πλ ∼= F−w0(λ).

Proof of Theorem 7.8. Let F denote the space of all holomorphic functions f : G → C,
and let f ∈ F . Using the identity principle for holomorphic functions on G ∼= K × p, we
may identify f with its restriction to K, and then further with an element of the space
L2(K), on which the group K × K acts by the regular representation (k1, k2) · f(x) =
f(k−1

1 xk). We accordingly have an L2(K)-decomposition f =
∑

µ fµ, where µ ∈ X(T ) runs

over the dominant weights and fµ belongs to the space A(πµ) of matrix coefficients of the
representation πµ. Let L and R denote respectively the left and right regular representations
of K on L2(K). Since A(πµ) ∼= π∗µ ⊗ πµ is the πµ-isotypic component (see §4.10) of L2(K)

under R, we have fµ = dim(πµ)R(χµ)f . Suppose now that f ∈ Fλ, i.e., that L(b)f = bλf
for all b ∈ B. Since R and L commute, it follows that L(b)fµ = bλfµ, i.e., that fµ belongs
to Fλ. If fµ is nonzero, then we may find a nonzero vector v ∈ π∗µ so that bv = bλv for all
b ∈ B. Then Theorem 7.7 implies that π∗µ

∼= πλ and that v ∈ πλ is a highest weight vector.
Thus

(7.25) f ∈ (πλ ⊗ π∗λ) ∩ Fλ = Cv ⊗ π∗λ.

Thus Fλ = Cv ⊗ π∗λ, hence Fλ ∼= π∗λ. �

8. Plancherel formula for complex reductive groups

With the remaining few lectures in the course, we aim to treat some of the simplest
aspects of the representation theory of non-compact groups. We focus on the case of complex
reductive groups, which are simpler than real reductive groups for reasons to be explained
later.

Let G be a unimodular group equipped with a Haar measure dg, and let f : G → C be
nice enough (e.g., smooth and compactly-supported in the case of a Lie group). We’ve seen
in §4.9 that for G compact, one has the Fourier inversion formula

(8.1) f(1) =
∑

π∈Irr(G)

dim(π)

vol(G)
trace(π(f)).

(We showed this when vol(G) = 1, but the general case follows because π(f) and vol(G)
scale in the same way when one scales dg.) In the non-compact case, one seeks a formula of
the shape

(8.2) f(1) =

∫
π∈Ĝ

trace(π(f)) dµP (π),

where now Ĝ denotes the set of isomorphism classes of irreducible unitary representations
of G and dµP denotes a measure on Ĝ, called Plancherel measure, which scales inversely to
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dg. For instance, the Fourier inversion formulas on the circle

(8.3) f(0) =
∑
n∈Z

f̂(n), f̂(n) :=

∫
x∈R/Z

f(x)e2πinx dx, f ∈ C∞(R/Z)

and on the real line

(8.4) f(0) =
∑
ξ∈R

f̂(ξ) dξ, f̂(ξ) :=

∫
x∈R/Z

f(x)e2πinx dx, f ∈ C∞c (R)

may be interpreted in this way; for instance, in the second example, f̂(ξ) is the trace of
πξ(f), where πξ denotes the one-dimensional representation of R, spanned by the function
R 3 x 7→ e2πiξx, and with R acting by right translation.

In a course emphasizing the functional analytic aspects of representation theory one might
study general conditions under which such formulas (8.2) exist (e.g., look up the definition
of a “Type I” group). Here we will focus instead on the problem of determining µP explicitly
for a more restricted class of groups, namely the conected complex reductive groups.

We will use much of the same notation as above. We start with a compact connected
Lie group K. We denote by G its complexification. We fix a maximal torus T and Weyl
chamber C. We use these to define subgroups N , A and B of G, as in §7.3. The example
K = U(n) depicted earlier is worth keeping in mind.

We note that G is unimodular. To see this, we must show that |det(Ad(g))|= 1 for all
g ∈ G. It suffices to verify the stronger identity

(8.5) det(Ad(g)) = 1

By the identity principle for holomorphic functions applied to det ◦Ad : G → C×, we need
only verify (8.5) holds for g ∈ K. Since det ◦Ad is a class function, we reduce further to
verifying (8.5) when g = t ∈ T , and indeed, det(Ad(t)) =

∏
α∈Φ t

α =
∏

α>0 t
αt−α = 1.

8.1. Iwasawa decomposition. In its most basic form it asserts that

(8.6) G = BK.

Moreover,

(8.7) B ∩K = T.

In the case G = GLn(C), this amounts to the Gram–Schmidt procedure (explanation given
in class). We record the proof for general G. We consider first the analogous Lie algebra
question. To start, we might write any element of g as x+ y + z using the decomposition

g = tC ⊕ n⊕ n,

where n = ⊕α>0g
α and n = ⊕α<0g

α. We may write x = x0 + x1 with x0 ∈ tR, x1 ∈ itR, say.
Then the element w := x1 + z + θ(z) is θ-invariant, hence belongs to k. On the other hand,
y − θ(z) belongs to n. Thus

x+ y + z = w + x0 + (y − θ(z)) ∈ k + tR + n.
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In particular,

(8.8) g = b + k.

Using that k = {x ∈ g : θ(x) = x} and that θ swaps n and n and acts on tC with fixed
subspace itR, we see that

(8.9) b ∩ k = itR.

We now turn to the groups. We’ve seen that B is a closed subgroup of G. Since K is
compact, it follows that BK is closed. Using (8.8) and computing the derivative of the

map B ×K (b,g)7→bg−−−−−→ G as in the proof of the Weyl integral formula, we see moreover that
BK is open (see for instance Knapp, Lemma 5.11). Since G is connected, we conclude that
G = BK.

8.2. Integration on B\G. We fix a Haar measure dg on G and a left Haar measure db on
B. Using these choices we will define a notion of integration over B\G.

Let F denote the space of measurable functions f : G→ C such that

(8.10) f(bg) = δ(b)f(g)

for all b ∈ B, g ∈ G and
∫
K
|f |< ∞, the latter integral taken with respect to any Haar

measure on K.

Lemma 8.1. Each f ∈ F is of the form f(g) =
∫
B
f̃(bg) db for some f̃ : G→ C. The map

F 3 f 7→
∫
G
f̃(g) dg is a well-defined linear functional on F that is invariant under right

translation by G. We denote this linear functional by f 7→
∫
B\G f . We have

∫
B\G f = c

∫
K
f

for some constant c > 0, depending only upon the various choices of Haar measure.

Proof. Left to the reader; this or some variant was treated in “Lie groups I”. �

8.3. Principal series representations. We denote by A∧ the group of unitary characters
of A, thus A∧ consists of continuous homomorphisms χ : A → U(1). We similarly define
the group a∧ of unitary characters of A. Using the surjective quotient map a → A given
by exponentiation, we may identify A∧ with a subgroup of a∧. On the other hand, by
differentiating at the origin, we may identify a∧ with the R-vector space consisting of linear
functionals a → iR. Concretely, suppose A is the group of diagonal matrices in GLn(C).
Write a ∈ A in coordinates as a = (a1, . . . , an) with aj ∈ C×. Then every χ ∈ A∧ is of the
form χ(a) =

∏
j a

sj
j (aj/|aj|)kj for some sj ∈ iR and kj ∈ Z, and this defines an isomorphism

A∧ ∼= (iR)n × Zn. Similarly, we may identify a with the group Cn of diagonal matrices
x = (x1, . . . , xn) in Mn(C) and a∧ with the group (iR)n × Rn.

To each λ ∈ Hom(A,C×) we attach a “principal series representation” πλ, consisting of
measurable functions v : G→ C satisfying

(8.11) v(bx) = δ1/2(b)bλv(x)
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for all b ∈ B, x ∈ G and

(8.12)

∫
K

|v|2<∞.

Thanks to the Iwasawa decomposition, we may regard πλ as a closed subspace of the Hilbert
space L2(K). The group G acts on πλ by right translation. We note that if f1 ∈ πλ and
f2 ∈ π−λ, then f1f2 belongs to the space F considered in §8.2, and so we obtain a G-invariant
pairing

πλ ⊗ π−λ → C

f1 ⊗ f2 7→
∫
B\G

f1f2.

Also, πλ = π−λ. Thus if λ belongs to A∧ = Hom(A,U(1)), so that λ = −λ, then integration
over B\G defines a G-invariant inner product on πλ, hence πλ is a unitary representation of
G.

8.4. Characters of principal series representations. Recall that we equip G with a
Haar measure dg and B with a left Haar measure db; this normalizes an integral over B\G in
the sense described above. To each f ∈ Cc(G) we attach an integral operator π(f) ∈ End(π),
as in §4, by the formula π(f) :=

∫
g∈G f(g)π(g) dg.

Theorem 8.2. For each f ∈ C∞c (G), the operator πλ(f) is trace class. We have

(8.13) trace(πλ(f)) =

∫
g∈B\G

∫
b∈B

f(g−1bg)δ1/2(b)bλ.

Proof. Let v ∈ πλ. By definition,

π(f)v(x) =

∫
g∈G

f(g)v(xg),

where here and henceforth we the omit Haar measures for notational simplicity. We apply
the substitutinon g 7→ x−1g to rewrite the above as∫

g∈G
f(x−1g)v(g).

We next use the defining property of
∫
B\G to rewrite the above as∫

y∈B\G

∫
b∈B

f(x−1by)v(by).

Since v(by) = δ1/2(b)bλv(y), it follows that

(8.14) π(f)v(x) =

∫
y∈B\G

v(y)k(x, y)
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with

k(x, y) :=

∫
b∈B

δ1/2(b)bλf(x−1by).

Since B is closed and f ∈ C∞c (G), we have k ∈ C∞(G × G). It follows readily from the
definition that

(8.15) k(b1x, b2y) = δ1/2(b1)bλ1δ
1/2(b2)b−λ2 k(x, y) for b1, b2 ∈ B.

Note that the diagonal kernel integral

(8.16)

∫
x∈B\G

k(x, x)

is the RHS of (8.13).
The remainder of the argument is a bit of standard functional analysis. It suffice to

show more generally that if T is any operator on π defined as in (8.14) by a smooth kernel
k ∈ C∞(G× G) satisfying (8.15), then T defines a trace class operator with trace given by
(8.16). This can be proved in the same way as the following statement, which may have
come up in a functional analysis course:

Let (M,µ) be a compact manifold equipped with a smooth finite measure, and let
k ∈ C∞(M ×M). Then the operator T on L2(M,µ) defined by

Tv(x) :=
∫
v(y)k(x, y) dµ(y) is trace class, with trace(T ) =

∫
k(x, x) dµ(x).

One can prove this by reducing first to the case that M is a compact torus and then appealing
to Fourier series.

�

8.5. Some basics concerning conjugacy classes in G. Every such class intersects B,
that is to say, G = ∪x∈B\Gx−1Bx. For instance, if G = GLn(C), then this follows from the
Jordan normal form. To sketch a proof in general, it suffices to show for each g ∈ G that
the map

g : B\G→ B\G

Bx 7→ Bxg

has a fixed point (because if Bx = Bxg, then g ∈ x−1Bx). One way to see this is to use that
B\G ∼= T\K (a consequence of the Iwasawa decomposition) and then to show as in one of
the standard proofs of the conjugacy of maximal tori (not the one presented in this course)
that any map T\K → T\K homotopic to the identity has a fixed point. One can also argue
algebraically using the Borel fixed point theorem.
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8.6. A change of variables. The groups N and A are unimodular (indeed, their adjoint
representations are unimodular, hence have trivial determinant). We may thus equip them
with Haar measures, compatibly with the chosen left Haar measure on B in the sense that

(8.17)

∫
B

h =

∫
n∈N,a∈A

h(an) =

∫
n∈N,a∈A

h(na)δ−1(a).

For instance, if G = SL2(C), then a left Haar on B is given by

(8.18)

∫
B

h =

∫
x∈C,y∈C×

h(

(
1 x

1

)(
y

y−1

)
)
dx d×y

|y|2C
,

where dx and d×y denote Haar measures on C and C× respectively and where

(8.19) |y|C:= |y|2

denotes the complex modulus, given by the square of the usual complex absolute value, so
that

∫
x∈C h(x) dx = |y|C

∫
x∈C h(yx) dx for any h ∈ Cc(C), and so that d×y = dy/|y|C defines

a Haar measure on C× for each Haar measure dy on C.
We want to rewrite this integral formula for B so that it interacts better with conjugacy

classes. To start, note that

(8.20)

(
1 x

1

)(
y

y−1

)
=

(
y xy−1

y−1

)
.

Now observe that “generically” (i.e., for y 6= 1), the above matrix has distinct eigenvalues,
hence is conjugate to the diagonal matrix with the same entries. More explicitly, we have

(8.21)

(
1 z

1

)(
y

y−1

)(
1 z

1

)−1

=

(
y (y−1 − y)z

y−1

)
,

which equals

(
y xy−1

y−1

)
when z = xy−1/(y−1 − y). Thus

(8.22)

∫
x∈C

h(

(
1 x

1

)(
y

y−1

)
) =
|y−1 − y|C
|y−1|C

∫
z∈C

h(

(
1 z

1

)(
y

y−1

)(
1 z

1

)−1

)

and so

(8.23)

∫
B

h =
|y−1 − y|C
|y|C

∫
x∈C

h(

(
1 x

1

)(
y

y−1

)(
1 x

1

)−1

) dx d×y.

Here it is understood that we integrate away from the measure zero set of y for which y2 = 1.
A similar argument applied “one root at a time” gives the following more general identity:

Lemma 8.3. With Haar measures on B,N,A compatibly normalized as above, we have for
h ∈ Cc(B)

(8.24)

∫
B

h =

∫
a∈Areg

∏
α>0|aα/2 − a−α/2|C

δ1/2(a)

∫
n∈N

h(nan−1),
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with the integral taken over the full measure subset

(8.25) Areg := {a ∈ A : aα 6= 1 for all α ∈ Φ}.

Proof. Compare with Knapp, Lemma 10.16. The key point is to verify the following general
form of (8.22), valid for any a ∈ Areg:

(8.26)

∫
n∈N

h(na) =

∏
α>0|aα/2 − a−α/2|C

δ−1/2(a)

∫
n∈N

h(nan−1).

�

As a consequence, we can rewrite the formula given above for χλ, as follows. We first
define F : Areg → C by the formula

(8.27) F (a) := (
∏
α>0

|aα/2 − a−α/2|C)

∫
g∈A\G

f(g−1ag).

By working backwards through the above calculations, we see that F extends to an element
of C∞c (A); indeed, by (8.26), we have for a ∈ Areg

F (a) = (
∏
α>0

|aα/2 − a−α/2|C)

∫
g∈B\G

∫
n∈N

f(g−1nan−1g)

= δ−1/2(a)

∫
g∈B\G

∫
n∈N

f(g−1nag)

= δ−1/2(a)

∫
k∈K

∫
n∈N

f(k−1nag)

for a suitable Haar measure on K, but this last expression defines for a ∈ A an element of
C∞c (A), using here that K is compact. We define the Fourier transform F∧ : A∧ → C by

F∧(λ) :=

∫
a∈A

aλF (a).

We then obtain

(8.28) χλ(f) = F∧(λ).

We equip A∧ with the Haar measure dual to that on A, so that the Fourier inversion formula
F (1) =

∫
λ∈A∧ F

∧(λ) holds.

8.7. Passage to the Lie algebra. Suppose now that f ∈ C∞c (G) as above is supported in
a “small conjugation-invariant neighborhood” U of the identity element 1 of the Lie group
G. For example, in the case G = GLn(C), we might define U to be the set of all g ∈ G each
of whose eigenvalues c satisfy |c − 1|< ε for some small ε > 0; alternatively, we might ask
that the subleading coefficients of the characteristic polynomial of g be bounded by ε. We
may then find a small Ad(G)-invariant neighborhood Y of the origin 0 of the Lie algebra
g such that exp : Y → U is a diffeomorphism onto its image. We may define an element
f0 ∈ C∞c (Y ) by requiring that f0(x) = f(exp(x)). We define F0 ∈ C∞c (a) to vanish off
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elements x ∈ a ∩ Y , for which we set F0(x) := F (exp(x)), with F attached to f as above.
We equip a with the Haar measure matching up near the origin under the exponential map
with the Haar measure on A near the identity. For λ ∈ a∧ (hence, in particular, for λ ∈ A∧),
we may define the Fourier transform F∧0 (λ); we have F∧0 (λ) = F∧(λ) when λ ∈ A∧. (Recall
from before that a∧ ∼= (R × R)n while A∧ ∼= (R × Z)n.) We equip a∧ with the dual Haar
measure, so that the Fourier inversion formula F0(0) =

∫
λ∈a∧ F

∧
0 (λ) holds.

Recall that we’ve fixed a Haar measure dg on G. We equip g with the Haar measure dx so
that for small x ∈ g, writing g = exp(x), we have dg = j(x) dx, with j(0) = 1. Using Lemma
5.10, one may check then that the inverse square root of j admits the following formula for
small enough regular elements x ∈ a:

(8.29) j−1/2(x) =
∏
α>0

∣∣∣∣eα(a)/2 − e−α(a)/2

α(x)

∣∣∣∣ .
8.8. Main result. We define a polynomial function P : a∧ → R by the formula P (λ) :=∏

α>0|λ(Hα)|C. We aim to show the following:

Theorem 8.4. For f ∈ C∞c (G), and with measures as normalized above,

(8.30) f(1) =

∫
λ∈A∧

P (λ)

|W |
χλ(f).

This is a theorem of Gelfand–Naimark. We’ll loosely follow Harish-Chandra’s proof tech-
nique, as exposed in the textbook of Varadarajan. It is a fact that we will not have time
to prove that the πλ are irreducible unitary representations of G, so this theorem gives the
desired Plancherel formula.

Let’s suppose first that f is supported in a small conjugation-invariant neighborhood of
1, in the sense described above, so that we may define F, f0, F0. The formula (8.27) implies
that for small regular x ∈ a, we have

(8.31) F0(x) = (
∏
α>0

eα(x)/2 − e−α(x)/2)

∫
g∈G/B

∫
n∈N

f0(Ad(gn)x).

The exponential map restricts to a polynomial diffeomorphism exp : n→ N with polynomial
inverse log : N → n. We may normalize the Haar measure on n to be compatible with exp.
With the abbreviation f g0 (y) := f0(Ad(g)y), we then obtain

(8.32) F0(x) = (
∏
α>0

eα(x)/2 − e−α(x)/2)

∫
g∈G/B

∫
y∈n

f g0 (Ad(ey)x).

By the Lie algebra analogue of Lemma 8.3, we have

(8.33)

∫
y∈n

f g0 (Ad(ey)x) = (
∏
α>0

|α(x)|−1
C )

∫
y∈n

f g0 (y + x).
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Thus

(8.34) F0(x) = j−1/2(x)

∫
g∈G/B,y∈n

f g0 (x+ y).

The function j−1/2 extends to an Ad(G)-invariant function on g. Setting φ := j−1/2f0, we
may rewrite the above formula as

(8.35) F0(x) =

∫
g∈G/B,y∈n

φg(x+ y).

Recall the decomposition g = n⊕ a⊕ n. Fix K ↪→ U(n) and hence G ↪→ GLn(C) as usual.
We then get a perfect Ad(G)-equivariant pairing g ⊗ g → C given by (x, y) 7→ trace(xy).
Using this we may identify g∧ with g. Under this identification, n and n are dual to one
another, while a is dual to itself. Integrating the above formula for F0 over regular x ∈ a
thus gives for all λ ∈ a∧ that

(8.36) F∧0 (λ) =

∫
g∈G/B

∫
η∈b⊥⊆g∧

φ̂g(λ+ η).

Here φ̂ denotes the Fourier transform and b⊥ the subspace of g∧ that annihilates b; by the
above discussion, it identifies with n.

We say that λ ∈ a∧ is regular if λ(Hα) 6= 0 for all roots α. By the analogue of (8.33) for
g∧, we see that for regular λ ∈ a∧,

(8.37) F∧0 (λ) = (
∏
α>0

|λ(Hα)|C)

∫
g∈G/A

φ̂(Ad(g)λ).

Let’s denote the latter expression by
∫
Oλ
φ̂; it’s a normalized integral over the G-orbit Oλ of

λ. Then we have the following analogue of the Weyl integral formula for h ∈ Cc(g∧):

(8.38)

∫
g∧
h =

1

|W |

∫
λ∈a∧,regular

P (λ)

∫
Oλ
h.

(The key point here is that the union of the orbits Oλ is open and dense in G; we may thus
reduce to the usual Jacobian calculation.)

We’re now ready to prove the theorem. We denote by ∂P the translation-invariant dif-
ferential operator on C∞c (A) or on C∞c (a) with symbol P , so that (∂Ph)∧ = P · ĥ. Let
f ∈ C∞c (G). Define F as above. Then

(8.39)

∫
λ∈a∧

P (λ)

|W |
χλ(f)︸ ︷︷ ︸
=F∧(λ)

=
(∂PF )(1)

|W |
.

We want to show that this last expression equals f(1). By smoothly and Ad(G)-invariantly
truncating, we may assume that f is supported in a small conjugation-invariant neighborhood
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of the identity, so that we may define f0, F0, φ as above. Then, combining everything we’ve
shown thus far, we conclude that

(∂PF )(1)

|W |
=
∂PF0(0)

|W |
(8.40)

=

∫
λ∈a∧

P (λ)

|W |

∫
Oλ
φ̂(8.41)

=

∫
g∧
φ̂(8.42)

= φ(0)(8.43)

= f0(0)(8.44)

= f(1),(8.45)

as required.
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