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Exercise sheet 4

1. (H1
0 and absolute convergence). Let U ⊂ Rd be open and bounded and denote by

f1, f2, . . . inH1
0 (U)∩C∞(U) a sequence of eigenfunctions of the Laplace operator on

U with eigenvalues λ1, λ2, . . . (cf. Theorem 6.56) which forms an orthonormal basis
of L2(U). Furthermore, let g =

∑∞
n=1 anfn ∈ L2(U). Show that g ∈ H1

0 (U) if and
only if

∞∑
n=1

|an|2|λn| <∞.

HINT: Use Lemma 6.67.

2. (Growth of Laplacian eigenvalues). Let U ⊂ Rd be open, bounded and Jordan-
measurable. Let λ1, λ2, . . . be the eigenvalues of4 on U (with multiplicities) ordered
such that 0 > λ1 ≥ λ2 ≥ λ3 ≥ . . .. Show that

lim
n→∞

|λn|
n2/d

= (2π)2(ωdm(U))−2/d.

HINT: Choose the right sequence of T ’s in Weyl’s law. To take care of multiplicities in eigenvalues,
you might also want to adapt Weyl’s law to treat the counting function T 7→ |{m : |λm| < T}|.

3. (Eigenfunctions of the Laplacian on a rectangle). Consider the open (rectangular)
set U = (0, a1)× . . .× (0, ad) ⊂ Rd. The aim of this exercise is to find a complete set
of explicit eigenfunctions of the Laplacian on U .

a) Show that a function of the form

f : x ∈ Rd 7→ sin(λ1x) · · · sin(λdx)

is a smooth eigenfunction of the Laplace operator and characterize the (coun-
table) set of tuples (λ1, . . . , λd) ∈ Rd

>0 for which f vanishes identically on the
boundary of U .

REMARK: One can use the same idea as in Exercise 4b), Sheet 2 to show that f ∈ H1
0 (U).

b) Show that the functions from a) form an orthogonal basis of L2(U) and explain
what this implies in the context of Theorem 6.56.



4. (An error rate in Weyl’s law). LetU ⊂ Rd be open, bounded and Jordan-measurable.
Then Weyl’s law as in Theorem 6.64 states that the eigenvalue counting function
NU(T ) = |{n : |λn| ≤ T}| satisfies

NU(T ) = CUT
d
2 + o(T

d
2 )

for an explicit constant CU depending on U . The aim of this exercise is to understand
the error EU(T ) = |NU(T )− CUT

d
2 |. For simplicity1 we replace U by the torus Td.

a) Show that a bound of the kind∣∣∣|Zd ∩BRd

S (0)| − vol(BRd

S (0))
∣∣∣� Sa (1)

for all S > 0 implies that ETd(T ) = O(T
a
2 ).

b) Verify the bound in (1) for a = d− 1.

HINT: Revisit the proof of Proposition 6.65. The problem of finding good exponents a as in (1) for
d = 2 is called the Gauss circle problem. Conjecturally, the error should be bounded by cεS

1
2+ε for

any ε > 0. The current record a = 517
824 + ε = 0.627 . . .+ ε is due to Bourgain and Watt.

5. (Supremum bounds for eigenfunctions on compacta). Let U ⊂ Rd be open and
bounded and let f ∈ H1

0 (U) ∩ C∞(U) be an eigenfunction of the Laplace operator2

for eigenvalue λ < 0. We want to show that for any compact subset K ⊂ U

‖f‖K,∞ = ‖f |K‖∞ �K,U |λ|
d
4
+ 1

2‖f‖L2 .

This estimate controls the growth of the L2-normalized Laplacian eigenfunctions on
compacta in terms of their eigenvalues. We proceed in steps.

a) Adapt the proof of Lemma 5.48 to show that for any g ∈ L2(Td) with444g = u ∈
Hk(Td) we have g ∈ Hk+2(Td) and

‖g‖2Hk+2(Td) �k ‖g‖2L2(Td) + ‖u‖
2
Hk(Td).

b) Let f be as in the beginning of the exercise. Revisit the proof of Theorem 5.45 to
show that for any χ ∈ C∞c (U)

‖χf‖Hk(U) �k,χ |λ|
k
2 ‖f‖L2(U).

HINT: If suffices to consider the case |λ| > 1.

1of the exposition but not necessarily of the result
2This implies that it is an eigenfunction of −ιι∗ where ι : H1

0 (U)→ L2(U) is the inclusion.



c) Use Exercise 5 on Sheet 3 to deduce the desired statement.

6. (The heat equation). Let U ⊂ Rd be an open and bounded subset with smooth boun-
dary. Let u0 ∈ L2(U) be a given initial heat distribution. We would like to analyze the
heat equation

∂tu = 4xu

with boundary values {
u(x, t) = 0 for all x ∈ ∂U and t > 0
u(x, 0) = u0(x) for all x ∈ U.

Here, u is a function in the position x ∈ U and in time t ∈ R≥0. Also,4x denotes the
Laplacian taken only in the position.

a) Read Section 1.2.1 (principle of superposition) and explain why one should att-
empt to solve the heat equation (with boundary values) by the ansatz

u(x, t) =
∞∑
n=1

anfn(x)e
λnt. (2)

Here, the functions fn ∈ C∞(U) ∩H1
0 (U) form an orthonormal basis of L2(U)

consisting of eigenfunctions of the Laplace operator on U with eigenvalues λn.
Furthermore, the coefficients an are chosen such that u0 =

∑∞
n=1 anfn.

In the following we want to make this ansatz more precise. So let u be as in (2).

b) Show that u(·, t) → u0 in L2(U) and that u(·, t) ∈ H1
0 (U) for any t > 0. In this

sense, the boundary constraints are satisfied.

HINT: For the latter you can use Exercises 1 and 2.

c) Let K ⊂ U be compact. Use Exercises 2 and 5 to show that the series in (2)
converges uniformly on K for any fixed t > 0. Deduce that u(·, t) is continuous
on U and (using your proof) that

‖u(·, t)‖K,∞ → 0 as t→∞.

d) State an estimate for the derivatives of fn that you suspect to hold in analogy to
Exercise 5. Use it to prove that u ∈ C∞(U × R>0).


