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Solutions for exercise sheet 3

1. Let f ∈ H1(U) and let φ ∈ C∞c (U). We compute by partial integration

〈f, φ〉1 =
d∑
j=1

∫
U

∂ejf(x)∂ejφ(x) dx = −
d∑
j=1

∫
U

f(x)∂2ejφ(x) dx

= −
∫
U

f(x)
d∑
j=1

∂2ejφ(x) dx = −
∫
U

f(x)4φ(x) dx.

2. a) Let f ∈ H1
0 (U) be weakly harmonic. Then by Exercise 1 we have that 〈f, φ〉1 = 0

for all φ ∈ C∞c (U). Since C∞c (U) is dense in H1
0 (U) we deduce that 〈f, g〉1 = 0

for all g ∈ H1
0 (U). We proved however in Lemma 5.41 that 〈·, ·〉1 defines an

inner product, which thus implies that f = 0.

b) We may proceed exactly as in the proof of Proposition 5.42 to obtain such a
decomposition. Notice first though that the decomposition is unique: if

f = g1 + v1 = g2 + v2

for g1, g2 ∈ H1(U) weakly harmonic and v1, v2 ∈ H1
0 (U). Then g = g1 − g2 =

v2−v1 ∈ H1
0 (U) is weakly harmonic and therefore g = 0 by part a) which means

g1 = g2 and v1 = v2.

Let us now prove the existence. The linear functional ` : g ∈ H1
0 (U) 7→ 〈f, g〉1

is bounded and hence there exists v ∈ H1
0 (U) which 〈f, g〉1 = 〈v, g〉1 for all

g ∈ H1
0 (U). In particular,

0 = 〈f − v, φ〉1

for all φ ∈ C∞c (U) which is to say that f − v is weakly harmonic as desired.

3. a) This is immediate as an open cover of a compact metric space has a Lebesgue
number. We choose r to be 1

4
of this number.

b) See Exercise 3c), Sheet 2 and its solution.
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c) Let x1, . . . , xk ∈ K with X ⊂
⋃k
i=1Br(xi) and let χ̃1, . . . , χ̃k be the functions

defined found in b) for the points x1, . . . , xk ∈ K. Let

U =
k⋃
i=1

supp(χ̃i)
◦

which contains K by construction. By Exercise 3, Sheet 2 there exists a function
inC∞c (U) which is equal to 1 onK. We let ψ ∈ C∞(Rd) be 1 minus that function
so that ψ ≡ 0 on K and 1 outside of U . Now define for i = 1, . . . , k

χi : x ∈ Rd 7→ χ̃i(x)

ψ(x) +
∑k

j=1 χ̃j(x)
.

Note that by construction the denominator is nowhere vanishing. Also the func-
tions χi sum to 1 on K since ψ is zero on K. This concludes the claim of the
exercise.

4. a) We will use induction over ` ∈ {0, . . . , k} showing that the claim holds for all
α with ‖α‖1 = `. For ` = 0 there is nothing to show. So suppose that the claim
holds for all `′ < ` and let α satisfy ‖α‖1 = `. Assume without loss of generality
that α1 6= 0 and set α′ = α− e1. Then

∂α′(f ◦ Φ) =
∑

‖β‖1≤`−1

gα′,β(∂βf) ◦ Φ

by the induction hypothesis. Therefore, by the Leibniz rule

∂α(f ◦ Φ) = ∂e1(∂α′(f ◦ Φ))

=
∑

‖β‖1≤`−1

∂e1

(
gα′,β(∂βf) ◦ Φ

)
=

∑
‖β‖1≤`−1

∂e1gα′,β(∂βf) ◦ Φ + gα′,β∂e1((∂βf) ◦ Φ).

Notice that the sum over the first terms already has the desired form. We have by
the chain rule

∂e1((∂βf) ◦ Φ) =
d∑

k=1

∂ek∂βf ◦ Φ · ∂e1Φk.

Plugging this into the above expression we deduce the claim.
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b) Since Ṽ contains the closure of V and the latter is compact, we have that∑
‖β‖1≤‖α‖1≤k

‖gα,β‖∞ ≤M

for some M > 0. Therefore, we have for any f ∈ C∞(V ) ∩Hk(V ) and any α

‖∂α(f ◦ Φ)‖L2(U) ≤
∑

‖β‖1≤‖α‖1

‖gα,β(∂βf) ◦ Φ‖L2(U)

≤M
∑

‖β‖1≤‖α‖1

‖(∂βf) ◦ Φ‖L2(U)

We can increase M if necessary so that ‖det(DΦ−1)‖∞ ≤M . Thus, by substitu-
tion

‖∂α(f ◦ Φ)‖L2(U) ≤M2
∑

‖β‖1≤‖α‖1

‖∂βf‖L2(V ) � ‖f‖Hk(V )

This shows that the operator

Hk(V ) 3 f 7→ f ◦ Φ ∈ Hk(U)

is bounded. By the same argument, its inverse

Hk(U) 3 f 7→ f ◦ Φ−1 ∈ Hk(V )

is bounded and hence we conclude.

Assume now that Φ is an isometry and write Φ(x) = Rx + a as in the statement of
the exercise. In particular, DΦ = R (that is, ∂ejΦ` = R`j) and all higher derivatives
vanish. For any f ∈ C∞(V ) we thus have

∂ej(f ◦ Φ) =
∑
`

(∂e`f) ◦ Φ · ∂ejΦ`

=
∑
`

R`j(∂e`f) ◦ Φ.

Let us first prove the statement for k = 1. So let f ∈ C∞(V ) ∩H1(V ) and first note
that ‖f ◦ Φ‖L2(U) = ‖f‖L2(V ) by substitution. We compute for any j

‖∂ej(f ◦ Φ)‖2L2(U) =

∫
U

|∂ej(f ◦ Φ)|2 dx

=
∑
`1,`2

∫
U

R`1jR`2j(∂e`1f) ◦ Φ · (∂e`2f) ◦ Φ
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and summing over j we get∑
j

‖∂ej(f ◦ Φ)‖2L2(U) =
∑
`1,`2

∫
U

(∂e`1f) ◦ Φ · (∂e`2f) ◦ Φ
∑
j

R`1jR`2j

=
∑
`1,`2

∫
U

(∂e`1f) ◦ Φ · (∂e`2f) ◦ Φδ`1,`2

=
∑
`1

‖(∂e`1f) ◦ Φ‖2L2(U)

where we crucially used orthogonality of R. By substitution we obtain∑
j

‖∂ej(f ◦ Φ)‖2L2(U) =
∑
`1

‖∂e`1f‖
2
L2(V )

which proves thatH1(V ) 3 f 7→ f ◦Φ ∈ H1(U) is an isometry. To get the case k > 1
one can apply the equality∑

j

‖∂ej(f ◦ Φ)‖2L2(U) =
∑
`1

‖(∂e`1f) ◦ Φ‖2L2(U)

inductively to the derivatives of f instead of f to obtain the claim.

5. We review the proof of Theorem 5.34. Let K ⊂ U be compact and let χ ∈ C∞c (U)
with χ|K ≡ 1. As in the proof of Theorem 5.34 each of the operators in the chain

Hk(U)
P◦Mχ→ Hk(TdR)

ι→ C(TdR)
|K→ C(K)

is bounded and their composition is exactly the restriction toK. This proves the claim.

6. Let M = ‖f‖∞.

a) Since f is bounded, we have for x+ iy ∈ H∫ ∞
−∞

y

(x− t)2 + y2
|f(t)| dt ≤M

∫ ∞
−∞

y

(x− t)2 + y2
dt

= M

∫ ∞
−∞

y

t2 + y2
dt

= M

∫ ∞
−∞

1

1 + s2
ds <∞

where we set s = t
y
. This shows that the integral defining f̃ is absolutely conver-

gent and hence convergent. Note that this proof gives a uniform upper bound and
hence also gives the second statement in 6c).
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For N ∈ N define

f̃N(x+ iy) =

∫ N

−N

y

(x− t)2 + y2
f(t) dt.

By the above estimate

|f̃(x+ iy)− f̃N(x+ iy)| ≤ 2M

∫ ∞
N

1

s2
ds = 2M

1

N

which shows that f̃N → f̃ uniformly. The continuity of f̃ thus follows from the
continuity of f̃N , the latter being a standard statement from real analysis.

b) The first claim follows directly from the computation

f̃(x+ iy) =

∫ ∞
−∞

y

(x− t)2 + y2
f(t) dt

=

∫ ∞
−∞

1

y

1

(x−t
y

)2 + 1
f(t) dt

=

∫ ∞
−∞

1
y
χ
(
x−t
y

)
f(t) dt =

∫ ∞
−∞

χy(x− t)f(t) dt.

Note that for any a > 0∫ ∞
a

χy(s) ds =

∫ ∞
a

1
y
χ
(
s
y

)
ds =

∫ ∞
a
y

χ(u) du

≤
∫ ∞
a
y

1

u
du =

y

a
.

by substituting s
y

= u. Note also that
∫ −a
−∞ χy(s) ds =

∫∞
a
χy(s) ds.

Let x0 ∈ R and let ε > 0. Let δ > 0 be as in the definition of continuity of f
at x0. Suppose that x + iy ∈ H2 is min( δ

2
, δ·ε
2M

)-close to x0. Note that for any
t ∈ (− δ

2
, δ
2
) we have |(x− t)− x0| < δ. We then estimate

|f̃(x+ iy)− f(x0)| ≤
∫ ∞
−∞

χy(t)|f(x− t)− f(x0)| dt

≤ 2M

∫ ∞
δ

χy(t) dt+

∫ δ

−δ
χy(t)|f(x− t)− f(x0)| dt

≤ 2M
y

δ
+ ε

∫ δ

−δ
χy(t) dt ≤ 2ε

which concludes the claim.
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c) As mentioned, boundedness was already proven. To show that f̃ is smooth, let us
show that

g : (x, y) 7→ χy(x) = 1
y
χ(x

y
) =

y

x2 + y2

is smooth. For this, observe first that χ : t 7→ 1
1+t2

is smooth and the n-th de-
rivative χ(n) of χ is of the form pn(t)

(1+t2)n+1 where pn is a polynomial of degree n
(explicitly computable, but we don’t need such an expression here in general). In
particular, χ(n) is in L1(R) for every n. The smoothness claim for the map g is
now immediate as an expression in smooth functions.

Let us also note that

∂xg(x, y) =
−2xy

(x2 + y2)2
,

∂yg(x, y) =
1

x2 + y2
− 2y2

(x2 + y2)2
=

x2 − y2

(x2 + y2)2

∂2xg(x, y) =
−2y

(x2 + y2)2
− 2
−2xy · 2x
(x2 + y2)3

= −2y
−3x2 + y2

(x2 + y2)3

∂2yg(x, y) =
−2y

(x2 + y2)2
− 2

(x2 − y2)2y
(x2 + y2)3

= −2y
3x2 − y2

(x2 + y2)3

which gives in particular that4g = 0. This (at least intuitively) explains why we
can expect f̃ to be harmonic. Recall that

f̃(x+ iy) =

∫ ∞
−∞

g(x− t, y)f(t) dt.

CLAIM: f̃ is smooth and

∂αf̃(x+ iy) =

∫ ∞
−∞

∂αg(x− t, y)f(t) dt

Notice that by the above calculations the claim is everything we need to prove. To
prove the claim (since smoothness is a local property) we may assume that y > y0
for some fixed y0 > 0. We claim that this implies that all partial derivatives of
g are uniformly continuous. Recall that the n-th derivative χ(n) of χ is of the
form pn(t)

(1+t2)n+1 where pn is a polynomial of degree n and is in particular bounded.
By induction, any partial derivative of g is a finite sum of terms of the form
y−m1χ(m2)(x

y
). In particular, we have that

‖∂αg|{x+iy:y>y0}‖∞ <∞

for any α. This implies (by considering the total derivative) that ∂αg|{x+iy:y>y0}
is uniformly continuous for any α.
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Using this uniform continuity one can show the claim by a simple argument from
real analysis; we only sketch the argument here. For simplicity of notation (and
only that) we show the claim for α = e1. Writing down the difference quotient
for this partial derivative and using linearity we obtain an expression of the form∫ ∞

−∞

(g(x+ h− t, y)− g(x− t, y)

h
− ∂e1g(x− t, y)

)
f(t) dt. (1)

By the mean value theorem the difference quotient g(x+h−t,y)−g(x−t,y)
h

is equal to
∂e1g(x− t+ hξ, y) for some ξ ∈ [0, 1]. Since the point (x− t+ hξ, y) is within
distance h of (x− t, y), we may choose h small enough so that

g(x+ h− t, y)− g(x− t, y)

h
�ε ∂e1g(x− t, y)

where ε is given at the beginning and the error is independent of x, t, y. We cannot
use this argument immediately as we are integrating over a region of infinite
measure. Instead, we first a compact interval I around x so that∫

R\I
|∂e1g(x− t, y)| dt ≤ ε

(by a similar argument as used above). Analyzing the step which used the in-
termediate value theorem more carefully, one sees that one can apply Taylor’s
theorem in the form

g(x+ h− t, y)− g(x− t, y)

h
= ∂e1g(x− t, y) + hRh(x− t, y)

where

Rh(x− t, y) =

∫ 1

0

(1− s)∂2e1g(x− t+ sh, y) ds.

One checks that t 7→ Rh(x − t, y) is L1 with an upper bound to the L1-norm
independent of x and y. This shows that the integral over the difference quotient
outside of I may be estimated in the same way as the integral over ∂e1g(x− t, y).
Therefore, the integral in (1) can be replaced by the integral over I which gives
the claim by the argument sketched earlier.
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