Solutions for exercise sheet 3

1. Let $f \in H^{1}(U)$ and let $\phi \in C_{c}^{\infty}(U)$. We compute by partial integration

$$
\begin{aligned}
\langle f, \phi\rangle_{1} & =\sum_{j=1}^{d} \int_{U} \boldsymbol{\partial}_{e_{j}} f(x) \partial_{e_{j}} \phi(x) \mathrm{d} x=-\sum_{j=1}^{d} \int_{U} f(x) \partial_{e_{j}}^{2} \phi(x) \mathrm{d} x \\
& =-\int_{U} f(x) \sum_{j=1}^{d} \partial_{e_{j}}^{2} \phi(x) \mathrm{d} x=-\int_{U} f(x) \triangle \phi(x) \mathrm{d} x .
\end{aligned}
$$

2. a) Let $f \in H_{0}^{1}(U)$ be weakly harmonic. Then by Exercise 1 we have that $\langle f, \phi\rangle_{1}=0$ for all $\phi \in C_{c}^{\infty}(U)$. Since $C_{c}^{\infty}(U)$ is dense in $H_{0}^{1}(U)$ we deduce that $\langle f, g\rangle_{1}=0$ for all $g \in H_{0}^{1}(U)$. We proved however in Lemma 5.41 that $\langle\cdot, \cdot\rangle_{1}$ defines an inner product, which thus implies that $f=0$.
b) We may proceed exactly as in the proof of Proposition 5.42 to obtain such a decomposition. Notice first though that the decomposition is unique: if

$$
f=g_{1}+v_{1}=g_{2}+v_{2}
$$

for $g_{1}, g_{2} \in H^{1}(U)$ weakly harmonic and $v_{1}, v_{2} \in H_{0}^{1}(U)$. Then $g=g_{1}-g_{2}=$ $v_{2}-v_{1} \in H_{0}^{1}(U)$ is weakly harmonic and therefore $g=0$ by part a) which means $g_{1}=g_{2}$ and $v_{1}=v_{2}$.
Let us now prove the existence. The linear functional $\ell: g \in H_{0}^{1}(U) \mapsto\langle f, g\rangle_{1}$ is bounded and hence there exists $v \in H_{0}^{1}(U)$ which $\langle f, g\rangle_{1}=\langle v, g\rangle_{1}$ for all $g \in H_{0}^{1}(U)$. In particular,

$$
0=\langle f-v, \phi\rangle_{1}
$$

for all $\phi \in C_{c}^{\infty}(U)$ which is to say that $f-v$ is weakly harmonic as desired.
3. a) This is immediate as an open cover of a compact metric space has a Lebesgue number. We choose r to be $\frac{1}{4}$ of this number.
b) See Exercise 3c), Sheet 2 and its solution.
c) Let $x_{1}, \ldots, x_{k} \in K$ with $X \subset \bigcup_{i=1}^{k} B_{r}\left(x_{i}\right)$ and let $\tilde{\chi}_{1}, \ldots, \tilde{\chi}_{k}$ be the functions defined found in b) for the points $x_{1}, \ldots, x_{k} \in K$. Let

$$
U=\bigcup_{i=1}^{k} \operatorname{supp}\left(\tilde{\chi}_{i}\right)^{\circ}
$$

which contains K by construction. By Exercise 3, Sheet 2 there exists a function in $C_{c}^{\infty}(U)$ which is equal to 1 on K. We let $\psi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ be 1 minus that function so that $\psi \equiv 0$ on K and 1 outside of U. Now define for $i=1, \ldots, k$

$$
\chi_{i}: x \in \mathbb{R}^{d} \mapsto \frac{\tilde{\chi}_{i}(x)}{\psi(x)+\sum_{j=1}^{k} \tilde{\chi}_{j}(x)}
$$

Note that by construction the denominator is nowhere vanishing. Also the functions χ_{i} sum to 1 on K since ψ is zero on K. This concludes the claim of the exercise.
4. a) We will use induction over $\ell \in\{0, \ldots, k\}$ showing that the claim holds for all α with $\|\alpha\|_{1}=\ell$. For $\ell=0$ there is nothing to show. So suppose that the claim holds for all $\ell^{\prime}<\ell$ and let α satisfy $\|\alpha\|_{1}=\ell$. Assume without loss of generality that $\alpha_{1} \neq 0$ and set $\alpha^{\prime}=\alpha-e_{1}$. Then

$$
\partial_{\alpha^{\prime}}(f \circ \Phi)=\sum_{\|\beta\|_{1} \leq \ell-1} g_{\alpha^{\prime}, \beta}\left(\partial_{\beta} f\right) \circ \Phi
$$

by the induction hypothesis. Therefore, by the Leibniz rule

$$
\begin{aligned}
\partial_{\alpha}(f \circ \Phi) & =\partial_{e_{1}}\left(\partial_{\alpha^{\prime}}(f \circ \Phi)\right) \\
& =\sum_{\|\beta\|_{1} \leq \ell-1} \partial_{e_{1}}\left(g_{\alpha^{\prime}, \beta}\left(\partial_{\beta} f\right) \circ \Phi\right) \\
& =\sum_{\|\beta\|_{1} \leq \ell-1} \partial_{e_{1}} g_{\alpha^{\prime}, \beta}\left(\partial_{\beta} f\right) \circ \Phi+g_{\alpha^{\prime}, \beta} \partial_{e_{1}}\left(\left(\partial_{\beta} f\right) \circ \Phi\right) .
\end{aligned}
$$

Notice that the sum over the first terms already has the desired form. We have by the chain rule

$$
\partial_{e_{1}}\left(\left(\partial_{\beta} f\right) \circ \Phi\right)=\sum_{k=1}^{d} \partial_{e_{k}} \partial_{\beta} f \circ \Phi \cdot \partial_{e_{1}} \Phi_{k} .
$$

Plugging this into the above expression we deduce the claim.
b) Since \tilde{V} contains the closure of V and the latter is compact, we have that

$$
\sum_{\|\beta\|_{1} \leq\|\alpha\|_{1} \leq k}\left\|g_{\alpha, \beta}\right\|_{\infty} \leq M
$$

for some $M>0$. Therefore, we have for any $f \in C^{\infty}(V) \cap H^{k}(V)$ and any α

$$
\begin{aligned}
\left\|\partial_{\alpha}(f \circ \Phi)\right\|_{L^{2}(U)} & \leq \sum_{\|\beta\|_{1} \leq\|\alpha\|_{1}}\left\|g_{\alpha, \beta}\left(\partial_{\beta} f\right) \circ \Phi\right\|_{L^{2}(U)} \\
& \leq M \sum_{\|\beta\|_{1} \leq\|\alpha\|_{1}}\left\|\left(\partial_{\beta} f\right) \circ \Phi\right\|_{L^{2}(U)}
\end{aligned}
$$

We can increase M if necessary so that $\left\|\operatorname{det}\left(\mathrm{D} \Phi^{-1}\right)\right\|_{\infty} \leq M$. Thus, by substitution

$$
\left\|\partial_{\alpha}(f \circ \Phi)\right\|_{L^{2}(U)} \leq M^{2} \sum_{\|\beta\|_{1} \leq\|\alpha\|_{1}}\left\|\partial_{\beta} f\right\|_{L^{2}(V)} \ll\|f\|_{H^{k}(V)}
$$

This shows that the operator

$$
H^{k}(V) \ni f \mapsto f \circ \Phi \in H^{k}(U)
$$

is bounded. By the same argument, its inverse

$$
H^{k}(U) \ni f \mapsto f \circ \Phi^{-1} \in H^{k}(V)
$$

is bounded and hence we conclude.
Assume now that Φ is an isometry and write $\Phi(x)=R x+a$ as in the statement of the exercise. In particular, $\mathrm{D} \Phi=R$ (that is, $\partial_{e_{j}} \Phi_{\ell}=R_{\ell j}$) and all higher derivatives vanish. For any $f \in C^{\infty}(V)$ we thus have

$$
\begin{aligned}
\partial_{e_{j}}(f \circ \Phi) & =\sum_{\ell}\left(\partial_{e_{\ell}} f\right) \circ \Phi \cdot \partial_{e_{j}} \Phi_{\ell} \\
& =\sum_{\ell} R_{\ell j}\left(\partial_{e_{\ell}} f\right) \circ \Phi
\end{aligned}
$$

Let us first prove the statement for $k=1$. So let $f \in C^{\infty}(V) \cap H^{1}(V)$ and first note that $\|f \circ \Phi\|_{L^{2}(U)}=\|f\|_{L^{2}(V)}$ by substitution. We compute for any j

$$
\begin{aligned}
\left\|\partial_{e_{j}}(f \circ \Phi)\right\|_{L^{2}(U)}^{2} & =\int_{U}\left|\partial_{e_{j}}(f \circ \Phi)\right|^{2} \mathrm{~d} x \\
& =\sum_{\ell_{1}, \ell_{2}} \int_{U} R_{\ell_{1} j} R_{\ell_{2} j}\left(\partial_{e_{\ell_{1}}} f\right) \circ \Phi \cdot\left(\partial_{e_{\ell_{2}}} f\right) \circ \Phi
\end{aligned}
$$

and summing over j we get

$$
\begin{aligned}
\sum_{j}\left\|\partial_{e_{j}}(f \circ \Phi)\right\|_{L^{2}(U)}^{2} & =\sum_{\ell_{1}, \ell_{2}} \int_{U}\left(\partial_{e_{\ell_{1}}} f\right) \circ \Phi \cdot\left(\partial_{e_{\ell_{2}}} f\right) \circ \Phi \sum_{j} R_{\ell_{1} j} R_{\ell_{2} j} \\
& =\sum_{\ell_{1}, \ell_{2}} \int_{U}\left(\partial_{e_{1}} f\right) \circ \Phi \cdot\left(\partial_{e_{\ell_{2}}} f\right) \circ \Phi \delta_{\ell_{1}, \ell_{2}} \\
& =\sum_{\ell_{1}}\left\|\left(\partial_{e_{\ell_{1}}} f\right) \circ \Phi\right\|_{L^{2}(U)}^{2}
\end{aligned}
$$

where we crucially used orthogonality of R. By substitution we obtain

$$
\sum_{j}\left\|\partial_{e_{j}}(f \circ \Phi)\right\|_{L^{2}(U)}^{2}=\sum_{\ell_{1}}\left\|\partial_{e_{\ell_{1}}} f\right\|_{L^{2}(V)}^{2}
$$

which proves that $H^{1}(V) \ni f \mapsto f \circ \Phi \in H^{1}(U)$ is an isometry. To get the case $k>1$ one can apply the equality

$$
\sum_{j}\left\|\partial_{e_{j}}(f \circ \Phi)\right\|_{L^{2}(U)}^{2}=\sum_{\ell_{1}}\left\|\left(\partial_{e_{\ell_{1}}} f\right) \circ \Phi\right\|_{L^{2}(U)}^{2}
$$

inductively to the derivatives of f instead of f to obtain the claim.
5. We review the proof of Theorem 5.34. Let $K \subset U$ be compact and let $\chi \in C_{c}^{\infty}(U)$ with $\left.\chi\right|_{K} \equiv 1$. As in the proof of Theorem 5.34 each of the operators in the chain

$$
H^{k}(U) \xrightarrow{P \circ M_{\chi}} H^{k}\left(\mathbb{T}_{R}^{d}\right) \xrightarrow{\iota} C\left(\mathbb{T}_{R}^{d}\right) \xrightarrow{\left.\right|_{K}} C(K)
$$

is bounded and their composition is exactly the restriction to K. This proves the claim.
6. Let $M=\|f\|_{\infty}$.
a) Since f is bounded, we have for $x+i y \in \mathbb{H}$

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{y}{(x-t)^{2}+y^{2}}|f(t)| \mathrm{d} t & \leq M \int_{-\infty}^{\infty} \frac{y}{(x-t)^{2}+y^{2}} \mathrm{~d} t \\
& =M \int_{-\infty}^{\infty} \frac{y}{t^{2}+y^{2}} \mathrm{~d} t \\
& =M \int_{-\infty}^{\infty} \frac{1}{1+s^{2}} \mathrm{~d} s<\infty
\end{aligned}
$$

where we set $s=\frac{t}{y}$. This shows that the integral defining \tilde{f} is absolutely convergent and hence convergent. Note that this proof gives a uniform upper bound and hence also gives the second statement in 6c).

For $N \in \mathbb{N}$ define

$$
\tilde{f}_{N}(x+\mathrm{i} y)=\int_{-N}^{N} \frac{y}{(x-t)^{2}+y^{2}} f(t) \mathrm{d} t
$$

By the above estimate

$$
\left|\tilde{f}(x+\mathrm{i} y)-\tilde{f}_{N}(x+\mathrm{i} y)\right| \leq 2 M \int_{N}^{\infty} \frac{1}{s^{2}} \mathrm{~d} s=2 M \frac{1}{N}
$$

which shows that $\tilde{f}_{N} \rightarrow \tilde{f}$ uniformly. The continuity of \tilde{f} thus follows from the continuity of \tilde{f}_{N}, the latter being a standard statement from real analysis.
b) The first claim follows directly from the computation

$$
\begin{aligned}
\tilde{f}(x+\mathrm{i} y) & =\int_{-\infty}^{\infty} \frac{y}{(x-t)^{2}+y^{2}} f(t) \mathrm{d} t \\
& =\int_{-\infty}^{\infty} \frac{1}{y} \frac{1}{\left(\frac{x-t}{y}\right)^{2}+1} f(t) \mathrm{d} t \\
& =\int_{-\infty}^{\infty} \frac{1}{y} \chi\left(\frac{x-t}{y}\right) f(t) \mathrm{d} t=\int_{-\infty}^{\infty} \chi_{y}(x-t) f(t) \mathrm{d} t .
\end{aligned}
$$

Note that for any $a>0$

$$
\begin{aligned}
\int_{a}^{\infty} \chi_{y}(s) \mathrm{d} s & =\int_{a}^{\infty} \frac{1}{y} \chi\left(\frac{s}{y}\right) \mathrm{d} s=\int_{\frac{a}{y}}^{\infty} \chi(u) \mathrm{d} u \\
& \leq \int_{\frac{a}{y}}^{\infty} \frac{1}{u} \mathrm{~d} u=\frac{y}{a}
\end{aligned}
$$

by substituting $\frac{s}{y}=u$. Note also that $\int_{-\infty}^{-a} \chi_{y}(s) \mathrm{d} s=\int_{a}^{\infty} \chi_{y}(s) \mathrm{d} s$.
Let $x_{0} \in \mathbb{R}$ and let $\varepsilon>0$. Let $\delta>0$ be as in the definition of continuity of f at x_{0}. Suppose that $x+\mathrm{i} y \in \mathbb{H}^{2}$ is $\min \left(\frac{\delta}{2}, \frac{\delta \cdot \varepsilon}{2 M}\right)$-close to x_{0}. Note that for any $t \in\left(-\frac{\delta}{2}, \frac{\delta}{2}\right)$ we have $\left|(x-t)-x_{0}\right|<\delta$. We then estimate

$$
\begin{aligned}
\left|\tilde{f}(x+\mathrm{i} y)-f\left(x_{0}\right)\right| & \leq \int_{-\infty}^{\infty} \chi_{y}(t)\left|f(x-t)-f\left(x_{0}\right)\right| \mathrm{d} t \\
& \leq 2 M \int_{\delta}^{\infty} \chi_{y}(t) \mathrm{d} t+\int_{-\delta}^{\delta} \chi_{y}(t)\left|f(x-t)-f\left(x_{0}\right)\right| \mathrm{d} t \\
& \leq 2 M \frac{y}{\delta}+\varepsilon \int_{-\delta}^{\delta} \chi_{y}(t) \mathrm{d} t \leq 2 \varepsilon
\end{aligned}
$$

which concludes the claim.
c) As mentioned, boundedness was already proven. To show that \tilde{f} is smooth, let us show that

$$
g:(x, y) \mapsto \chi_{y}(x)=\frac{1}{y} \chi\left(\frac{x}{y}\right)=\frac{y}{x^{2}+y^{2}}
$$

is smooth. For this, observe first that $\chi: t \mapsto \frac{1}{1+t^{2}}$ is smooth and the n-th derivative $\chi^{(n)}$ of χ is of the form $\frac{p_{n}(t)}{\left(1+t^{2}\right)^{n+1}}$ where p_{n} is a polynomial of degree n (explicitly computable, but we don't need such an expression here in general). In particular, $\chi^{(n)}$ is in $L^{1}(\mathbb{R})$ for every n. The smoothness claim for the map g is now immediate as an expression in smooth functions.
Let us also note that

$$
\begin{aligned}
& \partial_{x} g(x, y)=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \partial_{y} g(x, y)=\frac{1}{x^{2}+y^{2}}-\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& \partial_{x}^{2} g(x, y)=\frac{-2 y}{\left(x^{2}+y^{2}\right)^{2}}-2 \frac{-2 x y \cdot 2 x}{\left(x^{2}+y^{2}\right)^{3}}=-2 y \frac{-3 x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{3}} \\
& \partial_{y}^{2} g(x, y)=\frac{-2 y}{\left(x^{2}+y^{2}\right)^{2}}-2 \frac{\left(x^{2}-y^{2}\right) 2 y}{\left(x^{2}+y^{2}\right)^{3}}=-2 y \frac{3 x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{3}}
\end{aligned}
$$

which gives in particular that $\triangle g=0$. This (at least intuitively) explains why we can expect \tilde{f} to be harmonic. Recall that

$$
\tilde{f}(x+\mathrm{i} y)=\int_{-\infty}^{\infty} g(x-t, y) f(t) \mathrm{d} t
$$

Claim: \tilde{f} is smooth and

$$
\partial_{\alpha} \tilde{f}(x+\mathrm{i} y)=\int_{-\infty}^{\infty} \partial_{\alpha} g(x-t, y) f(t) \mathrm{d} t
$$

Notice that by the above calculations the claim is everything we need to prove. To prove the claim (since smoothness is a local property) we may assume that $y>y_{0}$ for some fixed $y_{0}>0$. We claim that this implies that all partial derivatives of g are uniformly continuous. Recall that the n-th derivative $\chi^{(n)}$ of χ is of the form $\frac{p_{n}(t)}{\left(1+t^{2}\right)^{n+1}}$ where p_{n} is a polynomial of degree n and is in particular bounded. By induction, any partial derivative of g is a finite sum of terms of the form $y^{-m_{1}} \chi^{\left(m_{2}\right)}\left(\frac{x}{y}\right)$. In particular, we have that

$$
\left\|\left.\partial_{\alpha} g\right|_{\left\{x+\mathrm{i} y: y>y_{0}\right\}}\right\|_{\infty}<\infty
$$

for any α. This implies (by considering the total derivative) that $\left.\partial_{\alpha} g\right|_{\left\{x+\mathrm{i} y: y>y_{0}\right\}}$ is uniformly continuous for any α.

Using this uniform continuity one can show the claim by a simple argument from real analysis; we only sketch the argument here. For simplicity of notation (and only that) we show the claim for $\alpha=e_{1}$. Writing down the difference quotient for this partial derivative and using linearity we obtain an expression of the form

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(\frac{g(x+h-t, y)-g(x-t, y)}{h}-\partial_{e_{1}} g(x-t, y)\right) f(t) \mathrm{d} t . \tag{1}
\end{equation*}
$$

By the mean value theorem the difference quotient $\frac{g(x+h-t, y)-g(x-t, y)}{h}$ is equal to $\partial_{e_{1}} g(x-t+h \xi, y)$ for some $\xi \in[0,1]$. Since the point $(x-t+h \xi, y)$ is within distance h of $(x-t, y)$, we may choose h small enough so that

$$
\frac{g(x+h-t, y)-g(x-t, y)}{h} \asymp_{\varepsilon} \partial_{e_{1}} g(x-t, y)
$$

where ε is given at the beginning and the error is independent of x, t, y. We cannot use this argument immediately as we are integrating over a region of infinite measure. Instead, we first a compact interval I around x so that

$$
\int_{\mathbb{R} \backslash I}\left|\partial_{e_{1}} g(x-t, y)\right| \mathrm{d} t \leq \varepsilon
$$

(by a similar argument as used above). Analyzing the step which used the intermediate value theorem more carefully, one sees that one can apply Taylor's theorem in the form

$$
\frac{g(x+h-t, y)-g(x-t, y)}{h}=\partial_{e_{1}} g(x-t, y)+h R_{h}(x-t, y)
$$

where

$$
R_{h}(x-t, y)=\int_{0}^{1}(1-s) \partial_{2 e_{1}} g(x-t+s h, y) \mathrm{d} s
$$

One checks that $t \mapsto R_{h}(x-t, y)$ is L^{1} with an upper bound to the L^{1}-norm independent of x and y. This shows that the integral over the difference quotient outside of I may be estimated in the same way as the integral over $\partial_{e_{1}} g(x-t, y)$. Therefore, the integral in (1) can be replaced by the integral over I which gives the claim by the argument sketched earlier.

