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1. As said in the hint, we will show that the multiplication is associative and that the
norm satisfies the property required in the definition of Banach algebras.

For the former we let a1, a2, a3 ∈ A and λ1, λ2, λ3 ∈ C and compute

(a1 + λ11) ·
(
(a2 + λ21) · (a3 + λ31)

)
= (a1 + λ11) ·

(
(a2a3 + λ2a3 + λ3a2) + λ2λ31

)
=
(
a1(a2a3 + λ2a3 + λ3a2) + λ1(a2a3 + λ2a3 + λ3a2) + λ2λ3a1

)
+ λ1λ2λ31

=
(
a1a2a3 + λ2a1a3 + λ3a1a2 + λ1a2a3 + λ1λ2a3 + λ1λ3a2 + λ2λ3a1

)
+ λ1λ2λ31.

Quite similarly we calculate(
(a1 + λ11) · (a2 + λ21)

)
· (a3 + λ31)

=
(
(a1a2 + λ1a2 + λ2a1) + λ1λ21

)
· (a3 + λ31)

=
(
(a1a2 + λ1a2 + λ2a1)a3 + λ3(a1a2 + λ1a2 + λ2a1) + λ1λ2a3

)
+ λ1λ2λ31

=
(
a1a2a3 + λ1a2a3 + λ2a1a3 + λ3a1a2 + λ1λ3a2 + λ2λ3a1 + λ1λ2a3

)
+ λ1λ2λ31

= (a1 + λ11) ·
(
(a2 + λ21) · (a3 + λ31)

)
as desired.

To check the norm property we let a1, a2 ∈ A and λ1, λ2 ∈ C. Then using that A is a
Banach algebra we get

‖(a1 + λ11) · (a2 + λ21)‖ = ‖(a1a2 + λ1a2 + λ2a1) + λ1λ21‖
= ‖a1a2 + λ1a2 + λ2a1‖+ |λ1λ2|
≤ ‖a1a2‖+ |λ1|‖a2‖+ |λ2|‖a1‖+ |λ1λ2|
≤ ‖a1‖‖a2‖+ |λ1|‖a2‖+ |λ2|‖a1‖+ |λ1λ2|
= (‖a1‖+ |λ1|)(‖a2‖+ |λ2|)
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as claimed.

We quickly remark that all other properties that need to be shown are quite immediate
from definitions. For example, A1 is a Banach space as a direct product of Banach
spaces.

2. a) We check all the properties of a Haar measure. At most places we will use that

R>0 × SLn(R)→ GL+
n (R) = {g ∈ Matn(R) : det(g) > 0} (1)

(λ, g) 7→ λg

is a homeomorphism with inverse

g ∈ GLn(R) 7→
(
det(g), det(g)

1
n g
)
.

Note that GL+
n (R) is an open subset of Matn(R) and thus any non-empty open

subset of GL+
n (R) has positive Lebesgue measure. The maps above are in fact

group isomorphisms as R>0 (scalar multiples of the identity) and SLn(R) com-
mute.

With these remarks we first prove the following two properties.

• Let K ⊂ SLn(R) be compact. Then [0, 1] ·K ⊂ Matn(R) is compact – it is
the image [0, 1]×K under the continuous map R× SLn(R)→ Matn(R) as
in (1). In particular, its Lebesgue measure is finite and hence so is mG(K).
• Let U ⊂ SLn(R) be open. Then (0, 1) · U ⊂ GLn(R) is a non-empty open

subset of GL+
n (R) by (1) and thus has positive Lebesgue-measure. By defini-

tion of mG we have

0 < λ((0, 1) · U) = λ([0, 1] · U) = mG(U).

It remains to prove left-invariance and right-invariance. For this, observe first
that λ is SLn(R)-invariant in the following sense. If g ∈ SLn(R) then the map
h ∈ Matn(R) 7→ gh applies g to every column of h and so by definition of
the Lebesgue-measure it leaves λ invariant. The analogous argument applies to
h ∈ Matn(R) 7→ hg (applying g to rows). Let g ∈ SLn(R) and let B ⊂ SLn(R)
be measurable. Then [0, 1] · B ⊂ Matn(R) is measurable and we have as just
argued

mG(gB) = λ([0, 1] · (gB)) = λ(g([0, 1] ·B)) = λ([0, 1] ·B) = mG(B).

For right-invariance one proceeds analogously.
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b) We use the coordinate system given implicitly in the definition of B. It yields in
particular, that B is homeomorphic to (R \ {0})× R.

The most interesting property is left-invariance, so let us show that first. If f ∈
L1
mB

(B) and g ∈ B has coordinates a, b then∫
B

f(gh) dmB(h) =

∫
B

f

((
a b
0 1

)(
x y
0 1

))
1

x2
dx dy

=

∫
B

f

((
ax ay + b
0 1

))
1

x2
dx dy

=

∫
B

f

((
s t
0 1

))
1

( s
a
)2

1
a
ds 1

a
dt

=

∫
B

f

((
s t
0 1

))
1

s2
ds dt =

∫
B

f dmB

where we substituted s = ax and t = ay + b. This proves left-invariance.

One can proceed in exactly the same way to show that 1
a
d db yields a right-Haar

measure on B. Clearly, this measure is not proportional to mB and thus mB

cannot be a right Haar measure.

To prove the rest, notice that if K ⊂ B is compact, there is some a′ > 0 with
|ak| ≥ a′ for all k ∈ K where ak denotes the a-coordinate of k ∈ K. Then

mB(K) ≤ 1
(a′)2

∫
K

da db <∞

as K ⊂ R2 is compact. Notice also that any open subset of K is an open subset
of R2 (in the given coordinate system) and that a 7→ 1

a2
is a positive function.

The remaining property of Haar measures follows from this.

3. a) If G is discrete, {e} ⊂ G is a non-empty open set and thus has positive (Haar)
measure. This is another way of saying that {e} is an atom for the Haar measure.

So suppose that mG has an atom {g} for g ∈ G. Then for any h ∈ G by left-
invariance

mG({h}) = mG(h.{e}) = mG({e}) = mG(g
−1.{g}) = mG({g}).

In other words, any point is an atom and all atoms have the same measure. Now
let U ⊂ G be an open neighborhood of the identity e ∈ G with compact closure.
We claim that U is finite. Indeed, if there are k1, . . . , kn ∈ K for some n ∈ N
then

n ·mG({e}) = mG({k1, . . . , kn}) ≤ mG(U) ≤ mG(U) <∞
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and so n ≤ mG(U)
mG({e}) . This shows that U is finite.

Since points are closed, U \ {e} is closed and this {e} = U \ (U \ {e}) is open.
Since left-multiplication is a homeomorphism, any other point set is open which
shows that G is discrete.

b) If G is compact, it has finite (Haar) measure by definition of the Haar measure.
So let us assume that mG(G) < ∞ and let K ⊂ G be a compact neighborhood
of the identity.

Let g1, . . . , gn ∈ G be such that g1K, . . . , gnK is a maximal collection of disjoint
translates of K. Note that there is a finite such collection as these translates all
have the same positive measure and as G has finite measure. We claim that

G =
n⋃
i=1

giKK
−1

which shows that G is compact as a finite union of compact sets. If there is some
element g ∈ G which is not contained in giKK−1 for any i then gK is disjoint to
giK for every i. Indeed, if gK∩giK 6= ∅ we can write gk1 = gik2 for k1, k2 ∈ K
which then gives g = gik2k

−1
1 ∈ giKK−1.

4. Throughout this exercise we denote for a continuous map ϑ : G→ G and any measure
µ on G the pushforward measure by ϑ∗µ. It is defined by ϑ∗µ(B) = µ(ϑ−1(B)) for
B ⊂ G measurable. Note that it also satisfies∫

G

f(ϑ(x)) dµ(x) =

∫
G

f d(ϑ∗µ) (2)

for any f nice enough.

a) We show that ϑ∗mG is a left-Haar measure on G. The claim then follows from
uniqueness of the left-Haar measure up to positive scalars. So let g ∈ G and let
A ⊂ G be measurable. Then

ϑ∗mG(gA) = mG(ϑ
−1(gA)) = mG(ϑ

−1(g)ϑ−1(A)) = mG(ϑ
−1(A)) = ϑ∗mG(A)

where we used that ϑ is an automorphism. This proves left-invariance.

If K ⊂ G is a compact set, then ϑ−1(K) is compact as we assumed that ϑ : G→
G is a homeomorphism. Thus, ϑ∗mG(K) = mG(ϑ

−1(K)) is finite.

If U ⊂ G is a non-empty open set, then ϑ−1(U) is also a non-empty open set and
ϑ∗mG(U) = mG(ϑ

−1(U)) is positive.
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b) For any integrable f and h ∈ G we have by left-invariance∫
G

f(gh−1) dmG(g) =

∫
G

f(hgh−1) dmG(g) =

∫
G

f(ϑh(g)) dmG(g).

Then using (2) we get∫
G

f(ϑh(g)) dmG(g) = mod(ϑh)

∫
G

f(g) dmG(g)

= 4G(h)

∫
G

f(g) dmG(g)

as was claimed.

Let us now apply this to show continuity of the modular character4G. Let K ⊂
G be a compact neighborhood of the identity with K = K−1. We may also
assume that mG(K

2) < 1. Furthermore, let f ∈ Cc(G) be such that
∫
G
f dmG =

1 (by multiplying with a scalar) and such that supp(f) ⊂ K (by Urysohn’s
lemma). Given ε > 0 there is a neighborhood U of the identity e ∈ G such that
for any g1, g2 ∈ G

g2 = g1h
−1 for some h ∈ U =⇒ |f(g2)− f(g1)| < ε.

By shrinking U we may assume that U ⊂ K. Using this we get for any h ∈ U∣∣∣∣∫
G

f(gh−1) dmG(g)−
∫
G

f(g) dmG(g)

∣∣∣∣ < ε.

On the other hand, we have by the proven integral inequality∣∣∣∣∫
G

f(gh−1) dmG(g)−
∫
G

f(g) dmG(g)

∣∣∣∣ = |4G(h)− 1|.

This proves that4G is continuous at the identity.

This implies continuity of4G. Indeed, it suffices to prove that4G is continuous
at any other points g0 ∈ G. Given ε > 0 we let U ⊂ G be an open neighborhood
of the identity such that |4G(h) − 1| < ε for any h ∈ U . We then consider the
open neighborhood U ′ = g0U of g0 and observe that for any g = g0h ∈ U ′

|4G(g)−4G(g0)| = |4G(g0)||4G(h)− 1| < ε|4G(g0)|

as claimed.

c) • If G is compact, then A = 4G(G) ⊂ R>0 is a compact subgroup of R>0.
For any a ∈ A we then have that the sequence (ak)k∈N has a convergent
subsequence and is in particular bounded. Thus, a = 1. This 4G ≡ 1 and G
is unimodular.
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• If G is abelian, then for any A ⊂ G measurable and any h ∈ G we have

4G(h)mG(A) = mG(h
−1Ah) = mG(A)

which implies the claim.
• Suppose that G is perfect. For g1, g2 ∈ G we note that

4G([g1, g2]) = 4G(g1g2g
−1
1 g−12 ) = 4G(g1)4G(g2)4G(g1)

−14G(g2)
−1 = 1

as R>0 is abelian. This shows that [g1, g2] ∈ ker(4G). By definition, [G,G] is
the smallest subgroup containing all commutators and hence G = [G,G] ⊂
ker(4G) which proves the claim.

5. a) We compute directly for any ν ∈M(G) and f ∈ L∞(G)∫
G

f(g) d(ν ∗ δ{e}) =
∫
G

∫
G

f(g1g2) dν(g1) dδe(g2) =

∫
G

f dν

which shows that ν ∗ δ{e} = ν. The argument for δ{e} ∗ ν = ν is analogous.

b) CLAIM: The unit of L1
mG

(G), if it exists, needs to be equal to the unit δ{e} in
M(G).

To prove this, suppose that 1 is a unit of L1
mG

(G). Then for any g ∈ G and any
measurable B ⊂ G

1 ∗ 1B(g) =
∫
G

1(h)1B(h
−1g) dmG(h) =

∫
gB−1

1(h) dmG(h).

On the other hand, 1 ∗ 1B(g) = 1B(g) which is one if and only if g ∈ B (i.e.
if and only if e ∈ gB−1). By substituting we see that for any measurable subset
B ⊂ G ∫

B

1(h) dmG(h) = δ{e}(B)

which proves the claim.

This means that L1
mG

(G) is unital if and only if there exists f ∈ L1
mG

(G) such
that dδ{e} = f dmG.

If this holds, then {e} must have positive measure as f is certainly non-zero. By
3a) this implies thatG is discrete. Conversely, ifG is discrete, {e} is a non-empty
open set and letting f = δe we obtain that dδ{e} = f dmG as desired.
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c) We let µ = m
(r)
G be the measure defined by∫

G

f(g) dµ(g) =

∫
G

f(g)4G(g)
−1 dmG(g).

If Rh : G→ G, g 7→ gh then for f ∈ Cc(G)∫
G

f(g) d(Rh)∗µ(g) =

∫
G

f(gh) dµ(g) =

∫
G

f(gh)4G(g)
−1 dmG(g)

= 4G(h)

∫
G

f(gh)4G(gh)
−1 dmG(g).

Applying Exercise 4b) to the function f · 4−1G we get∫
G

f(g) d(Rh)∗µ(g) =

∫
G

f(g)4G(g)
−1 dmG =

∫
G

f dµ

and so (Rh)∗µ = µ. In other words, µ is a right Haar measure and so is the
measure B 7→ mG(B

−1). Thus, there is α > 0 such that

µ(B) = αmG(B
−1)

for all measurable B ⊂ G. For this, we let ε > 0 and (by continuity of the
modular character) let V ⊂ G be a compact neighborhood with |4G(h)

−1−1| <
ε for all h ∈ V . As before we can assume that V −1 = V . Then αmG(V

−1) =
αmG(V ) and

|µ(V )−mG(V )| =
∣∣∣ ∫

G

1V (g)4G(g)
−1 − 1V (g) dmG(g)

∣∣∣
≤
∫
V

|4G(g)
−1 − 1| dmG(g) < εmG(V ).

But therefore

|α− 1|mG(V ) = |µ(V )−mG(V )| < εmG(V )

and dividing with mG(V ) gives the remaining claim.

d) Note first that the formulas in c) together can be reformulated as∫
G

f(g−1) dmG =

∫
G

f(g)4G(g)
−1 dmG

and replacing f with g 7→ f(g−1)∫
G

f(g) dmG =

∫
G

f(g−1)4G(g)
−1 dmG.

Applying this to |f | for some f ∈ L1
mG

(G) shows that f ∗ ∈ L1
mG

(G) and ‖f‖1 =
‖f ∗‖1. Verifying (f ∗)∗ = f is a direct calculation.
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• Let f ∈ L1
mG

(G) and let µf as on the sheet. Then for ψ measurable and
bounded ∫

G

ψ d(µf )
∗ =

∫
G

ψ(g−1)f(g)−1 dmG(g)

=

∫
G

ψ(g)f(g)4G(g)
−1 dmG(g)

=

∫
G

ψ(g)f ∗(g) dmG(g)

which proves this claim.
• This can be proven by direct calculation. We note however that the first bullet

implies that the statement follows from the analogous proven statement for
M(G) proven in the lecture.

6. The claim is the following:

CLAIM: The spectrum of Mg is the essential range of g.

Here, the essential range consists of all λ ∈ C with the property that µ(g−1(U)) > 0
for any neighborhood U of λ. Denote the essential range by A ⊂ C. We prove two
inclusions.

Suppose that λ 6∈ A. Then there exists an neighborhood of U of λ so that µ(g−1(U)) =
0. In other words, there is r > 0 such that |g(x) − λ| ≥ r for µ-almost all x ∈ X .
Then x 7→ (g(x)− λ)−1 is measurable and bounded (up to a nullset). Notice that

M(g−λ)−1(Mg − λ1) = 1.

This proves that λ 6∈ σ(Mg).

Conversely, let λ ∈ A and let ε > 0. Then µ(g−1(Bε(λ))) > 0. In other words,
Uε = g−1(Bε(λ)) has positive measure and for any x ∈ Uε we have |g(x) − λ| < ε.
For simplicity we set h = g − λ so that Mg − λ1 =Mh. Let fε = 1√

µ(Uε)
1Uε . Then

|Mhfε(x)| =
1√
µ(Uε)

|h(x)||1Uε(x)| < ε|fε(x)|

and so ‖Mhfε‖ ≤ ε‖f‖ε = ε. This shows that Mhfε → 0 as ε → 0. However, fε
does not converge to zero as ε since ‖fε‖ = 1. We have proven that Mh cannot have a
continuous inverse and therefore, λ ∈ σ(Mg) as h = g − λ.
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