Exercise sheet 6: The Jones Polynomial II

1. Prove the Kauffman bracket is well-defined, i.e. show that the explicit state-sum formula equals the Kauffman bracket.
2. Compute the Jones polynomial of the figure-eight knot in two ways: first do it by the Kauffman bracket definition and then using the Jones skein relation - you should get the same result and remember the figure-eight knot is amphichiral.
3. (a) Determine the Jones polynomial of the positive Hopf link (the one with linking number +1) using the Jones skein relation and show that it is not equivalent to its mirror image.
(b) Calculate the Jones polynomial of the right-handed trefoil using the Jones skein relation and prove (finally) that it is not equivalent to its mirror image.
4. (a) Prove that $V\left(K_{1} \# K_{2}\right)=V\left(K_{1}\right) \cdot V\left(K_{2}\right)$. (Hint: first give a formula for the Kauffman bracket of a connected sum).
(b) Prove that $V\left(K_{1} \sqcup K_{2}\right)=\left(-t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right) V\left(K_{1}\right) \cdot V\left(K_{2}\right)$, where \sqcup denotes the disjoint union.
5. Use the axioms to calculate the Jones polynomial of the knot 5_{2} shown below - you may use any results you have obtained so far - is this knot amphichiral?

The result should be $V\left(5_{2}\right)=-t^{-6}+t^{-5}-t^{-4}+2 t^{-3}-t^{-2}+t^{-1}$
6. (Unsolved Question) Does the Jones polynomial distinguish every knot from the unknot? That is to say, is there a nontrivial knot with Jones polynomial 1?

Due Date: 01.04.2019

