Exercise sheet 7: Alternating knots

- 1. (Jones polynomials revisited)
 - (a) Suppose L_+ , L_- and L_0 are links differing just at one crossing, as in the skein relation, and that L_+ has μ components. What are the possibilities for the number of components of L_- and L_0 ?
 - (b) Show that for links with an odd number of components (including knots) the Jones polynomial contains only integral powers of t and t^{-1} , and for links with an even number of components it contains only half-integral powers, i.e. $...,t^{-\frac{3}{2}}, t^{-\frac{1}{2}}, t^{\frac{1}{2}}, t^{\frac{3}{2}},...$ (Hint: Use induction again. Do you think it is possible to prove this result by using only the Kauffman bracket state-sum, not the Jones skein relation?)
- 2. Show that every alternating knot has a knot diagram which is not alternating.
- 3. **Open question:** Give an intrinsically 3-dimensional definition of an alternating knot (i.e. do not mention the word knot diagram).
- 4. Prove that the span or breath of the bracket polynomial $\mathcal{B}(\langle K \rangle)$ is a knot invariant (although the bracket polynomial itself is not).
- 5. Show that the crossing number of an alternating knot is equal to the span of its Jones polynomial.
- 6. Prove that

$$c(K_1 \# K_2) = c(K_1) + c(K_2)$$

if K_1 and K_2 are alternating knots.

Note: It is unknown whether this equality us true in general (one direction of the inequalities is obvious!).

- 7. Give an example of an *n*-crossing diagram D for which $\mathcal{B}(\langle D \rangle) = 0$.
- 8. Given a knot K which has a reduced alternating diagram with n crossings for n an odd number.
 - (a) Show that K is not equivalent to its mirror image \overline{K} .
 - (b) Can K # K be equivalent to its mirror image?
- 9. Prove that the knots 8_{19} , 8_{20} and 8_{21} have no alternating diagram.

Due Date: 15.04.19