Applied Stochastic Processes

Exercise sheet 8

Exercise 8.1 A die is rolled repeatedly. Which of the following stochastic processes $\left(X_{n}\right)_{n \in \mathbb{N}}$ are Markov chains? For those that are, determine the transition probability and in (b), additionally, the n-step transition probability.
(a) Let X_{n} denote the number of rolls at time n since the most recent six.
(b) Let X_{n} denote the largest number that has come up in the first n rolls.
(c) Let X_{n} denote the larger number of those that came up in the rolls number $n-1$ and n (the last two rolls), and we consider $\left(X_{n}\right)_{n \geq 2}$.

Exercise 8.2 Consider the three-state Markov chain with initial distribution $\mu=\delta_{a}$ an transition probability given by the following diagram

Prove that

$$
\mathbb{P}\left[X_{n}=a\right]=\frac{1}{5}+\left(\frac{1}{2}\right)^{n}\left(\frac{4}{5} \cos \frac{n \pi}{2}-\frac{2}{5} \sin \frac{n \pi}{2}\right) .
$$

Exercise 8.3 Let ξ_{1}, ξ_{2}, \ldots be i.i.d. uniform random variables on the set $\{1, \ldots, N\}$.
(a) Show that $X_{n}=\left|\left\{\xi_{1}, \ldots, \xi_{n}\right\}\right|$ is a Markov chain and compute its transition probability.
(b) Compute $\mathbb{P}\left[X_{n}=i\right]$ for $n \geq 1$ and $i \in\{1, \ldots, N\}$.

Submission deadline: 13:15, Apr. 18.
Location: During exercise class or in the tray outside of HG E 65.

Class assignment:

Students	Time \& Date	Room	Assistant
A-K	Thu 09-10	HG D 7.2	Maximilian Nitzschner
L-Z	Thu 12-13	HG D 7.2	Daniel Contreras

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.
Exercise sheets and further information are also available on: http://metaphor.ethz.ch/x/2019/fs/401-3602-00L/

