Applied Stochastic Processes

Exercise sheet 8

Exercise 8.1 A die is rolled repeatedly. Which of the following stochastic processes $(X_n)_{n \in \mathbb{N}}$ are Markov chains? For those that are, determine the transition probability and in (b), additionally, the *n*-step transition probability.

- (a) Let X_n denote the number of rolls at time *n* since the most recent six.
- (b) Let X_n denote the largest number that has come up in the first *n* rolls.
- (c) Let X_n denote the larger number of those that came up in the rolls number n-1 and n (the last two rolls), and we consider $(X_n)_{n>2}$.

Exercise 8.2 Consider the three-state Markov chain with initial distribution $\mu = \delta_a$ an transition probability given by the following diagram

Prove that

$$\mathbb{P}[X_n = a] = \frac{1}{5} + \left(\frac{1}{2}\right)^n \left(\frac{4}{5}\cos\frac{n\pi}{2} - \frac{2}{5}\sin\frac{n\pi}{2}\right).$$

Exercise 8.3 Let ξ_1, ξ_2, \ldots be i.i.d. uniform random variables on the set $\{1, \ldots, N\}$.

(a) Show that $X_n = |\{\xi_1, \ldots, \xi_n\}|$ is a Markov chain and compute its transition probability.

(b) Compute $\mathbb{P}[X_n = i]$ for $n \ge 1$ and $i \in \{1, \dots, N\}$.

Submission deadline: 13:15, Apr. 18.

Location: During exercise class or in the tray outside of HG E 65.

Class assignment:

Students	Time & Date	Room	Assistant
A-K	Thu 09-10	HG D 7.2	Maximilian Nitzschner
L-Z	Thu 12-13	HG D 7.2	Daniel Contreras

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Exercise sheets and further information are also available on: http://metaphor.ethz.ch/x/2019/fs/401-3602-00L/