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Exercise 10.0 Frog Markov chain
Let (Xn)n≥0 be the Markov chain with state space {1, 2}, initial distribution µ = (µ1, µ2) and
transition matrix

P =
(

1− p p
q 1− q

)
, where 0 < p, q ≤ 1

(a) Compute Pµ[Xn = i] for every n.

(b) Deduce the value of limn→∞ Pµ[Xn = i].

Exercise 10.1 Let E be a a countable state space and fix x ∈ E. We consider a Markov chain
(Xn)n≥0 under Px. Assume that Px[H+

x <∞] = 1. Define H(1)
x = H+

x and

H(n+1)
x = min {k > 0; XTn+k = x} for n ≥ 1,

where Ti = H
(1)
x + · · ·+H

(i)
x .

(a) Show that under Px, the random variables (H(i)
x )i≥1 are i.i.d.

(b) Show that the process defined by Nt =
∑

1≤i≤t 1{Xi=x} is a renewal process.

Exercise 10.2 Let us consider the reflected random walk, that is, the Markov chain with state
space N0 and transition probability given by p0,1 = 1 and px,x+1 = α, px,x−1 = 1 − α for x ≥ 1.
Show that for α ≤ 1/2 all the states are recurrent, and for α > 1/2 all the states are transient.

Exercise 10.3 Snakes and ladders.
A simple game of ‘snakes and ladders’ is played on a board of nine squares.

START

FINISH

1 2 3

6 5 4

7 8 9

At each turn a player tosses a fair coin and advances one or two places according to whether the
coin lands heads or tails. If you land at the foot of a ladder you climb to the top, but if you land at
the head of a snake you slide down to the tail.

(a) How many turns on average does it take to complete the game?
Hint: Call ki = Ei[H9] and find some relations between the ki for i ∈ {1, . . . , 9}.

(b) What is the probability that a player who has reached the middle square will complete the
game without slipping back to square 1?
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Solution 10.0

(a) We know that Pµ[Xn = i] = (µPn)i. The eigenvalues of P are 1 and 1 − p − q, and since
they are different P is diagonalizable. We can explicitely find the diagonalized form

P =
(

1 −p
q

1 1

)(
1 0
0 1− p− q

)( q
p+q

p
p+q

−q
p+q

q
p+q

)
.

Then,

Pn = 1
p+ q

(
q + p(1− p− q)n p− p(1− p− q)n
q − q(1− p− q)n p+ q(1− p− q)n

)
.

Therefore

Pµ[Xn = 1] = 1
p+ q

(µ1(q + p(1− p− q)n) + µ2(q − q(1− p− q)n)) ,

Pµ[Xn = 2] = 1
p+ q

(µ1(p− p(1− p− q)n) + µ2(p+ q(1− p− q)n)) .

(b) First, note that µ2 = 1− µ1. If p = q = 1 we have that

Pµ[Xn = 1] = 1
2 (1− (−1)n + 2µ1(−1)n) ,

Pµ[Xn = 2] = 1
2 (1 + (−1)n − 2µ1(−1)n) ,

which does not converges as n → ∞. On the other hand, if min{p, q} < 1, we have that
(1− p− q)n −−−−→

n→∞
0. Therefore

lim
n→∞

Pµ[Xn = 1] = q

p+ q
, lim

n→∞
Pµ[Xn = 2] = p

p+ q
,

which does not depend on the initial distribution.

Solution 10.1

(a) First, notice that for every i ≥ 1, Ti is a stopping time. Indeed,

{Ti = n} =
⋃

I⊂{1,...,n−1}
|I|=i−1

{Xj = x, j ∈ I ∪ {n}} ∩ {Xj 6= x, j ∈ {1, . . . , n− 1}\I}.

To prove that (H(i)
x )i≥1 are i.i.d. we proceed by induction on i. Suppose that H(1)

x , . . . ,H
(i)
x

are i.i.d. finite almost surely. Let f1, . . . , fi+1 : N ∪ {∞} → R measurable bounded functions.
Since f1(H(1)

x ), . . . , fi(H(i)
x ) ∈ FTi

, we have

Ex[f1(H(1)
x ) · · · fi(H(i)

x )·fi+1(H(i+1)
x )] = Ex[f1(H(1)

x ) · · · fi(H(i)
x )·Ex[fi+1(H(i+1)

x )|FTi ]]. (1)

We know that Ti < ∞ a.s. and that XTi = x a.s. Also, notice that fi+1(H(i+1)
x ) =

fi+1(min {k > 0; XTi+k = x}) = g((XTi+n)n≥0) for some measurable function g. By the
strong Markov property, we have that Px-a.s.

Ex[fi+1(H(i+1)
x )|FTi ] = Ex[fi+1(H(1)

x )].

This shows that H(i)
x has the same distribution as H(1)

x . To conclude independence, we use
last expression in (1) and the induction hypothesis to conclude that

Ex[f1(H(1)
x ) · · · fi+1(H(i+1)

x )] = Ex[f1(H(1)
x )] · · ·Ex[fi+1(H(1)

x )].

Therefore H(1)
x , . . . ,H

(i+1)
x are i.i.d. and in particular finite almost surely.
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(b) Notice that Nt =
∑

1≤i≤t 1{Xi=x} =
∑
i≥1 1{Ti≤t}, where Ti is the sum of i i.i.d. random

variables with Px[H(1)
x = 0] = 0 by definition. Hence (Nt)t≥0 is a renewal process.

Solution 10.2

(a) We will compare the reflected random walk with the following biased random walk (X̃n)n≥0
on Z. Let (Yn)n≥1 be a sequence of i.i.d. random variables independent of (Xn)n∈N under P1
with

P0[Yi = 1] = α = 1−P0[Yi = −1]. (2)

Set X̃0 = 1 and X̃n = 1 +
∑n
i=1 Yi for n ∈ N. Define H̃0 := inf{n ≥ 1; X̃n = 0}. Noting that

X1 = 1 P0-a.s. we have
P0[H+

0 <∞] = P1[H0 <∞]. (3)

Notice that, P1-a.s. the process Xn and X̃n have the same distribution before they hit 0.
This implies that

P1[H0 <∞] = P1[H̃0 <∞]. (4)

Since (X̃n)n≥0 is a Markov chain on Z starting at 1, we know by the simple Markov property
that

ρ̃1,0 = P1[H̃0 <∞] = (1− α) + αP2[H̃0 <∞].

Observe that if we start from 2 we need to hit 1 before hitting 0. Then,

P2[H̃0 <∞] = P2[H̃0 <∞, H̃1 <∞]
= E2[E2[1{H̃0<∞}

1{H̃1<∞}
|F
H̃1

]]

By the strong Markov property, we know that

E2[1{H̃0<∞}
1{H̃1<∞}

|F
H̃1

] = E2[E1[1{H̃0<∞}
]1{H̃1<∞}

] = E2[1{H̃1<∞}
]E1[1{H̃1<∞}

]

We also know that the process is stationary, then E2[1{H̃1<∞}
] = E1[1{H̃0<∞}

] = ρ1,0. Putting
all together, we get

ρ̃1,0 = (1− α) + α(ρ̃1,0)2.

This equation has solutions 1 and (1− α)/α. If α ≤ 1/2 we have (1− α)/α ≥ 1. Therefore
P0[H+

0 <∞] = ρ̃1,0 = 1 and the state 0 is recurrent for the reflected random walk. If α < 1/2
we get that (1−α)/α < 1. If ρ̃1,0 < 1 then 0 is a transient state for the reflected random walk.
We just need to rule out the possibility that ρ̃1,0 = 1. By the strong law of large numbers, we
know that P1-a.s.

X̃n

n
=

1 +
∑n
i=1 Yi
n

−−−−→
n→∞

E1[Y1] = 2α− 1 > 0.

In particular limn→∞ X̃n = +∞ P1-a.s. If ρ̃1,0 = 1, by stationarity we have that ρ̃n,n−1 = 1
for all n ∈ Z. By the strong Markov property, this means there exists a subsequence of
(X̃n)n≥0 which is arbitrarily negative, which contradicts limn→∞ X̃n = +∞ P1-a.s.

Solution 10.3

(a) Let us denote by (Xn)n≥0 the Markov chain with transition probability corresponding to
the rules of the game. Recall that Hi = inf{n ≥ 0;Xn = i}. Let us call ki = Ei[H9] for
i ∈ {1, . . . , 9}. We observe that 9 is an absorbing state and that k9 = 0. Then we can express
H9 as

H9 = f((Xn)n≥0) =
∞∑
n=0

1{Xn<9}
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where f is a measurable function. Then, for i ∈ {1, . . . , 8} we have Pi-a.s. that

ki =
9∑
j=1

Ei[H9|X1 = j]Pi[X1 = j]

=
9∑
j=1

Ei[1{X0<9} + f((Xn+1)n≥0)|X1 = j]pi,j

(1)=
9∑
j=1

(1 + Ej [f((Xn)n≥0)]) pi,j

=
9∑
j=1

(1 + kj)pi,j

where the equality (1) is justified by the Markov property. Applying this to the model, and
considering the effect of the ladders and snakes we get to the following system of equations

k1 = 1
2(1 + k7) + 1

2(1 + k5)

k4 = 1
2(1 + k5) + 1

2(1 + k1)

k5 = 1
2(1 + k1) + 1

2(1 + k7)

k7 = 1
2(1 + k4) + 1

2(1 + k9)

Since k9 = 0 we can solve this system. We obtain that the average number of turns it takes
to complete the game is given by k1 = 7.

(b) Notice that the probability that a player starting from the middle square will complete the
game without slipping to the square 1 is exactly P5[H9 < H1]. Using the Markov property
repeatedly we get

P5[H9 < H1] = p5,6 P1[H9 < H1]︸ ︷︷ ︸
=0

+p5,7P7[H9 < H1]

= 1
2(p7,8P4[H9 < H1] + p7,9 P9[H9 < H1]︸ ︷︷ ︸

=1

)

= 1
2

1
2(p4,5P5[H9 < H1] + p4,6 P1[H9 < H1]︸ ︷︷ ︸

=0

) + 1
2


= 1

8P5[H9 < H1] + 1
4

Then P5[H9 < H1] = 2/7.
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