
Appendix E: Essential supremum and infimum

These notes briefly recall the definition and main properties of the essential supremum and

infimum of a family of (possibly extended) real-valued random variables. We fix a probability

space (⌦,F , P ), an arbitrary index set ⇤ 6= ; and a family (Y�)�2⇤ of (possibly extended)

real-valued random variables on (⌦,F , P ).

Definition. A random variable Z is called essential supremum of the family (Y�)�2⇤ if

(i) Z � Y� P -a.s. for each � 2 ⇤.

(ii) Z  Z0 P -a.s. for each random variable Z0 satisfying Z0 � Y� P -a.s. for each � 2 ⇤.

We then write briefly Z = ess sup
�2⇤

Y�. The essential infimum ess inf
�2⇤

Y� is defined analogously

by simply reversing all inequalities above.

Remarks. 1) If ⇤ is countable, we can take the pointwise supremum Z(!) := sup
�2⇤

Y�(!);

this is measurable and thus a random variable. But if ⇤ is uncountable, this no longer works;

on the one hand, the pointwise supremum may fail to be measurable, and on the other hand,

(i) and (ii) can also fail, as illustrated by the subsequent example.

2) By (ii), an essential supremum is P -a.s. unique; so we only have to prove its existence.

3) The subsequent results can of course also be formulated and proved (with obvious

changes) for the essential infimum instead of supremum.

4) Since the definition and all the arguments below only involve the order structure of

IR, but not the actual values of the random variables under consideration, everything works

equally well if we allow the Y� to take values in [�1,+1].

Example. Let ⌦ = [0, 1], P = Lebesgue measure, ⇤ = [0, 1] and Y�(!) = I{�}(!). Then

sup
�2⇤

Y�(!) = 1 for each fixed !,
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and so the pointwise supremum sup
�2⇤

Y� ⌘ 1 is here measurable. But for every fixed �, we also

have Y� = 0 P -a.s. and thus obviously

ess sup
�2⇤

Y� = 0 (P -a.s.)

Proposition E.1. For any family (Y�)�2⇤ of (possibly extended) real-valued random vari-

ables, ess sup
�2⇤

Y� = Z exists, and Z = sup
j2J0

Yj for some countable subset J0 of ⇤.

Proof. Since the above definition only involves the order structure of IR, we may and do

assume without loss of generality that all Y� are bounded, uniformly in � and !. Set

c := sup
⇢

E


sup
j2J

Yj

� ����J ✓ ⇤ countable
�

and choose a sequence (Jn)n2IN of countable subsets of ⇤ such that

lim
n!1

E


sup
j2Jn

Yj

�
= c.

Then J0 :=
S

n2IN
Jn ✓ ⇤ is countable, so Z := sup

j2J0

Yj is a random variable, and E[Z] = c by

monotone integration. We claim that Z does the job, and so we check the required properties.

(ii) If Z0 � Y� P -a.s. for each � 2 ⇤, then also P [Z0 � Yj for all j 2 J0] = 1 because J0 is

countable, and thus Z0 � Z P -a.s. by the definition of Z.

(i) For each � 2 ⇤, we have Z _ Y� = max(Z, Y�) � Z, and by the definitions of c and J0,

E [Z _ Y�] = E

"
sup

j2J0[{�}
Yj

#
 c = E[Z].

Hence Z _ Y� �Z � 0 and E [Z _ Y� � Z]  0; so we must have Z _ Y� = Z P -a.s., and

thus Z � Y� P -a.s. This holds for each � 2 ⇤, and so Z satisfies (i). q.e.d.
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Corollary E.2. Suppose that (Y�)�2⇤ is directed upward , i.e., for each pair �,�0 in ⇤, there

is some µ 2 ⇤ such that max (Y�, Y�0)  Yµ; this holds in particular if the family (Y�)�2⇤ is

closed under taking maxima. Then there is a sequence (jn)n2IN in ⇤ such that

ess sup
�2⇤

Y� =% � lim
n!1

Yjn P -a.s.,

i.e., Yjn  Yjn+1 P -a.s. for each n and Yjn % ess sup
�2⇤

Y� P -a.s.

Proof. Choose J0 = {�n |n 2 IN} ✓ ⇤ countable with ess sup
�2⇤

Y� = sup
n2IN

Y�n . Set j1 := �1

and choose recursively an element jn of ⇤ such that max
�
Yjn�1 , Y�n

�
 Yjn . Then clearly

Yjn�1  Yjn  ess sup
�2⇤

Y� P -a.s. for all n,

and induction yields

Yjn � max
k=1,...,n

Y�k ,

so that

ess sup
�2⇤

Y� � % � lim
n!1

Yjn = sup
n2IN

Yjn � sup
n2IN

Y�n = ess sup
�2⇤

Y�.

This gives the assertion. q.e.d.
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