Appendix F: A Komlós-type lemma from probability theory

These notes provide a formulation and proof for an elementary lemma from probability theory which is extremely useful in many optimisation problems involving convexity. Recall that L^{0} denotes the vector space of all (equivalence classes of, for the equivalence relation of equality P-a.s.) random variables on a given probability space (Ω, \mathcal{F}, P) and taking values in \mathbb{R}. For a sequence $\left(Y_{n}\right)_{n \in \mathbb{N}}$ in L^{0}, we denote for $m \in \mathbb{N}$ by $\operatorname{conv}\left(Y_{m}, Y_{m+1}, \ldots\right)$ the set of all (finite) convex combinations of $\left(Y_{k}\right)_{k \geq m}$, i.e. all Y of the form $Y=\sum_{k=m}^{\infty} \lambda_{k} Y_{k}$ with the $\lambda_{k} \geq 0$ satisfying $\sum_{k=m}^{\infty} \lambda_{k}=1$ and at most finally many $\lambda_{k} \neq 0$.

Lemma F.1. For any sequence $\left(Y_{n}\right)_{n \in N}$ of nonnegative random variables, there exists a sequence $\left(\widetilde{Y}_{n}\right)_{n \in \mathbb{N}}$ with $\widetilde{Y}_{n} \in \operatorname{conv}\left(Y_{n}, Y_{n+1}, \ldots\right)$ for all n and $\widetilde{Y}_{n} \rightarrow Y P$-a.s. for some random variable Y taking values in $[0,+\infty]$.

Proof. It is clear that the sequence

$$
\alpha_{n}:=\inf \left\{E\left[e^{-Y}\right] \mid Y \in \operatorname{conv}\left(Y_{n}, Y_{n+1}, \ldots\right)\right\}
$$

increases to some $\alpha \leq 1$. Take a sequence $\left(Y_{n}^{\prime}\right)_{n \in N}$ with $Y_{n}^{\prime} \in \operatorname{conv}\left(Y_{n}, Y_{n+1}, \ldots\right)$ and $E\left[e^{-Y_{n}^{\prime}}\right] \leq \alpha_{n}+\frac{1}{n}$ for all n. For $\varepsilon>0$, define the set

$$
B_{\varepsilon}:=\left\{(x, y) \in[0, \infty)^{2}| | x-y \mid \geq \varepsilon \text { and } x \wedge y \leq \frac{1}{\varepsilon}\right\}
$$

(a picture will help to illustrate the situation). Since the mapping $z \mapsto e^{-z}$ is convex, we always have

$$
e^{-(x+y) / 2} \leq \frac{1}{2}\left(e^{-x}+e^{-y}\right)
$$

For $(x, y) \in B_{\varepsilon}$, a calculation gives

$$
e^{-(x+y) / 2}-\frac{1}{2}\left(e^{-x}+e^{-y}\right) \leq-\delta \quad \text { for some } \delta=\delta(\varepsilon)>0
$$

and therefore

$$
e^{-(x+y) / 2} \leq \frac{1}{2}\left(e^{-x}+e^{-y}\right)-\delta I_{B_{\varepsilon}}(x, y)
$$

Choosing $x:=Y_{m}^{\prime}$ and $y:=Y_{n}^{\prime}$ yields for $n \neq m$ that

$$
\begin{aligned}
\alpha_{m} & \leq E\left[e^{-\left(Y_{m}^{\prime}+Y_{n}^{\prime}\right) / 2}\right] \\
& \leq \frac{1}{2}\left(E\left[e^{-Y_{m}^{\prime}}\right]+E\left[e^{-Y_{n}^{\prime}}\right]\right)-\delta P\left[\left(Y_{m}^{\prime}, Y_{n}^{\prime}\right) \in B_{\varepsilon}\right] \\
& \leq \frac{1}{2}\left(\alpha_{m}+\frac{1}{m}+\alpha_{n}+\frac{1}{n}\right)-\delta P\left[\left(Y_{m}^{\prime}, Y_{n}^{\prime}\right) \in B_{\varepsilon}\right]
\end{aligned}
$$

and so we obtain that

$$
\lim _{n, m \rightarrow \infty} P\left[\left(Y_{m}^{\prime}, Y_{n}^{\prime}\right) \in B_{\varepsilon}\right]=0
$$

Considering the separate cases $|x-y|<\varepsilon$ or $x \wedge y>\frac{1}{\varepsilon}$ or $(x, y) \in B_{\varepsilon}$ leads to the estimate

$$
\left|e^{-x}-e^{-y}\right| \leq \varepsilon+2 e^{-1 / \varepsilon}+2 I_{B_{\varepsilon}}(x, y)
$$

This gives in turn that

$$
\left|E\left[e^{-Y_{m}^{\prime}}-e^{-Y_{n}^{\prime}}\right]\right| \leq \varepsilon+2 e^{-1 / \varepsilon}+2 P\left[\left(Y_{m}^{\prime}, Y_{n}^{\prime}\right) \in B_{\varepsilon}\right]
$$

so that $\left(e^{-Y_{n}^{\prime}}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{1}(P)$ and hence convergent in $L^{1}(P)$. Therefore this sequence has a subsequence $\left(e^{-\widetilde{Y}_{n}}\right)_{n \in \mathbb{N}}$ which converges P-a.s., and then the sequence $\left(\widetilde{Y}_{n}\right)_{n \in \mathbb{N}}$ is also P-a.s. convergent and has $\widetilde{Y}_{n} \in \operatorname{conv}\left(Y_{n}, Y_{n+1}, \ldots\right)$ like for Y_{n}^{\prime}. q.e.d.

Remark. If one has extra properties for the original sequence $\left(Y_{n}\right)_{n \in \mathbb{N}}$, one can also say more about the limit Y. For example, if all the Y_{n} are bounded by some constant, the same is true for the \widetilde{Y}_{n} and hence also for Y.

