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1 Introduction and motivation

The goal of this talk is to prove explicit formulas to calculate, for a given positive integer n, the
number of representations of n as a sum of k integers squares. Let us be more precise:

Definition 1.1. For positive integers k, n, we denote by

Ak(n) := #{(x1, . . . , xk) ∈ Zk : x21 + · · ·+ xkk = n}

the number of representations of n as a sum of k squared integers. Notice that the order, as well
as the sign of the xi is taken into account.

We will prove:

A4(n) = 8
∑
4-d|n

d;

A8(n) = 16
∑
d|n

(−1)n−dd3;

which are known as Jacobi’s four- and eight-square formulas. Here both sums run over positive
divisors of n. In the end, we will quickly mention other formulas for Ak(n), when k 6= 4, 8.

But why should one care about such formulas? The source of the largest number of motivating
examples lies in the following simple geometric interpretation: Ak(n) is the number of points of
Zk intersecting the sphere of radius

√
n in Rk. This also motivates why we may wish to take into

account also differences of order and/or of sign. These quantities appear frequently not only in
geometry and number theory, but also in physics and crystallography.

One classical problem in number theory is what is commonly referred to as Gauss’s circle
problem. The question is to give an estimate of the number of points of Zk that intersect the
closed ball of radius

√
x in Rk. Using our notation, this quantity is equal to

∑
n≤x

Ak(n). By a

simple geometric argument, it is easy to see that∑
n≤x

A2(n) = πx+O(
√
x).
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Just associate to each point of Z2 in the disk a square of side-length 1, approximate the num-
ber of such squares by the area of the circle, and the error will be at most proportional to the
circumference. More generally, with a similar argument:∑

n≤x

Ak(n) = ρkx
k
2 +O(x

k−1
2 ),

where ρk is the volume of the unit ball in Rk.
But we can do much better: using the exact formula for A4(n), we can prove the estimate∑

n≤x

A4(n) = ρ4x
2 +O(x log x).

Not only is this much more precise, but we can again use the formula for A4(n) to prove that the
error term is as small as possible. Even better, this implies that, for all k ≥ 4:∑

n≤x

Ak(n) = ρkx
k−1
2 +O(x

k
2
−1 log x),

which is, again, optimal. For proofs of these facts, see [3, Chapter 1.5].
As for the cases k = 2, 3, we can still do better than the geometric estimate we mentioned.

Namely, we have: ∑
n≤x

A2(n) = πx+O(x
1
3 ),

and ∑
n≤x

A3(n) =
4π

3
x

3
2 +O(x

3
4 ),

(see [3, Corollary 4.9]). However, the problem of obtaining the best possible estimates for k = 2
and k = 3 is still open.

Another concrete example is the following. A4(n) is the number of integral quaternions of
squared norm n. Using this fact, and the correspondence between unit quaternions and rotations
in R3, we can construct explicit free subgroups of SO(3) of rank p+1

2
, for a prime p ≡ 1 mod 4.

This is the main ingredient to prove the Banach-Tarski paradox, about the existence of paradoxical
decompositions for the action of SO(3) on S2 [4, Chapter 2].

However, there are easier ways to find explicit free subgroups of SO(3), so this would not
be a sufficient motivation by itself. The real interest of these specific subgroups is that they were
exploited by Lubotzky, Phillips and Sarnak to provide the first explicit constructions of Ramanujan
graphs, in 1986 and 1988. These are expanding graphs (infinite families of finite graphs that are
very well connected, despite having relatively few edges) that are optimal in a precise sense. This
construction was a huge breakthrough in the theory of expanding graphs, that is of prime interest
for both computer scientists and group theorists. Indeed, on the one hand, expanding graphs are
very useful to build efficient networks; on the other hand, they all arise as Cayley graphs of finite
quotients of groups with an interesting dynamical property (called property (τ), a generalization
of Kazhdan’s property (T)). See [4] for a thorough treatment (in particular chapter 7 for the
construction of LPS graphs).
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1.1 Idea of the proof

We will follow closely the approach taken in [1, Chapter VII]. To characterize Ak(n), the idea is
to encode them in a generating function

f(z) =
∞∑
n=0

Ak(n)eπinz,

and identify this function with another one, whose Fourier series we know well. For this we will
use what we have already seen in talk 4.

Definition 1.2. The Jacobi theta function is defined by

θ(z) :=
∞∑

n=−∞

eπin
2z =

∞∑
n=−∞

hn
2

,

where h = eπiz. Note that our definition differs from the original one by a imaginary part instead
of a minus sign, i.e., the original function is our θ(iz). This will not impact the properties that
we will use in the talk, except that this function is now defined and holomorphic on H instead of
{z ∈ C : Re(z) > 0}.

Using usual multiplication of series, one immediately computes that

θ(z)k =

(
∞∑

n=−∞

hn
2

)k

=
∞∑
n=0

Ak(n)hn.

Therefore, our goal will be to find formulas for θ4 and θ8. For this, we will characterize the
function θ by some of its properties and use Eisenstein series to create functions satisfying theses
characterizations.
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2 Sums of eight squares

2.1 A characterization of the theta function

We first recall some properties of θ and prove a few other ones. In what follows, we will always
use the notation z = x+ iy.

Proposition 2.1. The function θ : H→ C satisfies the following formulas:

(a) θ(z + 2) = θ(z);

(b) θ(−1/z) =
√
z/iθ(z);

(c) limy→∞ θ(z) = 1;

(d) limy→∞

√
i
z
θ(1− 1

z
)e−

πiz
4 = 2;

(e) θ does not vanish on H.

Proof. (a) Obvious since e2πin
2

= 1 for any integer n.

(b) This is (almost) a reformulation of Proposition 3.3 of talk 4. The proof can also be done in
the same way as point (d).

(c) This is a reformulation of Corollary 3.11 of talk 4.

(d) To prove this, we will use the formula

θ

(
1− 1

z

)
=

√
z

i

∞∑
n=−∞

eπiz(n+
1
2
)2 .

We follow the same idea as in Proposition 3.3 of talk 4. We denote, for a fixed z, the functions
f(x) := e−πx

2
and g(x) := eπizx

2
= f(

√
−izx). Usual properties of the Fourier transform give

us that

ĝ(x) =
1√
−iz

f̂

(
x√
−iz

)
.

We use the following version of Poisson summation formula which can be proven in the same
way as the usual one:

∞∑
n=−∞

f(n+ y) =
∞∑

n=−∞

f̂(n)e−2πiny.

We take y = 1
2
, so g(n + y) = eπiz(x+

1
2
)2 . Since f̂ = f , using the Poisson summation formula,

we get
∞∑

n=−∞

eπiz(n+
1
2
)2 =

1√
−iz

∞∑
n=−∞

e
−π

(
n√
−iz

)2

e−πin =

√
i

z

∞∑
n=−∞

e−πi
n2

z e−πin.

We just have to notice that e−πin = eπin
2

for any n ∈ Z. We conclude that

∞∑
n=−∞

eπiz(n+
1
2
)2 =

√
i

z

∞∑
n=−∞

eπin
2(1− 1

z ) =

√
i

z
θ

(
1− 1

z

)
.
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Now, from the formula, we can deduce that

lim
y→∞

√
z

i

−1

θ(1− 1

z
)e−

πiz
4 = lim

y→∞

∞∑
n=−∞

eπiz(n
2+n).

Then the result follows, since the sum converges uniformly (for y ≥ C > 0, see the proof of
Proposition 3.2 of talk 4) and each term except for n = −1 and n = 0 goes to 0.

(e) We will see later that we only need to prove that θ(z), θ(z+1) and θ(1−1/z) do not vanish in

the usual fundamental domain F of SL(2,Z). Since the minimal imaginary part in F is
√
3
2

,
we get for the first one

|θ(z)− 1| ≤ 2
∞∑
n=1

e−πn
2y ≤ 2

∞∑
n=1

e−πn
√
3

2 = 2
e−π

√
3

2

1− e−π
√
3

2

≤ 0.2

So θ(z) does not vanish in F . The same computation works for the second one, since |eπin2| = 1.
For the last one, we use again the formula

θ

(
1− 1

z

)
=

√
z

i

∞∑
n=−∞

eπiz(n+
1
2
)2 .

So, up to a factor that does not vanish in H, we get

∞∑
n=−∞

eπiz(n
2+n)

and one can use the same argument as before.

What will see now is that in fact these four first properties characterize (powers of) the theta
function in some sense.

Proposition 2.2. Let r ∈ Z, and let f : H → C be a holomorphic function with the following
properties:

(a) f(z + 2) = f(z);

(b) f(−1
z
) =

√
z
i

r
f(z);

(c) C := lim
y→∞

f(z) exists;

(d) lim
y→∞

√
z
i

−r
f(1− 1

z
)e−

πirz
4 exists.

Then f(z) = C · θr(z).

Remark. We will prove that f(z) = C · θr(z) for some constant C. Taking limits on both sides, it
follows that C = lim

y→∞
f(z).
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Proof. To prove this proposition, we first reduce to the case r = 0. We set f̃(z) := f(z)
θr(z)

. Since θ

doesn’t vanish anywhere, we immediately see that f̃ is holomorphic. Moreover, it always satisfies
the previous assumptions for r = 0. Hence, we just need to prove that f̃ is a constant function
and the proposition follows. This is what the next proposition tell us.

Proposition 2.3. Let f : H→ C be an holomorphic function with the properties:

(a) f(z + 2) = f(z);

(b) f(−1
z
) = f(z);

(c) Both limits a := limy→∞ f(z) and b := limy→∞ f(1− 1/z) exist.

Then f is a constant function.

To prove this proposition, we first need to introduce a subgroup of SL(2,Z).

Definition 2.4. The theta group Γθ is the subgroup of SL(2,Z) generated by the two matrices:

Γθ :=

〈(
1 2
0 1

)
,

(
0 −1
1 0

)〉
=
〈
T 2, S

〉
.

It is also characterized as the group of all matrices

(
a b
c d

)
∈ SL(2,Z)) satisfying

a+ b+ c+ d = 0 mod 2.

Figure 1: The fundamental domain Fθ.

Lemma 2.5.

Fθ := F ∪
(

1 1
0 1

)
F ∪

(
1 1
0 1

)(
0 −1
1 0

)
F

is a fundamental domain for the theta group Γθ, where F is the usual fundamental domain for
SL(2,Z).
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Remark. 1. From this, we can deduce what was missing in Proposition 2.1 (e) for the non-
vanishing of the function θ : if z ∈ F , then z, z + 1 and 1 − 1

z
cover the three parts of Fθ

and since θ is invariant under Γθ, we cover any z ∈ H.

2. This fundamental domain is given by the equations

Fθ =

{
z ∈ H

∣∣∣∣−1

2
≤ Re(x) ≤ 3

2
, 1 ≤ |z| and 1 ≤

∣∣∣∣z − 3

2

∣∣∣∣} .
Proof. We will only need that Γθ · Fθ = H so we will only prove that for any z ∈ H, there exists

some A =

(
a b
c d

)
∈ Γθ such that Az ∈ Fθ. For this, recall that Im(Az) = Im(z)

|cz+d|2 . Varying A,

we get a discrete set of points given by all the possible values of cz+ d. Between all of them, there
musts exist one of minimal modulus, given by some matrix A. Multiplying by a multiple of T 2,
we can make sure that |Re(z)| ≤ 1. The way we chose A tells us in particular that

Im(Az) ≥ Im(SAz) =
Im(Az)

|Az|2
,

i.e., |Az| ≥ 1. We have proved that for any z ∈ H, there exists a matrix A ∈ Γθ such that Az
is in the region given by −1 ≤ Re(z) ≤ 1 and |z| ≥ 1. In particular, z ∈ Fθ if −1

2
≤ Re(z). In the

other case, we just have to shift Az by T 2 to get the result.

Proof of 2.3. We define
H(z) := (f(z)− a)(f(z)− b).

By assumption, we have that

lim
y→∞

H(z) = 0 and lim
Fθ3z→1

H(z) = 0.

Since H is continuous, it must be bounded in an open neighbourhood of infinity and also in an
open neighbourhood of 1 inside Fθ. If we remove these two neighbourhood, what is left is a compact
subset of Γθ where, by continuity, H must be also bounded. But we also have H(z + 2) = H(z)
and H(−1/z) = H(z) so H is invariant the action Γθ hence it is bounded in H. Therefore, by
the maximum principle, it must be constant. Looking at the limits before, we see that H is zero
everywhere. So h take values a or b. Since it is continuous on H, it must be constant.

2.2 Proof of the formula

In this section, we want to apply Proposition 2.2 to find a formula for θ8 and hence for A8(n). For
this, we need a function satisfying the following:

(a) f(z + 2) = f(z);

(b) f(−1
z
) = z4f(z);

(c) lim
y→∞

f(z) exists;

(d) lim
y→∞

z−4f(1− 1
z
)e−2πiz exists.
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A first candidate would be f = G4. We already saw in the proof of Theorem 2.4 of talk 2 that
(a) and (b) hold since G4 is a modular form and moreover that lim

y→∞
f(z) = 2ζ(4). Unfortunately,

G4(1− 1
z
) = G4(−1

z
) = z4G4(z) and so

z−4G4(1−
1

z
)e−2πiz = G4(z)e−2πiz.

But we just saw that G4 has a non-zero limit as y →∞ and |e−2πiz| = e2πy so the limit doesn’t
exist. A way to rectify this argument is to consider the following function:

Proposition 2.6. For any integer k > 2, the function gk(z) := Gk(
z+1
2

) satisfies the following:

(a) gk(z + 2) = gk(z);

(b) gk(−1/z) = zkgk(z);

(c) limy→∞ gk(z) = 2ζ(k).

Proof. The first and last formulas are again clear from what we already saw on Gk in talk 2. For
the second formula, consider

A :=

(
1 −1
2 −1

)
∈ SL(2,Z).

Then

A · z + 1

2
=

z+1
2
− 1

2 z+1
2
− 1

=
z−1
2

z
=

1

2
− 1

2z
=
−1
z

+ 1

2
.

Hence, by modularity of Gk, we conclude

gk(−1/z) = Gk

(
A · z + 1

2

)
=

(
2
z + 1

2
− 1

)k
Gk(

z + 1

2
) = zkgk(z).

Again, g4 does not satisfy the last condition since

g4(1− 1/z) = G4(−1/2z) = (2z)4G4(2z),

so the same argument will work as for G4.
To get out of this convergence problem, the idea is to take a linear combination of G4 and g4

in such a way that the limit of the combination exists. Let a, b ∈ C and

f(z) := aG4(z) + bg4(z).

The three first properties obviously hold by linearity and lim
y→∞

f(z) = 2(a + b)ζ(4). We also

have already computed

z−4f(1− 1/z)e−2πiz = (aG4(z) + 16bG4(2z))e−2πiz.

Denote q = e2πiz. We saw in talk 2 that G4 admits a Fourier series, i.e., there exist coefficients
a0, a1, a2, ... such that

G4(z) = a0 + a1q + a2q
2 + ...
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Rewriting the equality above, we get

z−4f(1− 1/z)e−2πiz = q−1(a0(a+ 16b) +O(q)).

Hence, if a+ 16b = 0, the series converges as y →∞ since then q → 0. We conclude that there
exists a non-zero constant C such that

f(z) = Cθ8(z).

Explicitly, C = 2(a + b)ζ(4). We would like to have C = 1. Combining with a + 16b = 0, we
get that b = − 1

30ζ(4)
and a = 8

15ζ(4)
. We proved the identity (recall that ζ(4) = π4

90
):

θ8(z) =
16

30ζ(4)
G4(z)− 1

30ζ(4)
G4

(
z + 1

2

)
=

3

π4

(
16G4(z)−G4

(
z + 1

2

))
.

Theorem 2.7 (C.G.J. Jacobi, 1829). For any n ∈ N, we have

A8(n) = 16
∑
d|n

(−1)n−dd3.

Proof. We just have to identify the Fourier series of G4 and θ8. We saw in talk 2 that

G4(z) = 2ζ(4) +
16π4

3

∞∑
n=1

σ3(n)e2πinz.

Hence, the identity above can be rewritten as

∞∑
n=0

A8(n)hn = 1 + 162

∞∑
n=1

σ3(n)h2n − 16
∞∑
n=1

σ3(n)hn(−1)n.

where h := eπiz. Hence, we immediately get A8(0) = 1 and for the odd n, A8(n) = 16σ3(n)
which is what we want since n − d will always be even for any d|n. For the even n, we write
n = 2rm, where m is odd, to get

A8(n) = 162σ3(2
r−1m)− 16σ3(2

rm) = 162
∑

d|2r−1m

d3 − 16
∑
d|2rm

d3.

To conclude, we group all the powers of two of the same divisor of m.

A8(n) = 162
∑
d|m

(d3 + (2d)3 + ...+ (2r−1d)3)− 16
∑
d|m

(d3 + (2d)3 + ...+ (2rd)3)

= 2 · 16
∑
d|m

((2d)3 + (4d)3 + ...+ (2rd)3)− 16
∑
d|m

(d3 + (2d)3 + ...+ (2rd)3)

= 16
∑
d|n

(−1)n−dd3

Because the only divisors that get a minus sign are the odd ones.

Remark. Actually, using that a = 8
15ζ(4)

, b = − 1
30ζ(4)

and comparing the first h-coefficient, this

expression for θ8 provides a proof that ζ(4) = π4

90
.
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3 Sums of four squares

The goal of the second part of the talk is to prove the following formula for A4(n):

Theorem 3.1 (C.G.J. Jacobi, 24.4.1828).

A4(n) = 8
∑
4-d|n

d.

Looking at the proof of the formula for A8(n), the most natural thing to do would be to try and
find an expression for θ4 using the Eisenstein series of weight 2. However, a little more work has to
be done in order to prove the properties in Proposition 2.2, since G2 does not converge absolutely,
so we need to be more careful when looking at the effect of fractional linear transformations on
it. The first subsection will be devoted to developing the necessary theory to establish those
properties. Then we will be able to proceed in an analogous way to the previous section.

3.1 The Eisenstein series of weight 2

We start by recalling what we already know from talk 2. We can define the Eisenstein series of
weight 2 as:

G2(z) :=
∞∑

m=−∞


∞∑

n=−∞
n 6=0 if m=0

(mz + n)−2

 .

Even though Gk is absolutely convergent for k > 2, so the order of summation does not matter,
here the brackets must be taken into account. Forcing this order of summation, we have seen in
talk 2 (definition 2.6) that

G2(z) = 2ζ(2)− 8π2

∞∑
n=1

σ1(n)qn,

where q = e2πiz. Furthermore, we saw that this sum converges absolutely to a holomorphic function.
But we know from talk 3 (theorem 1.4) that there are no modular forms of weight 2, so G2 cannot
possibly be modular. Still, we can say something about the effect of applying a fractional linear
transformation to G2. The following result was already mentioned in talk 2 (lemma 2.7):

Proposition 3.2. Let z ∈ H and

(
a b
c d

)
∈ SL(2,Z). Then

G2

(
az + b

cz + d

)
= (cz + d)2G2(z)− 2πic(cz + d).

In particular:

G2

(
−1

z

)
= z2G2(z)− 2πiz

and
G2(z + 1) = G2(z).
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Proof. We follow [2, Proposition 6 p. 19].

We will exploit the fact that, even though the Eisenstein series of weight 2 does not converge
absolutely, it is extremely close to doing that. We will therefore insert a convergence factor and
let it go to 0 to deduce the theorem.

For any ε ∈ R (we will shortly use the behaviour also for negative ε), we define:

G2,ε(z) :=
∑

(0,0) 6=(m,n)∈Z2

1

(mz + n)2|mz + n|2ε
.

The argument used in talk 2 to show absolute convergence and modularity of Gk(z), for k > 2,
can be applied to show that for all ε > 0, this sum converges absolutely and satisfies:

G2,ε

(
az + b

cz + d

)
= (cz + d)2|cz + d|2εG2,ε(z).

Therefore, if G∗2(z) := lim
ε→0

G2,ε(z) exists, it will also transform like a weight 2 modular function.

The heart of the proof is showing that the limit exists, and can be expressed in terms of G2(z).

To this end, we introduce the following auxiliary function:

Iε(z) =

∞∫
−∞

dt

(z + t)2|z + t|2ε
=

∞∑
n=−∞

n+1∫
n

dt

(z + t)2|z + t|2ε
.

Notice that this integral is well-defined for z ∈ H, and converges absolutely for z ∈ H and ε > −1/2.
We introduce this function because the following difference is particularly well-behaved:

G2,ε(z)− 2
∞∑
m=1

Iε(mz) = 2
∞∑
n=1

1

n2+2ε
+ 2

∞∑
m=1

∞∑
n=−∞

1

(mz + n)2|mz + n|2ε
− 2

∞∑
m=1

Iε(mz).

We know that the sums defining G2,ε are absolutely convergent, for ε. The last sum appearing
is also absolutely convergent, for ε > 0. Indeed, setting u = t/m, we have:

Iε(mz) =

∞∫
−∞

dt

(mz + t)2|mz + t|2ε
=

∞∫
−∞

mdu

(mz +mu)2|mz +mu|2ε
=

1

m1+2ε
Iε(z);

so

∞∑
m=1

Iε(mz) = Iε(z)
∞∑
m=1

1

m1+2ε
= Iε(z)ζ(1 + 2ε).

Therefore for ε > 0, by absolute convergence of both sums we can write:

G2,ε(z)−2
∞∑
m=1

Iε(mz) = 2
∞∑
n=1

1

n2+2ε
+2

∞∑
m=1

∞∑
n=−∞

 1

(mz + n)2|mz + n|2ε
−

n+1∫
n

dt

(mz + t)2|mz + t|2ε

 .

11



The first sum converges absolutely for ε > −1/2. As for the second one, let f(t) be the in-
tegrand. Recall that by the mean value theorem, for n ≤ t ≤ (n + 1), we have |f(t) − f(n)| ≤

sup
n≤u≤(n+1)

|f ′(u)| = O(|mz + n|−3−2ε). Therefore the absolute value of the summand can be esti-

mated as follows:

|f(n)−
n+1∫
n

f(t)dt| = |
n+1∫
n

f(n)− f(t)dt| ≤
n+1∫
n

|f(t)− f(n)|dt = O(|mz + n|−3−2ε).

This shows that the second sum also converges absolutely for ε > −1/2. This allows us to calculate
the limit of the right-hand-side as ε→ 0 simply by plugging in ε = 0. This gives:

2ζ(2) + 2
∞∑
m=1

∞∑
n=−∞

 1

(mz + n)2
−

n+1∫
n

dt

(mz + t)2

 .
Recall that, for a fixed m, the sum over n ∈ Z converges absolutely, so this allows us to change

the order of summation and get:

2ζ(2) + 2
∞∑
m=1

 ∞∑
n=−∞

1

(mz + n)2
−

∞∫
−∞

dt

(mz + t)2

 = 2ζ(2) + 2
∞∑
m=1

∞∑
n=−∞

1

(mz + n)2
= G2(z),

where we used that

∞∫
−∞

dt

(mz + t)2
= − 1

mz + t

∣∣∣∣∞
−∞

= 0.

To recapitulate, so far we have:

G2(z) = lim
ε→0

(
G2,ε(z)− 2

∞∑
m=1

Iε(mz)

)
.

Now we need to estimate the sum to the right-hand-side of this equality. For ε > −1/2:

Iε(x+ iy) =

∞∫
−∞

dt

(x+ t+ iy)2(|x+ t+ iy|2)ε
=

∞∫
−∞

dt

((x+ t) + iy)2((x+ t)2 + y2)ε
.

We then set u = (x+ t)/y (recall that y > 0) to get:

Iε(x+ iy) =

∞∫
−∞

y du

(yu+ iy)2(y2u2 + y2)ε
=

1

y1+2ε

∞∫
−∞

du

(u+ i)2(u2 + 1)ε
=:

1

y1+2ε
I(ε).

Therefore, for all ε > 0:

12



∞∑
m=1

Iε(mz) =
∞∑
m=1

1

(my)1+2ε
I(ε) =

1

y1+2ε
I(ε)

∞∑
m=1

1

m1+2ε
=

1

y1+2ε
I(ε)ζ(1 + 2ε).

We are left to estimate this last term. First, we estimate I(ε). We have:

I(0) =

∞∫
−∞

du

(u+ i)2
= − 1

u+ i

∣∣∣∣∞
−∞

= 0.

Using the Leibniz integral rule to differentiate an integral function, we also have:

I ′(0) =
d

dε

∣∣∣∣
ε=0

∞∫
−∞

du

(u+ i)2(u2 + 1)ε
=

∞∫
−∞

(
∂

∂ε

∣∣∣∣
ε=0

1

(u+ i)2(u2 + 1)ε

)
du =

=

∞∫
−∞

− log(u2 + 1)

(u+ i)2
du =

(
1 + log(u2 + 1)

u+ i
− arctan(u)

)∣∣∣∣∞
−∞

= −π.

So I(ε) = −πε+O(ε2).

As for the second factor, we know from talk 4 (theorem 4.1) that ζ has a simple pole at 1 with
residue 1, so its Laurent expansion around 1 is ζ(s) = 1

s−1 + O(1). Applying this to s = (1 + 2ε)

we obtain ζ(1 + 2ε) = 1
2ε

+O(1). Therefore:

∞∑
m=1

Iε(mz) =
1

y1+2ε
I(ε)ζ(1 + 2ε) =

1

y1+2ε

(
−πε+O(ε2)

)( 1

2ε
+O(1)

)
=

=
1

y1+2ε

−π
2

(1 +O(ε)) −→
ε→0
− π

2y
.

We conclude that

G∗2(z) = lim
ε→0

G2,ε(z) = G2(z) + lim
ε→o

2
∞∑
m=1

Iε(mz) = G2(z)− π

y
.

Moreover, since this limit exists, it transforms like a weight 2 modular form. Therefore we
obtain the final result with one last calculation:

G2

(
az + b

cz + d

)
= G∗2

(
az + b

cz + d

)
+

π

Im
(
az+b
cz+d

) = (cz + d)2G∗2(z) +
π|cz + d|2

y
=

= (cz + d)2G2(z) +
π

y

(
|cz + d|2 − (cz + d)2

)
= (cz + d)2G2(z) +

π(cz + d)

y
((cz̄ + d)− (cz + d)) =

= (cz + d)2G2(z) +
π(cz + d)

y
(2ciy) = (cz + d)2G2(z)− 2πic(cz + d).

13



3.2 Proof of the formula

Analogously to the previous section, we want to use Proposition 2.2 to find an expression for θ4.
This time we look at:

f(z) := aG2

(z
2

)
+ bG2(2z).

We need to choose the coefficients a and b so that the following are satisfied:

(a) f(z + 2) = f(z);

(b) f(−1
z
) = −z2f(z);

(c) lim
y→∞

f(z) exists;

(d) lim
y→∞

z−2f(1− 1
z
)e−πiz exists.

Moreover, in order to obtain θ4, we want the limit in (c) to be equal to 1.

(a) is satisfied, since G2 is already 1-periodic (proposition 3.2). To obtain (b), we plug in the
formula from Proposition 3.2:

f

(
−1

z

)
= aG2

(
− 1

2z

)
+ bG2

(
− 1

z/2

)
= a

(
4z2G2(2z)− 4πiz

)
+ b

(
z2

4
G2

(z
2

)
− πiz

)
=

= z2
(

4aG2(2z) +
b

4
G2

(z
2

))
− πiz(4a+ b).

We want to get rid of the error term, which forces us to set b = −4a. This actually works out for
the z2 term as well, and we obtain:

f(z) = a
(
G2

(z
2

)
− 4G2(2z)

)
;

f

(
−1

z

)
= −z2f(z).

To prove (c), we will use the Fourier expansion of G2, which we recall for convenience:

G2(z) = 2ζ(2)− 8π2

∞∑
n=1

σ1(n)qn.

Remember from talk 2 that this converges absolutely. Therefore we can exchange limit and sum
to get:

lim
y→∞

∞∑
n=1

σ1(n)qn =
∞∑
n=1

lim
y→∞

σ1(n)qn = 0,

and so
lim
y→∞

G2(z) = 2ζ(2).

Applying this to f yields:
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lim
y→∞

f(z) = a lim
y→∞

(
G2

(z
2

)
− 4G2(2z)

)
= −6aζ(2).

Therefore the limit exists, and setting a = − 1
6ζ(2)

we obtain (c), as we wanted.

It remains to prove condition (d). In order to calculate f(1− 1
z
), we need to look at G2(2− 2

z
)

and G2(
1−1/z

2
). In both cases, we can use Proposition 3.2 to transform these expressions. For the

first one, using periodicity and the formula for circle inversion, we have:

G2

(
2− 2

z

)
= G2

(
− 1

z/2

)
=
(z

2

)2
G2

(z
2

)
− πiz.

As for the second one, we would like to use the transformation z 7→ 1−1/z
2

= z−1
2z

, but the
determinant is 2, and not 1. So instead we calculate:

G2

(
z − 1

2z − 1

)
= (2z − 1)2G2(z)− 4πi(2z − 1).

Then, replacing z by (z + 1)/2 we get:

G2

(
1− 1/z

2

)
= G2

(
z − 1

2z

)
= G2

(
(z + 1)/2− 1

2(z + 1)/2− 1

)
= z2G2

(
z + 1

2

)
− 4πiz.

This gives us an expression for the limit we want to calculate:

z−2f

(
1− 1

z

)
= z−2a

(
G2

(
1− 1/z

2

)
− 4G2

(
2− 2

z

))
= a

(
G2

(
z + 1

2

)
−G2

(z
2

))
.

Now recall that G2(z) can be written as a power series in q = e2πiz. Therefore, writing h = eπiz,
we have:

G2

(z
2

)
= 2ζ(2)− 8π2

∞∑
n=1

σ1(n)hn;

G2

(
z + 1

2

)
= 2ζ(2)− 8π2

∞∑
n=1

σ1(n)hneπi = 2ζ(2) + 8π2

∞∑
n=1

σ1(n)hn.

Combining these two (absolutely converging) power series with the previous result, we have:

z−2f

(
1− 1

z

)
h−1 = 16aπ2

∞∑
n=1

σ1(n)hn−1 = 16aπ2 + 16aπ2

∞∑
n=1

σ1(n+ 1)hn.

Once again, by absolute convergence, the sum on the right goes to 0 as Im(z)→∞, so:

lim
y→∞

z−2f

(
1− 1

z

)
h−1 = 16aπ2

exists, which proves (d).

We have thus verified all the conditions necessary to apply Proposition 2.2. Recalling that
a = − 1

6ζ(2)
= − 1

π2 , we conclude:
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θ4(z) = f(z) = a
(
G2

(z
2

)
− 4G2(2z)

)
=

4G2(2z)−G2(z/2)

π2
.

Passing to the h-expansions, where as usual h = eπiz:

∞∑
n=0

A4(n)hn =
1

π2

(
4

(
2ζ(2)− 8π2

∞∑
n=1

σ1(n)h4n

)
−

(
2ζ(2)− 8π2

∞∑
n=1

σ1(n)hn

))
=

= 1 + 8

 ∞∑
n=1

σ1(n)hn − 4
∞∑
n=1
4|n

σ1

(n
4

)
hn

 =: 1 + 8
∞∑
n=1

anh
n.

Now let us look closely at second sum in the next-to-last expression. If 4|n, then:

σ1

(n
4

)
=
∑
d|n

4

d.

by definition. But instead of summing over the divisors of n
4
, we can sum over the divisors of n

that are also divisible by 4:

σ1

(n
4

)
=
∑
4|d|n

d

4
.

The advantage of this second expression is that it is also well-defined for n not divisible by 4, in
which case it is zero, so we do not need to separate cases. Finally, comparing the coefficients, for
all n ≥ 1:

A4(n) = 8an = 8

∑
d|n

d− 4
∑
4|d|n

d

4

 = 8
∑
4-d|n

d;

which is what we wanted to prove.

Remark. Using that a = 1
6ζ(2)

and comparing the first h-coefficient, this expression for θ4 provides

a proof that ζ(2) = π2

6
.
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4 Other formulae

We end this talk by discussing the general problem of finding explicit formulas for Ak(n). Gross-
wald’s book [5] provides a thorough treatment of what was known in the 80’s, and more recently
further progress has been made.

The problem of determining the number of representations of a number as a sum of squares
is very old. Before modular forms were even introduced, the following theorems were proven by
elementary methods.

Theorem 4.1 (Sums of two squares - Gauss, 1801). For an integer n, denote by d(n) the number
of divisors of n. Let n = 2fn1n3, where n1 =

∏
p≡1 mod 4

prp and n3 =
∏

q≡3 mod 4

qsq . Then:

• If some sq is odd, then A2(n) = 0.

• If all sq are even, then A2(n) = 4d(n1).

For a proof, see [5, Chapter 2].

Theorem 4.2 (Sum of four squares - Lagrange, 1770). A4(n) 6= 0 for all positive integers n.

Of course this follows from Jacobi’s four-square formula, but it was proven via elementary
methods much earlier. For a proof, see [5, Chapter 3].

Theorem 4.3 (Sum of three squares - Legendre, 1798). A3(n) 6= 0 if and only if n is not of the
form 4ab, where b ≡ 7 mod 8. Moreover, A3(4

an) = A3(n).

As for the formula for the exact value of A3(n), it does exist but it is much more complicated.
For proofs, see [5, Chapter 4].

To go beyond these results, some more sophisticated machinery has to be introduced. For
instance, we proved formulas for A4(n) and A8(n) using modular forms. However, to get more
formulas, a different method is needed: if we go on using the Eisenstein series, we run into trouble
in higher degrees with the appearance of more modular forms, including cusp forms. It is still
possible to use more complex versions of the theta function to prove formulas for Ak(n), where
k ≤ 12 is even. For proofs see [5, Chapter 9].

There are other, related formulas that one can study. For example, one may wish to look at
representations as sums of non-zero integer squares (see [5, Chapter 6]), or count essentially distinct
representations, that is, representations that cannot be obtained from each other by permuting
the summands or changing their sign (see [5, Chapter 7]).

The greatest breakthrough of the last years is a result of Milne [6], proven in 2000, giving exact
formulas for A4k2(n) and A4k(k+1)(n) for all k. The paper in which Milne proves these formulas is
around 150 pages long, spanning a whole issue of the Ramanujan journal.
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Birkhäuser, 1994.

[5] E. Grosswald: Representations of Integers as Sums of Squares. Springer, 1985.

[6] S.C. Milne: Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions,
Continued Fractions, and Schur Functions. The Ramanujan Journal, 6, 7–149, 2002.

18


