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1 Binary Quadratic Forms

This part of the talk follows the book A primer of analytic number theory: from
Pythagoras to Riemann by Stopple [2] closely. We consider the binary quadratic
forms in two variables

Q(x, y) = ax2 + bxy + cy2

of discriminant b2 − 4ac = d. Here, a, b, c are integers. Additionally, we only
consider the case gcd(a, b, c) = 1. These forms are called primitive. A form Q
represents an integer m if there are integers x0 and y0 such that Q(x0, y0) = m.
We will write forms compactly as Q = (a, b, c). These forms were already studied
in the seventeenth and eighteenth centuries by Fermat and Euler among others.
Later, Gauss put the theory of forms onto solid footing in his book Disquisitiones
Arithmeticae. They investigated questions like:

• What integers can be represented by a given form?

• What forms can represent a given integer?

• Additionally, if the integer is representated by the form, how many repre-
sentations exist and how do we find them?

In the mid-nineteenth century it became clear that studying binary quadratic
forms is essentially the same as studying the class groups of quadratic fields.
Here, we focus on the forms, as this allows us to derive a version of the class
number formula in the scope of this talk. In the first part of the talk, we will
derive some facts about the binary quadratic forms. In the second part, we
prove the class number formula, which connects analytic and algebraic number
theory.

Whether m is represented by 2x2+3y2 is clearly the same question as asking
whether 3x2 + 2y2 represents m. In a similar fashion, though less obvious, it is
also the same as considering the form 2x2 + 4xy + 5y2. As 2x2 + 4xy + 5y2 =
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2(x+ y)2 + 3y2, we just changed the variables (x, y) to (x+ y, y). This change
of variables corresponds to the matrix

M =

[
1 0
1 1

]
as (x, y)M = (x+y, y). Gauss introduced an equivalence relation between forms
to avoid this redundancy.

Definition 1.1. Two forms Q = (a, b, c) and Q′ = (a′, b′, c′) are equivalent,
Q ∼ Q′, if there is a matrix M ∈ SL2(Z) such that

Q′(x, y) = Q((x, y)M).

Since it is straight forward to show that this actually defines a proper equiv-
alence relation, we omit that here. The point of this equivalence relation is that
if Q ∼ Q′ they represent the same integers.

We restrict ourselves to the case d < 0. As

4a(ax2 + bxy + cy2) = (2ax+ by)2 + (4ac− b2)y2

we get that the right hand side is always positive. We additionally restrict
ourselves to a > 0. This means we only talk about forms which take only positive
values. We call them positive definite. The case a < 0 is closely connected. In

that case, the forms take only negative values. With M =

[
0 1
−1 0

]
we change

(a, b, c) to (c,−b, a) and thus we also have c > 0.
We can also write

Q(x, y) = (x, y)

[
a b/2
b/2 c

](
x

y

)
and if Q′ ∼ Q via M , then

Q′(x, y) = (x, y)M

[
a b/2
b/2 c

]
MT

(
x

y

)
.

From this it easily follows that Q′ has the same discriminant as Q.
A natural question to ask is how many equivalence classes there are?

Definition 1.2. We call the number of equivalence classes for discriminant
d < 0 the class number h(d).

Now we will prove that the class number is always finite.

Theorem 1.3. For each d < 0, the class number h(d) is finite. In fact, every
form is equivalent to a form (a, b, c) with

|b| ≤ a ≤ c.
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Proof. Take any positive definite form with determinant d. If the inequality
already holds, we are done. In the other case, we will show that we can find an
equivalent form Q′ with a′ + c′ < a+ c. We iterate this procedure. As the first
an last coefficients are positive and there are only finitely many positive integers
smaller than a+ c, the process will stop at some point and we are done.

Let σ(b) be the sign of b. We iterate the following until the inequalities are
satisfied:

• If a < |b|, the matrix[
1 0

−σ(b) 1

]
changes (x, y) to (x− σ(b)y, y).

We get the form

ax2 + (b− 2σ(b)a)xy + (a+ c− |b|)y2.

As a < |b| we get that

a′ + c′ = 2a+ c− |b| < a+ c.

We managed to decrease the sum.

• If a ≥ |b| and c < a, we change the form to (c,−b, a) with the matrix[
0 1
−1 0

]
. After this step we either have a < |b| or we are done.

We proved that each form is equivalent to a form with |b| ≤ a ≤ c. Now we
prove that for each d there are only finitely many forms with this property. We
have

3a2 = 4a2 − a2 ≤ 4ac− b2 = −d = |d|.

Thus |b| ≤ a ≤
√
|d|/3. Therefore there are only finitely many possible choices

for a and b. As b2 − 4ac = d choosing a and b also fixes c. This finishes the
proof.

With this theorem we get an upper bound on the class number. For fixed
d, we can now search for all forms satisfying the inequalities. To actually get
the exact class number, we need to answer another question: Are there forms
which satisfy the inequalities that are equivalent to each other? The following
Lemma will help us:

Lemma 1.4. Suppose that the quadratic form Q(x, y) = ax2+bxy+cy2 satisfies
|b| ≤ a ≤ c. Then, a is the minimum of Q; that is, for all (x, y) 6= (0, 0),

Q(x, y) ≥ a

Furthermore, ac is the minimum of products of values of Q. In other words, if
(x, y) and (u, v) do not lie on the same line through the origin, then

Q(x, y)Q(u, v) ≥ ac
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Proof. Clearly, Q(1, 0) = a, so Q represents a. Similarily Q(1, 0)Q(0, 1) = ac.
In fact, Q(x, 0) = ax2 ≥ a and Q(0, y) = cy2 ≥ y. If both x and y are nonzero,
we get

Q(x, y) = ax2 + bxy + cy2

≥ ax2 − |b||x||y|+ cy2

≥ ax2 − |b||x||y|+ cy2 − a(x− y)2

= (2a− |b|)|x||y|+ (c− a)y2

≥ (2a− |b|) + (c− a) = a+ c− |b| ≥ c

This gives us that a is the minimum value. Additionally, if the point is not on
the x-axis, the value is at least c. In the second part we look at points which
are not collinear, which means at most one point is on the horizontal axis. Thus
one of the values is at least c. The other value we can bound from below by a
to get Q(x, y)Q(u, v) ≥ ac.

With this Lemma we are able to find out exactly which forms satisfying the
inequalities are equivalent to each other.

Theorem 1.5. Every form with discriminant d is equivalent to exactly one
form satisfying the inequalities

{|b| ≤ a ≤ c} and {b ≥ 0 if either |b| = a or a = c.}

Remark 1.6. We call these forms reduced. The theorem says that each equiv-
alence class contains exactly one reduced form.

Proof. First we show that we still can find a representative of each class. If

a = c and b < 0, we can use

[
0 1
−1 0

]
to get (a, b, c) ∼ (c,−b, a). The second

form has b ≥ 0 and also satisfies the inequalities. In the second case, if |b| = a

and b < 0, we use

[
1 0

−σ(b) 1

]
to get

(a, b, c) ∼ (a, b− 2σ(b)a, a+ c− |b|) = (a,−b, c).

Now we only look at the set of forms satisfying all inequalities of the theorem
statement. We want to show that we do not have two forms in the same class
anymore. We look at Q = (a, b, c) ∼ Q′ = (a′, b′, c′) where both Q and Q′

satisfy the inequalities and show that their coefficients are the same. As they
are equivalent, they represent the same integers. Thus they have the same
minimum. Together with the previous Lemma 1.4 we get a = a′. Similarily,
the second part of the Lemma 1.4 gives us c′ = c. As they have the same
discriminant, we also get that b′ = ±b. If b′ = b we are done. So assume the
contrary. Without loss of generality b < 0. As Q satisfies the inequalities in the
theorem, we have both |b| 6= a and a 6= c, i.e.

0 < |b| < a < c.
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As one can see in the proof of the Lemma 1.4, we actually have

Q(x, y) > c > a

if both variables are nonzero. Equivalence allows us to find a change of variables,
i.e.

Q′(x, y) = Q(rx+ ty, sx+ uy).

Then a = Q′(1, 0) = Q(r, s). Because of the strict version of the Lemma, we get
that (r, s) is on the x-axis and r = ±1. Similarily, c = Q′(0, 1) = Q(t, u), gives
us t = 0 and u = ±1. As the determinant of the change of variables matrix is
1, r and u have the same sign. Thus the matrix of the change is either I or −I.
But as these change of variables result in the same form, we get b′ = b. This
finishes the proof.

This theorem gives us an algorithmic procedure to find out the class number.
We have bounds on a and b, so we can just try out all possibilities to find all
forms satisfying the inequalities of the last theorem. We could actually be more
efficient, for example b has to have the same parity as d, as b2 − d = 4ac. We
actually also see that if d is not 0 or 1 mod 4, there are no forms of discriminant
d. This is as b2 is either 0 or 1 mod 4 and d ≡ b2 mod 4. There are other
conditions on the coefficients which would make this even faster, but the main
point is that we are able to calculate the class number.

Example 1.7. We illustrate this with d = −35. As
√
|d|/3 = 3.415..., we know

that 1 ≤ a ≤ 3 and −3 ≤ b ≤ 3. As d is odd, so is b, we have b ∈ {−3,−1, 1, 3}.
First, if b = ±1, we have c = (b2 − d)/4a = 9/a. As c is an integer, we get
a = 1 or 3. We get the forms {1,±1, 9} and {3,±1, 3}. In both cases the two
forms with b = −1 are not reduced. If b = ±3, we also need a = 3 as a ≥ |b|.
But then c = 44/12 is not an integer. Hence the class number h(−35) = 2.

We now turn our attention to the question: Which integers are represented?

Definition 1.8. A form Q represents an integer n properly if there are two
relatively prime integers r and s such that Q(r, s) = n.

Restricting our attention to proper representation will be useful. If Q repre-
sents n properly, it represents all integers of the form m2n. We can just multiply
both variables with m to get a representaion of m2n. The point of equivalence
is that equivalent forms represent the same integers. The following Theorem
allows us to say something in the other direction.

Theorem 1.9. If a form Q properly represents an integer n, Q is equivalent to
a form (n,m, l).

Proof. Assume r and s are relatively prime and Q(r, s) = n. Bézout’s Identity
gives us −t and u such that ru− ts = 1, i.e.

M =

[
r s
t u

]
∈ SL2(Z).
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With Q′(x, y) = Q((x, y)M) we get

Q′(1, 0) = Q((1, 0)M) = Q(r, s) = n.

Thus a′ = n and we are done.

Remark 1.10. This does not imply that different forms which properly repre-
sent the same integer are always equivalent, as m and l can be different.

The next theorem we will only state and not prove:

Theorem 1.11. A form Q of discriminant d properly represents an integer n
if and only if Q is equivalent to a form (n,m, l) where

m2 ≡ d mod 4n and 0 ≤ m < 2n.

The proof can be found in [2] on the pages 304−5.The main ideas are that as
m2 − 4nl = d we get that m2 ≡ d mod 4n is needed and the bound on m holds
because we can use change of variables to make m smaller similar as we did
earlier. The next question we are asking ourselves is, how many different proper
representations of an integer does a form have? Suppose two pairs (r, s) and
(r′, s′) give us the same form in the theorem above, i.e. we have two matrices

M =

[
r s
t u

]
and M ′ =

[
r′ s′

t′ u′

]
,

such that
Q((x, y)M) = nx2 +mxy + ly2 = Q′((x, y)M ′).

This also gives us Q(x, y) = Q((x, y)M ′M−1). The matrix M ′M−1 is called
an automorphism of Q. These automorphisms form a subgroup of SL2(Z).
We have the following theorem, whose proof we also omit, it is mostly tedious
algebraic computations.

Theorem 1.12. For a binary quadratic form Q = (a, b, c) of discriminant d, the
automorphisms N of Q are in one-to-one correspondence with solutions (t, u)
of the Pell equation t2 − du2 = 4 via

(t, u)↔ N =

[
t−bu
2 cu
cu t+bu

2

]
.

For d > 0, there are infinitely many solutions. For d = −3 there are six solu-
tions, for d = −4 four, and for d < −4 there are only two solutions.

Remark 1.13. For d < −4 we only have the trivial solutions (±2, 0) which
correspond to the automorphisms I and −I. This means that if a proper rep-
resentation (r, s) gives us a form (m,n, l), the only other proper representation
giving us that form is (−r,−s). From now on we restrict ourselves to d < −4.

Now we know that there are only finitely many proper representations of n
by Q. Hence the following definition makes sense:
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Definition 1.14. Let Q be a binary quadratic form with d < −4. The repre-
sention number of n by Q is

rQ(n) =
1

2
#{(x, y) relatively prime with Q(x, y) = n}.

Additionally we define

rd(n) =
∑

reduced forms Q

rQ(n).

We can’t say too much about rQ(n) for a fixed Q, but we can say the
following about rd(n) by combining the last two theorems:

Theorem 1.15. For d < −4, rd(n) is the number of m which satisfy

0 ≤ m < 2n and m2 ≡ d mod 4n.

As a final remark in this section, we remind you of the first talk. We saw the
identification of the upper half plane as the group of symmetric positive definite
2×2 square matrices with determinant 1. This gives us a binary quadratic form
for each point. Namely each point corresponds to the quadratic form which has
this point as a zero if we set y = 1. Then the modular group acts on the forms by
translating these roots with the Möbius Transform. Here we only talked about
forms with integer coefficients, but this is just a special case. It turns out that
a form is reduced if and only if the corresponding root is in the fundamental
domain. This means that finding the reduced form is the same as translating
the root into the fundamental domain. This finishes the first part of the talk,
after the break we will connect this to L-functions.

2 The Class Number Formula

In 1837 Dirichlet proved the following famous theorem on primes in arithmetic
progressions.

Theorem 2.1. Let a and b be positive integers. The sequence

a, a+ b, a+ 2b, a+ 3b, . . .

contains infinitely many primes if and only if gcd(a, b) = 1.

An important step of the proof consisted in showing that his Dirichlet L-
series do not vanish at 1 (provided that they do not arise from a principal
character). They are defined as follows.

Definition 2.2. Let k be a non-zero integer. A function χ : Z→ C is called a
Dirichlet character modulo k if the following three properties hold:

1. For all n ∈ N, χ(n+ k) = χ(n).
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2. If gcd(n, k) > 1, then χ(n) = 0 and if gcd(n, k) = 1, then χ(n) 6= 0.

3. For all m,n ∈ Z, χ(mn) = χ(m)χ(n).

If χ(n) = 1 for all n with gcd(n, k) = 1, then χ is called principal. Finally, if χ
is a Dirichlet character, then the function

L(s, χ) =

∞∑
n=1

χ(n)

ns

is called a Dirichlet L-series.

For example if we take k = 1 in this definition, then we obtain the principal
character χ ≡ 1 and the corresponding L-series is the Riemann zeta function.
We already know that it has a simple pole at 1.

In 1839 Dirichlet found the exact value at 1 for certain types of L-series
which are connected to binary quadratic forms. This result is known as the
class number formula. Using methods from algebraic number theory, it has
since been generalized to a relation between the residue at 1 of the Dedekind
zeta function of some number field K and algebraic data of K. The proof we will
give today corresponds to the case where K is an imaginary quadratic number
field. If you want to learn more about this topic, a good reference is for example
[1].

The definitions imply that if χ is a Dirichlet character modulo k, then χ can
also be viewed as a group homomorphism (Z/kZ)? → C?. From a representation
theoretic viewpoint, this means that χ is a character of the group (Z/kZ)?. If
we let ϕ(k) = |(Z/kZ)?| denote the Euler totient function, then for all n with
gcd(n, k) = 1 we have

χ(n)ϕ(k) = χ(nϕ(k)) = χ(1) = 1.

This implies that all non-zero values of χ lie on the unit circle. Combining
the fact that |χ| ≤ 1 with the multiplicativity of χ, one can prove, in exactly
the same manner as for the Riemann zeta function, that L(s, χ) is an analytic
function for <(s) > 1 and that it has the Euler product

L(s, χ) =
∏
p

1

1− χ(p)p−s
.

A proof for the case of the Riemann zeta function can be found in chapter VII
of [1].

We are only interested in a particular Dirichlet character, whose definition
requires the Kronecker symbol, which is a generalization of the Legendre symbol.

Definition 2.3. Let p be an odd prime and a an integer. Then a is called a
quadratic residue modulo p if a has a square root in Z/pZ, that is the equation
x2 = a has a solution x ∈ Z/pZ. The Legendre symbol is defined by

(
a

p

)
=


−1, if a is not a quadratic residue modulo p,

0, if p | a,
1, if a is a quadratic residue modulo p.

8



Now we define the Jacobi symbol, which allows for an odd natural number n
in place of the odd prime p. If we have the prime factorization n = pα1

1 · · · p
αk

k ,
then (

a

n

)
=

(
a

p1

)α1

· · ·
(
a

pk

)αk

.

Lastly, we extend the definition to even natural numbers, which yields the Kro-
necker symbol. For this we define the case n = 2 first.

(
a

2

)
=


−1, if a ≡ 3, 5 (mod 8),

0, if 2 | a,
1, if a ≡ 1, 7 (mod 8).

Then if n = 2αm with m odd, let(
a

n

)
=

(
a

2

)α(
a

m

)
.

Before we define the Dirichlet character of interest, we restrict the discrim-
inants which we look at to fundamental discriminants in order to make the
results to come a bit simpler to write down.

Definition 2.4. A discriminant d of a binary quadratic form is called a funda-
mental discriminant if either of the following holds:

• d ≡ 0 (mod 4), d/4 is square free and d/4 ≡ 2, 3 (mod 4).

• d ≡ 1 (mod 4) and d is square free.

Definition 2.5. Let d < 0 be a fundamental discriminant. We use the Kro-
necker symbol to define the Dirichlet character χd by

χd(n) =

(
d

n

)
.

It is not obvious that χd actually defines a Dirichlet character. While the
third property in Definition 2.2 is clear from the definition of the Kronecker
symbol, it is not obvious whether a k as in the first property exists. For the
Legendre symbol, one clearly has(

a

p

)
=

(
a+ p

p

)
.

This holds analogously for the Jacobi symbol, and for the Kronecker symbol we
can use (

a

2

)
=

(
a+ 8

2

)
to obtain (

a

n

)
=

(
a+ 8n

n

)
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in general. This suggests that the period of χd is a multiple of |d|. However,
the definition of χd(n) uses n as the lower variable in the symbol, so we cannot
use our observation immediately. The idea can be saved by using a version of
the celebrated quadratic reciprocity theorem for the Kronecker symbol, which
relates (

d

n

)
and

(
n

|d|

)
in a controlled manner. Going through the computations, one obtains that if d
is a fundamental discriminant, then χd is a Dirichlet character modulo |d|.

Now we have defined the main object of interest of this part of the talk, the
Dirichlet L-series

L(s, χd) =

∞∑
n=1

χd(n)

ns
.

The goal for the remainder of this talk will be to prove the class number formula.

Theorem 2.6 (The class number formula). Let d < −4 be a fundamental
discriminant and let h denote its class number. Then

L(1, χd) =
πh√
|d|
.

The left side will only make sense once we have shown that L(s, χd) is well
defined at s = 1. For the proof of the class number formula we need to relate
binary quadratic forms to χd, which is the content of the following result.

Theorem 2.7. Let d < 0 be a fundamental discriminant. Then

rd(n) =

0, if p2 | n for some prime factor p of d,∏
p|n, p-d

(1 + χd(p)), otherwise,

where each p is a prime factor of n.

Proof. We only prove some special cases and not the full theorem.
Consider first the case where the square of a prime factor p of d divides

n. We show that rd(n) = 0 using Theorem 1.15. If p is odd and m2 ≡ d
(mod 4n), then m2 ≡ d (mod p2). Since p divides d, it also divides m2 and thus
p2 | m2. But then d ≡ m2 ≡ 0 (mod p2) which contradicts the fact that d is a
fundamental discriminant, because fundamental discriminants are not divisible
by an odd prime squared. In the case p = 2 we must have 4 | d and d/4 ≡ 2, 3
(mod 4). One can check that then d ≡ 8, 12 (mod 16). If m2 ≡ d (mod 16) we
immediately obtain a contradiction, because 8 and 12 are not quadratic residues
modulo 16.

In the case that there is a prime factor p of n with (dp ) = −1 we also want

to show rd(n) = 0. If the equation m2 ≡ d (mod 4n) has a solution m, then d
is a quadratic residue modulo p, contradiction.
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In the remaining cases we have (np ) = 1 for all primes p which divide n but
not d. If we let k denote the number of such primes, we want to show that
rd(n) = 2k. We prove the case where n is odd and d ≡ 0 (mod 4). According
to Theorem 1.15, we must count the number of solutions m, with 0 ≤ m < 2n,
of the equation

m2 ≡ d (mod 4n).

Since d is a multiple of 4, so is m2, and there are integers d̃, m̃ with 4d̃ = d and
2m̃ = m. This transforms the counting problem into finding solutions to

m̃2 ≡ d̃ (mod n)

with 0 ≤ m̃ < n. Now let q be a prime divisor of both n and d, which also
implies q2 - n by our case distinction. The congruence m̃2 ≡ d̃ (mod q) has the
unique solution m̃ ≡ 0 (mod q). If p is a (necessarily odd) prime divisor of n

with (dp ) = 1, then m̃2 ≡ d̃ (mod p) has at least one solution m̃. Furthermore,

−m̃ 6≡ m̃ (mod p) is another solution, so we get exactly two solutions modulo
p. If the prime factorization of n is q1 · · · qlpα1

1 · · · p
αk

k , we can apply Hensel’s
Lemma to conclude that the congruences

m̃2 ≡ d̃ (mod pαi
i )

have exactly two solutions each. We record the statement of the special case of
Hensel’s Lemma which we need here for convenience. See also [2] chapter 14.

Theorem 2.8 (Hensel’s Lemma). Suppose p is an odd prime, a is not divisible
by p and α ≥ 1. If there is a solution x to the congruence

x2 ≡ a (mod pα),

then there is a unique solution x̃ to the congruence

x̃2 ≡ a (mod pα+1)

satisfying x̃ ≡ x (mod pα).

Finally, we can apply the Chinese Remainder Theorem to conclude that
there are precisely 2k solutions to the congruence m̃2 ≡ d̃ (mod n).

For the proof of the class number formula we will also need the following
function, which connects the class number to the L-series which we defined
earlier.

Definition 2.9. Given a binary quadratic form Q, the Epstein Zeta function
is defined for all <(s) > 1 by

ζ(s,Q) =
1

2

∑
(x,y)6=(0,0)

Q(x, y)−s.
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Note that since equivalent binary quadratic forms represent a given integer
equally often, the Epstein Zeta function is independent of the choice of Q within
its equivalence class. We can use the following trick to rewrite ζ(s,Q) as a
sum over pairs of relatively prime integers: If x, y are integers we can write
(x, y) = m(u, v) where m = gcd(x, y) and gcd(u, v) = 1. Then

Q(x, y) = Q(m(u, v)) = m2Q(u, v)

and consequently

ζ(s,Q) =
1

2

∞∑
m=1

∑
gcd(u,v)=1

m−2sQ(u, v)−s = ζ(2s)

∞∑
n=1

rQ(n)n−s.

The last equality follows directly from the definition of rQ in the case that
d < −4. Finally we obtain another function by summing over all equivalence
classes:

ζ(s, d) =
∑

classes [Q]

ζ(s,Q) = ζ(2s)

∞∑
n=1

rd(n)n−s. (1)

Now we prove a lemma which establishes the connection between binary
quadratic forms and our L-series.

Lemma 2.10. Let d < 0 be a fundamental discriminant. Then

∞∑
n=1

rd(n)n−s =
∏
p

1 + p−s

1− χd(p)p−s
= ζ(2s)−1L(s, χd)ζ(s).

Proof. We begin with the first equality. We claim that for a single factor of the
Euler product we get

1 + p−s

1− χd(p)p−s
=


1, if χd(p) = −1,

1 + p−s, if χd(p) = 0,

1 + 2
∑∞
k=1 p

−ks, if χd(p) = 1.

If χd(p) = 0 or −1, this is clear. If χd(p) = 1, we expand the geometric series:

1 + p−s

1− p−s
= (1 + p−s)

∞∑
k=0

p−ks = 1 +

∞∑
k=1

(1 + 1)p−ks.

Now we multiply all these factors and analyse how often some given n−s will
appear in the product, depending on the prime factorisation of n. By comparing
this with Theorem 2.7, we will obtain the desired result. So let p1, . . . , pk be
the prime factors of n.
Case 1: There is some pi with p2i | n and pi | d. Then χd(pi) = 0. In the
product, there will be no instance of p−2si and so n−s cannot be obtained by
multiplying the factors together. Thus the coefficient of n−s is 0, which agrees
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with Theorem 2.7.
Case 2: There is some pi with χd(pi) = −1. Then p−si will not appear in the
product and so the coefficient of n−s is 0, which again agrees with Theorem 2.7.
Case 3: In the remaining cases we have χd(pi) 6= −1 and p2i - n for all prime
factors pi. This means that we get at least one n−s after multiplying out the
product. Now consider a fixed pi. If pi - d, then χd(pi) = 1 and in the Euler
product we see that the coefficient of n−s is multiplied by 2. The same thing
happens in the product from Theorem 2.7. If pi | d, then χd(pi) = 0 and the
factor (1 + p−si ) in the Euler product will multiply the coefficient of n−s by 1,
exactly as in Theorem 2.7. Thus the first equality is proven.

The second equality follows immediately from the Euler products for L(s, χd)
and the Riemann zeta function:

ζ(2s)−1L(s, χd)ζ(s) =
∏
p

(1− p−2s)
∏
p

1

1− χd(p)p−s
∏
p

1

1− p−s

=
∏
p

(1− p−s)(1 + p−s)

(1− χd(p)p−s)(1− p−s)

=
∏
p

1 + p−s

1− χd(p)p−s
.

Together with (1) we immediately obtain the following.

Corollary 2.11.
ζ(s, d) = L(s, χd)ζ(s).

We still pursue our goal of finding out more about L(1, χd), so we want to
investigate the above equation at s = 1. We have already seen that ζ(s) has a
simple pole at s = 1 with residue 1, but we do not know much about ζ(s, d) and
L(s, χd) yet. For this we consider ζ(s,Q) with a particular binary quadratic
form Q and relate it to the non-holomorphic Eisenstein series

E(s, z) =
1

2
π−sΓ(s)

∑
(m,n)6=(0,0)

=(z)s

|mz + n|2s

from the last talk. Then we can just use the properties of E which were proven
by the last group.

Propostion 2.12. Let Q(x, y) = ax2 + bxy + cy2 be a binary quadratic form
with discriminant d < 0 and let

zQ =
−b+

√
d

2a
∈ H

denote one of the complex roots of the polynomial Q(x, 1). Then

ζ(s,Q) =

(
|d|
4

)− s
2 πs

Γ(s)
E(s, zQ).

13



Proof. Straightforward computations show

=(zQ) =
1

a

(
|d|
4

) 1
2

and

a|mzQ + n|2 = a

((
n− bm

2a

)2

+

(
m
√
|d|

2a

)2)
= a

(
n2 − bmn

a
+
b2m2

4a2
+
m2(4ac− b2)

4a2

)
= an2 − bmn+ cm2

= Q(m,−n).

Thus (
|d|
4

)− s
2 πs

Γ(s)
E(zQ, s) =

1

2

(
|d|
4

)− s
2 ∑
(m,n)6=(0,0)

=(zQ)s

|mzQ + n|2s

=
1

2

∑
(m,n)6=(0,0)

1

as|mzQ + n|2s

=
1

2

∑
(m,n)6=(0,0)

1

Q(m,−n)s

= ζ(s,Q).

From the last talk we know that the non-holomorphic Eisenstein series can
be extended to a holomorphic function on C except for simple poles at s = 0
and s = 1. Since s 7→ (|d|/4)−s/2πsΓ(s)−1 is holomorphic everywhere, has a
zero at s = 0 and is non-zero at s = 1, we conclude that ζ(s,Q) is holomorphic
except for a simple pole at s = 1. Furthermore, the residue of E(s, z) at s = 1
is independent of z and equal to 1/2, so ζ(s,Q) has residue π/

√
|d| at s = 1.

Since this is independent of the choice of equivalence class of the quadratic form
Q, we can sum the ζ(s,Q) over the equivalence classes to conclude that ζ(s, d)
also has a simple pole at s = 1. If we let h denote the class number of d, the
corresponding residue is

πh√
|d|
.

Recall that the Riemann zeta function has a simple pole of residue 1 at s = 1.
The equation ζ(s, d) = L(s, χd)ζ(s) then implies that L(1, χd) is defined and
not equal to 0. In that case we obtain

L(1, χd) = Res
s=1

L(s, χd)ζ(s) = Res
s=1

ζ(s, d) =
πh√
|d|
.
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